
Symmetric Nonnegative Matrix Factorization for Graph Clustering

Da Kuang∗ Chris Ding† Haesun Park∗

Abstract

Nonnegative matrix factorization (NMF) provides a lower

rank approximation of a nonnegative matrix, and has been

successfully used as a clustering method. In this paper, we

offer some conceptual understanding for the capabilities and

shortcomings of NMF as a clustering method. Then, we

propose Symmetric NMF (SymNMF) as a general frame-

work for graph clustering, which inherits the advantages of

NMF by enforcing nonnegativity on the clustering assign-

ment matrix. Unlike NMF, however, SymNMF is based

on a similarity measure between data points, and factor-

izes a symmetric matrix containing pairwise similarity val-

ues (not necessarily nonnegative). We compare SymNMF

with the widely-used spectral clustering methods, and give

an intuitive explanation of why SymNMF captures the clus-

ter structure embedded in the graph representation more

naturally. In addition, we develop a Newton-like algorithm

that exploits second-order information efficiently, so as to

show the feasibility of SymNMF as a practical framework

for graph clustering. Our experiments on artificial graph

data, text data, and image data demonstrate the substan-

tially enhanced clustering quality of SymNMF over spectral

clustering and NMF. Therefore, SymNMF is able to achieve

better clustering results on both linear and nonlinear man-

ifolds, and serves as a potential basis for many extensions

and applications.

1 Introduction

In nonnegative matrix factorization (NMF), given a
nonnegative matrix X, and a reduced rank k, we seek a
lower-rank matrix approximation given by

(1.1) X ≈ CGT

Using Forbenius norm to measure the distance between
X and CGT , the problem of computing NMF is

∗School of Computational Science and Engineering, Geor-

gia Institute of Technology ({da.kuang,hpark}@cc.gatech.edu).
This work was supported in part by the National Science Foun-

dation grants CCF-0732318 and CCF-0808863. Any opinions,

findings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect

the views of the National Science Foundation.
†Department of Computer Science and Engineering, University

of Texas, Arlington (chqding@uta.edu).

formulated as [11]:

(1.2) min
C,G≥0

‖X − CGT ‖2F

where X ∈ Rm×n
+ , C ∈ Rm×k

+ , G ∈ Rn×k
+ , R+ denotes

the set of nonnegative real numbers, and ‖ · ‖F denotes
Frobenius norm. In general k < min{m,n} and
typically k is assumed to be much smaller than m or
n, thus NMF represents a lower rank approximation.

The formulation of NMF in (1.2) is easily related
to the clustering of nonnegative data [12]. Suppose
we have n data points represented as the columns in
X = [x1, · · · , xn], and try to group them into k clusters.
The result of the well-known K-means clustering can
be represented as in (1.2) where the columns of C
are the cluster centroids and the i-th column of GT

is ej if xi belongs to cluster j (ej denotes the j-th
column of Ik×k). Likewise, when C,G are only subject
to nonnegativity, we can still interpret the dimension
reduction in (1.2) as clustering results: The columns
of the first factor C provide the basis of a latent
k-dimensional space, and the columns of the second
factor GT provide the representation of x1, · · · , xn in
the latent space. Due to nonnegativity, NMF offers
the interpretability that the clustering assignment of
each data point can be easily obtained by choosing the
largest entry in the corresponding column of GT . Note
that this is not possible in lower-rank approximation
methods with no nonnegativity constraints, such as
singular value decomposition (SVD). NMF has received
wide attention in clustering with many types of data,
including documents [22], images [3], and microarray
data [10].

Although NMF has been shown to be effective to
perform clustering, the goals of clustering and dimen-
sion reduction are different. While a dimension reduc-
tion method uses a few basis vectors that well approxi-
mate the data matrix, the goal of clustering is to find a
partitioning of the data points where similarity is high
within each cluster and low across clusters. The simi-
larity measure should be defined based on the inherent
cluster structure. When these two goals coincide, i.e. a
basis vector is a suitable representation of one cluster,
NMF is able to achieve good clustering results. How-
ever, this assumption is violated when the data have

nonlinear cluster structures. It is interesting to note
that most success of NMF in clustering has been around
document clustering [22, 14, 12]. One reason is that
each basis vector represents the word distribution of a
topic, and the documents with similar word distribu-
tions should be classified into the same group. This
property does not hold in every type of data. For ex-
ample, it was shown that a collection of images tends to
form multiple 1-dimensional nonlinear manifolds [19].

The standard formulation of NMF in (1.2) has been
applied to many clustering tasks where the n data
points are explicitly available in X and are directly
used as input. However, in many cases, such as when
data points are embedded in a nonlinear manifold, it is
better to describe the relationship between data points
in the form of a graph. In the graph model, each
node corresponds to a data point, and a similarity
matrix An×n contains similarity values between each
pair of nodes, i.e. the (i, j)-th entry of A represents
the similarity between xi and xj . In this paper, we
explore a symmetric variation of NMF that uses A
directly as input. When A is properly constructed, the
factorization of A will generate a clustering assignment
matrix that is nonnegative and well captures the cluster
structure inherent in the graph representation. This
way, we propose Symmetric NMF (SymNMF) as a new
method for graph clustering. We expect that SymNMF
can inherit the good interpretability of NMF. Note that
a similarity matrix A is not required to be nonnegative;
however, we do emphasize the nonnegativity of the
clustering assignment matrix SymNMF produces.

We can show that our formulation of SymNMF
is related to a group of widely-used graph clustering
methods, namely spectral clustering. In fact, Ding et al.
[7] made an important observation that relates NMF
and spectral clustering via the objective function of
kernel K-means:

(1.3) min
HT H=I,H≥0

‖XT X −HHT ‖2F

where X is a data matrix defined in (1.2). XT X can
also be extended to a positive semi-definite kernel ma-
trix Kn×n. They also proposed an algorithm for the
factorization of a nonnegative kernel matrix. However,
in general, a similarity matrix A in graph clustering is
neither nonnegative nor positive semi-definite. In this
respect, SymNMF can be used to factorize a larger class
of symmetric matrices that contain pairwise similarity
values, thus has a closer relationship to spectral cluster-
ing and is well justified to be a graph clustering method.
We will show that SymNMF and spectral clustering try
to solve the same optimization problem by relaxing the
constraints in different ways. However, the nonnegativ-
ity property (H ≥ 0) retained in SymNMF is crucial for

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(a) 300 data points. (b) 300,000 data points.

Figure 1: (a) A graph clustering example with 3
clusters (reproduced from [24]); (b) Another example
with similar cluster structure and a much larger number
of data points.

its success since the interpretation of H into clustering
results is straightforward, i.e. by picking the largest en-
try in each row of H, as in the case of NMF. We will
show the uniqueness of SymNMF in terms of clustering
quality, the independence on the eigenspace of A, and
the sensitiveness to the fluctuation in the similarity ma-
trix A. We will also develop an algorithm for SymNMF
that is guaranteed to produce stationary point solutions.

The rest of the paper is organized as follows. In
Section 2, we present the formulation of SymNMF and
argue that it has additional clustering capability com-
pared to NMF and meanwhile has good interpretability
offered by nonnegativity. We also explain the difference
between SymNMF and spectral clustering in terms of
the inherent cluster structure they may capture. In Sec-
tion 3, we develop a Newton-like algorithm for SymNMF
that exploits the second-order information efficiently. It
has better convergence rate than simple gradient de-
scent methods that relies on the first-order information
only. In Section 4, we demonstrate the superiority of
SymNMF and the Newton-like algorithm with exper-
iments on artificial graph data, text data, and image
data. SymNMF has better clustering quality than NMF
because it offers a wider range of similarity measures
to choose from. Experiments also show that SymNMF
is better than spectral clustering because it naturally
captures the cluster structure and does not require ad-
ditional steps to obtain clustering results. In Section 5,
we discuss related work on nonnegative factorization of
a symmetric matrix. In Section 6, we summarize the
benefits of this new clustering framework and give com-
ments on future research directions.

2 Symmetric NMF (SymNMF)

2.1 SymNMF and NMF Although NMF has been
widely used in clustering and often reported to have
better clustering quality than classical methods such as

Figure 2: An illustration of the symmetric factorization
of a similarity matrix: A ≈ HHT . Regions with dark
colors indicate matrix entries of large value, and white
regions indicate entries of small value. The rows and
columns of A have been reorganized to place data points
in the same group continuously.

K-means, it is not a general clustering method that
performs well in every circumstance. The reason is
that the clustering capability of an algorithm and its
limitation can be attributed to its assumption on the
cluster structure. NMF assumes that each cluster can
be represented by a single basis vector, and different
clusters must correspond to different basis vectors. This
can be seen from the way to use GT (the representation
of X in a lower-dimensional space) to infer clustering
assignments.

The limitations of NMF comes from the fact that
its goal is to approximate the original data matrix
(using a linear combination of basis vectors). When
the underlying k clusters have nonlinear structure and
lie on a nonlinear manifold (for example, see Fig. 1a),
NMF cannot find any k basis vectors that represent
the k clusters respectively. On the other hand, there
is another important class of clustering methods, which
views the data points in a graph model and minimizes
some form of graph cuts. Although a graph model is
commonly built upon coordinates of data points in their
original Euclidean space, the coordinate information
no longer plays a role after the graph is constructed
based on the similarity between each pair of data points.
Thus, clustering methods belonging to this class are
only concerned with an n×n similarity matrix A, where
n is the number of data points or nodes. Extending the
interpretability of NMF to this symmetric case is the
focus of this section.

We formulate the nonnegative symmetric factoriza-
tion (SymNMF) of the similarity matrix A as:

(2.4) min
H≥0
‖A−HHT ‖2F

where H is a nonnegative matrix of size n× k, and k is
the number of clusters requested. The effectiveness of
this formulation is conceptually depicted in Fig. 2. As-
sume data points in the same group have large similarity
values, and data points in different groups have small
similarity values. Then a good approximation to A nat-

urally captures the cluster structure, and the largest
entry in the i-th row of H indicates the clustering as-
signment of the i-th data point due to the nonnegativity
of H.

Compared to NMF, SymNMF is more flexible in
terms of choosing similarities for the data points. We
can choose whatever similarity measure that well de-
scribes the inherent cluster structure. In fact, the for-
mulation of NMF (1.2) can be related to SymNMF when
A = XT X in the formulation (2.4) [7]. This means that
NMF implicitly chooses inner products as the similar-
ity measure, which might not be suitable to distinguish
different clusters.

In previous work on symmetric NMF [7, 4], A is re-
quired to be nonnegative and symmetric positive semi-
definite. Our formulation differs in that the matrix A in
(2.4) can be any symmetric matrix representing similar-
ity values. A similarity value may be a negative num-
ber (for example, in some definition of kernel matrices
used in semi-supervised clustering [13]). However, in the
SymNMF formulation, if A has entries of mixed signs,
the magnitudes of negative entries of A do not affect
the optimal solution of (2.4). For example, suppose
Aij = p < 0 and a global optimal solution of (2.4) is
Hopt. It can be shown that if Aij is changed to any real
number p̃ ≤ 0 while other entries of A are unchanged,
then Hopt is still a global optimal solution. Therefore,
we suggest transforming a similarity matrix with mixed
signs into a nonnegative matrix before applying Sym-
NMF.

2.2 SymNMF and Graph Clustering Objec-
tives We can show that the formulation (2.4) is con-
nected to an optimization problem generalized from
many graph clustering objective functions; and by doing
so, we can solve the remaining question: how to have a
proper and theoretically sound construction of the sim-
ilarity matrix A. This way, SymNMF can be seen as a
new algorithm to solve many graph clustering problems.

First, we introduce the notations for a rigorous
description of graphs. A graph G = (V,E) is formed by
modeling each data point as a node in V , and two nodes
can be connected by an edge in E. The goal of graph
clustering is to partition the node set V into k non-
overlapping subsets V1, · · · , Vk. Suppose we have an
affinity matrix AG, where AG

ij is the edge weight between
nodes i and j (AG

ij = 0 if they are not connected).
Note that we call AG as an affinity matrix of a graph,
different from the similarity matrix A that is used as
the matrix to be factorized in the SymNMF formulation
(2.4). Define the degree of node i: di =

∑n
j=1 AG

ij , and
the diagonal matrix D = diag(d1, · · · , dn).

Table 1 lists three examples of different graph cut

Table 2: Algorithmic steps of spectral clustering and SymNMF clustering

Spectral clustering SymNMF

Objective minHT H=I ‖A−HHT ‖2F minH≥0 ‖A−HHT ‖2F

Step 1
Obtain the global optimal Hn×k by Obtain a stationary point solution

computing k leading eigenvectors of A using some minimization algorithm

Step 2 Normalize each row of H (no need to normalize H)

Step 3
Infer clustering assignments from The largest entry in each row of H

the rows of H (e.g. by K-means) indicates the clustering assignments

Table 1: Graph clustering objectives and similarity
matrices.

Ratio Objective: max
∑k

p=1

∑
i∈Vp,j∈Vp

AG
ij

|V |

association Similarity matrix: A = AG

Normalized Objective: max
∑k

p=1

∑
i∈Vp,j∈Vp

AG
ij∑

i∈Vp,j∈V AG
ij

cut Similarity matrix: A = D−1/2AGD−1/2

Kernel Similarity matrix: A = K

clustering
[
Kij = φ(xi)T φ(xj)

]
objective functions that have been shown effective in
graph clustering, as well as the similarity matrices A.
All the cases in Table 1 can be reduced to the follow-
ing trace maximization form, assuming the similarity
matrix A is constructed correspondingly [5, 13]:

(2.5) max trace(HT AH)

where H ∈ Rn×k satisfies some constraints and indicates
the clustering assignment. A group of successful graph
clustering methods – spectral clustering, relax the con-
straints on H to HT H = I. Under such orthogonality
constraint on H, we have [7]:

max trace(HT AH)
⇔ min trace(AT A)− 2trace(HT AH) + trace(I)
⇔ min trace[(A−HHT)T (A−HHT)]
⇔ min ‖A−HHT ‖2F

Therefore, compared to spectral clustering, Sym-
NMF can be seen as a different relaxation to min ‖A−
HHT ‖2F , i.e. relaxing the constraints on H to be H ≥ 0.
In addition, we can use the same way of constructing the
similarity matrix A as in Table 1. The choice of the sim-
ilarity matrix A depends on the data set and also will
influence the clustering results. The 1st and 2nd cases in
Table 1 are derived from two different graph cut defini-
tions, where normalized cut often performs better than

ratio association [17]. In the 3rd case, K is a kernel
matrix where φ is a nonlinear mapping of the original
data points. Although it was shown that kernel clus-
tering has equivalent objective functions with weighted
graph clustering [5], similarity values are defined by in-
ner products and no graph is explicitly constructed. In
all of our experiments in this paper, we explicitly con-
struct graphs from the data points; therefore, we choose
normalized cut objective and the corresponding similar-
ity matrix A = D−1/2AGD−1/2. The most suitable way
to form the similarity matrix depends on the underlying
data set, and that is not the focus of this paper. How-
ever, we should keep in mind that we are developing a
framework for graph clustering that can be applied to
a similarity matrix A derived from any graph clustering
objective.

2.3 SymNMF and Spectral Clustering Meth-
ods Due to different constraints on H, spectral clus-
tering and SymNMF have different properties in the
clustering results they generate. Before analyzing their
properties, we first compare their algorithmic steps in
Table 2. Spectral clustering leads to eigenvector-based
solutions of H, which are not necessarily nonnegative;
and K-means or more advanced procedures have to be
adopted in order to obtain the final clustering assign-
ments. In contrast, the solution found by SymNMF nat-
urally captures the cluster structure. It also indicates
the clustering assignments without additional cluster-
ing procedures, which heavily depends on initialization,
such as K-means.

Spectral clustering is a well-established framework
for graph clustering. However, its success relies on the
properties of the leading eigenvalues and eigenvectors
of the similarity matrix A. It was pointed out by Ng
et al. [16], that the k-dimensional subspace spanned
by the leading k eigenvectors of A is stable only when
|λk(A) − λk+1(A)| is sufficiently large, where λi(A)
is the i-th largest eigenvalue of A. Now we show
intuitively that the absence of this property will cause

Table 3: Leading eigenvalues of similarity matrices
based on Fig. 1.

n = 300 n = 300, 000
1st 1.000 1.00000000
2nd 1.000 1.00000000
3rd 1.000 1.00000000
4th 0.994 0.99999999
5th 0.993 0.99999997
6th 0.988 0.99999994

spectral clustering to fail due to noise or numerical
artifacts. Suppose A contains k = 3 diagonal blocks
[16], corresponding to 3 clusters:

(2.6) A =

A1 0 0
0 A2 0
0 0 A3

It follows that a set of linearly independent eigenvectors
of A can be formed by padding zeros to the eigenvectors
of A1, A2, A3. If we construct the similarity matrix
A as in normalized cut (Table 1), then each of the
diagonal blocks A1, A2, A3 has a leading eigenvalue 1.
We further assume that λ2(Ai) < 1 for all i = 1, 2, 3
in exact arithmetic. Thus, the leading 3 eigenvectors
of A can be found by padding zeros to the leading
eigenvector of each Ai, and correspond to the 3 ground-
truth clusters respectively. However, when λ2(A1) is
so close to 1 that it cannot be distinguished from
λ1(A1) by an eigensolver in finite precision arithmetic,
it is possible that the computed eigenvalues satisfy
(in exact arithmetic) λ1(A1) > λ2(A1) > λ1(A2) >
λ1(A3). In this case, two clusters are identified within
the 1st ground-truth cluster, and the 3rd ground-
truth cluster is ignored. For example, we construct
similarity matrices using two graph clustering examples
shown in Fig. 1 and using normalized cut as the
objective function (the data points in each example are
transformed into a sparse graph in a principled way as
described in Section 4.1). The leading eigenvalues of
A in each example are listed in Table 3. We can see
that the 3rd and 4th largest eigenvalues are very close
when the number of data points n = 300, 000, and will
become indistinguishable as n continues to increase or
if we use single precision instead.

On the other hand, the solution of SymNMF is
not based on eigenvectors, thus its algorithm does not
suffer from potential numerical artifacts in the leading
eigenvalues.

3 A Newton-like Algorithm for SymNMF

In this section, we focus on solving SymNMF for-

Algorithm 1 Framework of Newton-like algorithms for
SymNMF: minH≥0 f(x) = ‖A−HHT ‖2F
1: Input: number of data points n, number of clusters

k, n × n similarity matrix A, reduction factor 0 <
β < 1, acceptance parameter 0 < σ < 1, and
tolerance parameter 0 < µ << 1

2: Initialize x, x(0) ← x
3: repeat
4: Compute scaling matrix S
5: Step size α = 1
6: while true do
7: xnew = [x− αS∇f(x)]+

8: if f(xnew)− f(x) ≤ σ∇f(x)T (xnew − x) then
9: break

10: end if
11: α← βα
12: end while
13: x← xnew

14: until ‖∇P f(x)‖ ≤ µ‖∇P f(x(0))‖ [15]
15: Output: x

mulated as a minimization problem (2.4). The objective
function in (2.4) is a fourth-order non-convex function
with respect to the entries of H, and has multiple local
minima. For this type of problem, it is difficult to find
a global minimum; thus a good convergence property
we can expect is that every limit point is a station-
ary point [2]. We can directly apply standard gradient
search algorithms, which lead to stationary point solu-
tions; however, they suffer from either slow convergence
rate or expensive computation cost. Thus, it is not a
trivial problem to minimize (2.4) efficiently.

3.1 Algorithm Framework First, we introduce
several notations for clarity. Let H = [h1, · · · , hk]. A
vector x of length nk is used to represent the vectoriza-
tion of H by column, i.e. x = vec(H) = [hT

1 , · · · , hT
k]T .

For simplicity, functions applied on x have the same no-
tation with functions applied on H, i.e. f(x) ≡ f(H).
[·]+ denotes the projection to the nonnegative orthant,
i.e. changing any negative element of a vector to be
0. Superscripts denote iteration indices, e.g. x(t) =
vec(H(t)) is the iterate of x in the t-th iteration. For
a vector v, vi denotes its i-th element. For a matrix
M , Mij denotes its (i, j)-th entry; and M[i][j] denotes
its (i, j)-th n× n block, assuming both the numbers of
rows and columns of M are multiples of n. M � 0 refers
to positive definiteness of M .

Algorithm 1 describes a framework of gradient
search algorithms applied to SymNMF, upon which we
will develop our Newton-like algorithm. This descrip-
tion does not specify iteration indices, but updates x

Table 4: Comparison of PGD and PNewton for solving
minH≥0 ‖A−HHT ‖2F , where H is an n× k matrix.

Projected gradient Projected Newton

descent (PGD) (PNewton)

Scaling matrix: Scaling matrix:

S(t) = Ink×nk S(t) =
(
∇2
Ef(x(t))

)−1

Linear convergence; Quadratic

Zigzagging convergence

O(n2k) / iteration O(n3k3) / iteration

in-place. The framework uses the “scaled” negative gra-
dient direction as search direction. Except the scalar
parameters β, σ, µ, the nk × nk scaling matrix S(t) is
the only unspecified quantity. Table 4 lists two choices
of S(t) that lead to different gradient search algorithms:
projected gradient descent (PGD) [15] and projected
Newton (PNewton) [2].

PGD sets S(t) = I throughout all the iterations.
It is known as one of steepest descent methods, and
does not scale the gradient using any second-order
information. This strategy often suffers from the well-
known zigzagging behavior, thus has slow convergence
rate [2]. On the other hand, PNewton exploits second-
order information provided by the Hessian ∇2f(x(t)) as
much as possible. PNewton sets S(t) to be the inverse
of a reduced Hessian at x(t). The reduced Hessian with
respect to index set R is defined as 1 2

(3.7) (∇2
Rf(x))ij =

{
δij , if i ∈ R or j ∈ R(
∇2f(x)

)
ij

, otherwise

We introduce the definition of an index set E that helps
to prove the convergence of Algorithm 1 [2]:

(3.8) E = {i|0 ≤ xi ≤ ε, (∇f(x))i > 0}

where ε depends on x and is usually small (0 < ε < 0.01)
[9]. In PNewton, S(t) is formed based on the reduced
Hessian ∇2

Ef(x(t)) with respect to E . However, because
the computation of the scaled gradient S(t)∇f(x(t)) in-
volves the Cholesky factorization of the reduced Hes-
sian, PNewton has very large computational complexity
– O(n3k3), which is prohibitive. Therefore, we need to
develop a Newton-like algorithm that exploits second-
order information in an inexpensive way.

1δij is the Kronecker delta.
2Both the gradient and the Hessian of f(x) can be computed

analytically:

∇f(x) = vec(4(HHT −A)H)

(∇2f(x))[i][j] = 4
(
δij(HHT −A) + hjhT

i + (hT
i hj)In×n

)

3.2 Improving the Scaling Matrix The choice of
the scaling matrix S(t) is essential to an algorithm that
can be derived from the framework described in Algo-
rithm 1. We propose two improvements on the choice of
S(t), yielding new algorithms for SymNMF. Our focus
is to efficiently collect partial second-order information
but meanwhile still effectively guide the scaling of the
gradient direction. Thus, these improvements seek a
tradeoff between convergence rate and computational
complexity, with the goal of accelerating SymNMF al-
gorithms as an overall outcome.

Our design of new algorithms must guarantee the
convergence. Since the algorithm framework still follows
Algorithm 1, we would like to know what property of
the scaling matrix S(t) is essential in the proof of the
convergence result of PGD and PNewton. This property
is described by the following lemma:

Definition 3.1. A scaling matrix S is diagonal with
respect to an index set R, if Sij = 0,∀i ∈ R and j 6= i.
[1]

Lemma 3.1. Let S be a positive definite matrix which
is diagonal with respect to E. Then if x ≥ 0 is
not a stationary point, there exists ᾱ > 0 such that
f ([x− αS∇f(x)]+) < f(x),∀0 < α < ᾱ. (modified
from [1])

Lemma 3.1 states the requirement on S(t), which is
satisfied by the choices of S(t) in both PGD and
PNewton. It will guide our development of new ways to
choose S(t).

3.2.1 Improvement 1 (I1): Fewer Hessian Eval-
uations A common method for reducing computation
cost related to S(t) is to periodically update S(t) or eval-
uate S(t) only at the 1st iteration (chord method) [9].
However, this method cannot be directly used in the
framework of Algorithm 1, because S(t) is not necessar-
ily diagonal with respect to E(t) if E(t) 6= E(1), and the
requirement for convergence is violated.

Our way to delay the update of S(t) is to evaluate
S(t) only when E(t) changes. More precisely,

(3.9) S(t) =

S(t−1), if E(t) = E(t−1)(
∇2
Ef(x(t))

)−1
, if E(t) 6= E(t−1)

and ∇2
Ef(x(t)) � 0

Ink×nk, otherwise

Note that because f(x) is non-convex, we have to set
S(t) = I when ∇2

Ef(x(t)) is not positive definite, which
can be checked during its Cholesky factorization. We
expect that this improvement can reduce the number of
times of Hessian evaluation and Cholesky factorization.

3.2.2 Improvement 2 (I2): Cheaper Hessian
Evaluations The second improvement on choosing
S(t) is inspired by the recently proposed coordinate gra-
dient descent (CGD) method for solving covariance se-
lection [23]. When CGD is directly applied to SymNMF,
it updates one column of H in each iteration while the
other columns are fixed, and the search direction is typ-
ically determined by solving a quadratic programming
problem. The CGD method introduces additional over-
head when determining the search direction; however, it
implies a possibility of using second-order information
without evaluating the entire Hessian.

Inspired by the incremental update framework of
CGD, we propose to choose S(t) to be a block-diagonal
matrix in our batch update framework in Algorithm 1.
More precisely,
(3.10)

S
(t)
[i][j] =

0, if i 6= j(
∇2
Ef(x(t))[i][j]

)−1
, if i = j

and ∇2
Ef(x(t))[i][j] � 0

In×n, otherwise

Intuitively speaking, the i-th n × n diagonal block
of S(t) corresponds to variables in the i-th column
of H, and S(t) only involves second-order information
within each column of H. This choice of S(t) has
two advantages over the choice in PNewton algorithm:
1. The computational complexity in each iteration is
O(n3k), much lower than the complexity of PNewton;
2. We can exploit partial second-order information even
though the n diagonal blocks of ∇2

Ef(x(t)) are not all
positive definite, whereas PNewton requires the positive
definiteness of all the n diagonal blocks as a necessary
condition.

Our final strategy for solving SymNMF (2.4) is
to combine Improvement 1 (I1) and Improvement 2
(I2). Note that the requirement on S(t) described in
Lemma 1 is satisfied in both I1 and I2, and also in their
combination I1 + I2. Thus, convergence is guaranteed
in all of these variations.

4 Experiments

In this section, we first review how to transform a group
of data points into graphs for clustering. With a graph
constructed and its affinity matrix AG available, the
similarity matrix A used in the SymNMF formulation
(2.4) can be formed using normalized cut as the graph
clustering objective function (see Table 1, and details
on the choice of similarity matrix in Section 2.2). We
then evaluate the four variations of Newton-like algo-
rithms for SymNMF on artificial data, and extend the
experiments of the best-performing SymNMF algorithm

to real-world data sets.
Throughout the experiments, we use Matlab 7.9

(R2009b) with an Intel Xeon X5550 quad-core processor
and 24GB memory. All the Newton-like algorithms
following the framework in Algorithm 1 have parameters
β = 0.1, σ = 0.1, µ = 10−4, and the maximum iteration
count is set to 10000. In addition, we empirically
observe that choosing ε in (3.8) to be a fixed value 10−16

makes the Newton-like algorithms faster while having
little influence on the clustering quality.

4.1 Types of Graph Two different types of graph
are used in our experiments: full graph (a short name
for fully-connected graph), and sparse graph. A graph
V with n nodes is constructed based on data points
x1, · · · , xn, as follows:

1. Full graph: Every pair of nodes are connected by
an edge, and the edge weight is defined as [24]:

(4.11) AG
ij = exp

(
−‖xi − xj‖22

σiσj

)
where the local scale parameter σi of each data
point is set to be the distance between xi and its
k̂-th neighbor. We use k̂ = 7 as suggested in [24],
which is shown to be effective in many types of
artificial and real-world data sets.

2. Sparse graph: Every node is connected to its kn

nearest neighbors. More precisely, Let

N(i) ={j|xj is one of the kn nearest
neighbors of xi, j 6= i}

(4.12)

Define the edge weights ÂG
ij as:

(4.13) ÂG
ij =

{
AG

ij , if i ∈ N(j) or j ∈ N(i)
0, otherwise

where AG is defined as in (4.11). We choose
kn = blog2 nc+ 1 as suggested in [20].

Note that the similarity matrix A formed using AG

or ÂG is usually nonnegative and indefinite.

4.2 Artificial Graph Data To evaluate the algo-
rithms for SymNMF, we first perform experiments with
all the Newton-like algorithms proposed in Section 3
– PNewton, I1, I2, I1 + I2 – on a data set used in
[24] for graph clustering3. The data set consists of

3http://webee.technion.ac.il/~lihi/Demos/

SelfTuningClustering.html

−0.5 0 0.5

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5

−1

−0.5

0

0.5

1

−0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5

−1

−0.5

0

0.5

1

Figure 3: Artificial graph data, with 6 different cases.
(reproduced from [24])

Table 5: Computation time on graph data (in seconds).
The fastest SymNMF algorithm for each graph is high-
lighted.

Graph 1 2 3 4 5 6

Spectral 0.09 0.10 0.07 0.61 0.43 0.05

PGD 2.09 0.66 3.17 20.18 24.67 1.28

PNewton 1.68 0.62 0.92 11.32 19.12 0.79

I1 1.18 0.53 0.75 9.57 15.56 0.56

I2 0.68 0.48 0.61 4.77 4.98 0.13

I1+I2 0.36 0.24 0.31 3.21 5.30 0.14

(a) Average computation time on full graph.

Graph 1 2 3 4 5 6

Spectral 0.05 0.10 0.03 0.60 0.14 0.05

PGD 2.45 0.82 2.86 10.25 15.86 1.42

PNewton 7.46 0.50 10.41 26.73 440.87 1.35

I1 2.88 0.48 2.94 17.29 88.80 0.84

I2 7.23 0.37 4.29 2.15 51.88 0.17

I1+I2 1.71 0.26 2.07 1.75 7.94 0.14

(b) Average computation time on sparse graph.

6 artificially constructed cases with data points in 2-
dimensional space, shown in Fig. 3.

We compare spectral clustering and SymNMF al-
gorithms on both full and sparse graphs. 20 runs with
different initializations are conducted for each of the 6
cases, and the same initializations are used across all
SymNMF algorithms for a fair comparison. The average
computation time and clustering quality are reported in
Tables 5 and 6.

4.2.1 Efficiency From Table 5, we can see that it is
essential to combine acceleration techniques in I1 and
I2 in order to achieve an efficient algorithm for Sym-
NMF. Newton-like algorithms, which utilizes second-
order information, usually require fewer iterations than

Table 6: Clustering quality on graph data.

Graph 1 2 3 4 5 6

Spectral 14 18 13 7 14 19

PGD 19 17 18 17 15 20

PNewton 19 19 18 18 16 20

I1 19 19 18 18 16 20

I2 20 20 17 18 16 20

I1+I2 18 18 16 18 17 20

(a) Number of optimal assignments among 20

runs on full graph.

Graph 1 2 3 4 5 6

Spectral 7 16 2 10 1 18

PGD 16 18 16 16 14 20

PNewton 16 20 16 18 14 20

I1 16 20 16 17 14 20

I2 15 20 17 19 11 20

I1+I2 14 17 18 18 11 20

(b) Number of optimal assignments among 20

runs on sparse graph.

PGD. However, a simple algorithm such as standard
PNewton, while faster than PGD in many cases, can
be much slower as well, as shown in many cases with
sparse graph. Among these Newton-like algorithms,
only I1 + I2 is substantially faster than PGD in ev-
ery case. We also notice that the current SymNMF al-
gorithms are much slower than spectral clustering that
calls an eigensolver and K-means. We will improve the
efficiency of SymNMF on similarity matrices with sparse
formats in future study.

4.2.2 Clustering Quality The 6 cases in Fig. 3
have clearly separable cluster structures, which allows
an effective method to give completely correct cluster-
ing results if initialized properly. Thus, we evaluate the
clustering quality of these algorithms by comparing the
numbers of optimal clustering assignments. From Ta-
ble 6, we can see that all the algorithms for SymNMF
achieve better clustering quality than spectral cluster-
ing on average. However, I1+ I2 does not always make
improvement over PGD, possibly due to its inexpen-
sive but approximate way to evaluate the reduced Hes-
sian. Another important observation is that SymNMF
is not as sensitive as spectral clustering in terms of
which graph is used. Although all the algorithms ex-
perience performance degradation when we switch from
full graph to sparse graph, the impact on SymNMF al-
gorithms is much smaller than the impact on spectral
clustering, especially in the cases of Graph 3 & 5.

4.3 Real-world data

4.3.1 Data Sets Document clustering experiments
are conducted on two widely-used data sets: TDT24 and
Reuters-215785. TDT2 is a collection of news articles
from various sources (e.g. NYT, CNN, VOA) in 1998.
Reuters-21578 is a benchmark text collection from the
Reuters newswire in 1987. Both data sets are manually
labeled to a set of topics, where each document is
assigned to one label in TDT2, and one or more labels
in Reuters-21578. Documents with multiple labels are
discarded in our experiments. Additionally, clusters
representing different topics are highly unbalanced in
size, ranging from 1 to thousands of documents. To
improve the reliability of our evaluations, we remove
any cluster with less than 5 documents.

Image clustering experiments are conducted on a
data set for object recognition: COIL-206. COIL-20
contains 128× 128 gray-scale images of 20 objects. The
shooting directions are equally spaced in the entire 360o

range, resulting in 72 images for each object. The
identity information of the objects is used as ground-
truth labels.

4.3.2 Experimental Settings In the experiments
on real-world data sets, we use I1+ I2 as the SymNMF
algorithm (due to its consistently better behavior in
terms of efficiency and clustering quality), and only
construct sparse graphs. Despite the low clustering
quality with sparse graphs constructed on the above
graph data, sparse graph is generally preferable to full
graph in real-world data in terms of clustering quality,
as discovered in many previous works [20].

We compare the clustering qualities given by the
following 6 algorithms:

1. Standard K-means and Spherical K-means (SphK-
means). The original data matrix X is used as in-
put to the kmeans function in Matlab 7.9 (R2009b).
To measure the dissimilarity between two data
points xi, xj , standard K-means uses ‖xi − xj‖22,
and spherical K-means uses 1 − cos(xi, xj). The
kmeans function includes a batch-update phase and
an additional online-update phase in each run. We
use both phases on image data. On text data, for
efficiency reasons, only the batch-update phase is
used.

2. NMF: We use the alternating nonnegative least
squares algorithm [11] to obtain a solution of the
standard form of NMF (1.2). For text data, the

4http://projects.ldc.upenn.edu/TDT2/
5http://www.daviddlewis.com/resources/testcollections/

reuters21578/
6http://www.cs.columbia.edu/CAVE/software/softlib/

coil-20.php

data matrix X is normalized such that ‖xi‖2 = 1
for each data point xi. In addition, X is trans-
formed into its normalized-cut weighted version
XD−1/2 [22], where D is defined in Section 2.2 with
AG = XT X (inner-product similarity).

3. GNMF: Cai et al. [3] proposed GNMF by adding
a graph-theoretic penalty term to (1.2) that takes
neighboring relationship into account, so that the
resulting method is better at clustering on mani-
folds. We use the GNMF algorithm and the sug-
gested parameters in [3]. The data matrix X is
constructed in the same way as in NMF. However,
the neighboring relationship (based on the sparse
graph) is generated using the original data matrix.

4. Spectral clustering: We use the spectral clustering
algorithm proposed by Ng et al. [16]. K-means is
used as the final step to obtain clustering results,
which is initialized by randomly choosing k samples
as centroids.

5. SymNMF: The Newton-like algorithm I1 + I2 is
used.

For each data set, we construct subsets by selecting
k groups randomly from the entire data set, and run
clustering algorithms on the same subsets for compar-
isons. 20 random subsets are generated for each k. The
algorithms are run 5 times on each subset, with differ-
ent initializations and the correct cluster number k as
input. NMF and GNMF have the same initializations of
C and G. Although the data sets are labeled, the labels
are only used when evaluating the clustering quality, not
by the clustering algorithms.

4.3.3 Results and Analysis We use clustering ac-
curacy, the percentage of correctly clustered items given
by the maximum bipartite matching, to evaluate the
clustering quality (please refer to more details in [22]).
The experiment results on TDT2, Reuters-21578, and
COIL-20 data sets are shown in Table 7, 8, 9, respec-
tively. We report: 1. The mean of clustering accuracy
for each subset, averaged over 20 subsets; 2. The clus-
tering accuracy corresponding to the lowest objective
function value on each subset, averaged over 20 subsets.
We have the following observations on these results:

1. The overall performance of SymNMF is signifi-
cantly better than that of the other algorithms.
(Note that the clustering accuracy results do not
exhibit any trend with increasing k, due to the ran-
domness in selecting subsets from the entire data
set.)

Table 7: Clustering accuracy on TDT2 data set. The highest clustering accuracy for each k is highlighted.

k = 2 k = 4 k = 6 k = 8 k = 10 k = 12 k = 14 k = 16 k = 18 k = 20

Kmeans 0.8653 0.7994 0.6806 0.6147 0.5805 0.5648 0.5082 0.5286 0.5431 0.5386

SphKmeans 0.8642 0.7978 0.6840 0.6208 0.5777 0.5728 0.5069 0.5305 0.5496 0.5436

NMF 0.9991 0.9440 0.8732 0.8292 0.7475 0.7697 0.6910 0.6709 0.7107 0.6695

GNMF 0.9163 0.9150 0.8405 0.8200 0.7344 0.7361 0.6946 0.6812 0.7092 0.6746

Spectral 0.9354 0.9093 0.7719 0.7357 0.6590 0.6308 0.5813 0.5959 0.6346 0.5945

SymNMF 0.9987 0.9668 0.8892 0.8819 0.8516 0.8082 0.7874 0.7635 0.7916 0.7686

(a) The mean of clustering accuracy, averaged over 20 subsets.

k = 2 k = 4 k = 6 k = 8 k = 10 k = 12 k = 14 k = 16 k = 18 k = 20

Kmeans 0.9522 0.8847 0.6916 0.6485 0.5859 0.5993 0.5236 0.5598 0.5620 0.5309
SphKmeans 0.9521 0.8497 0.7141 0.6246 0.5874 0.5998 0.5173 0.5490 0.5646 0.5462

NMF 0.9991 0.9469 0.8903 0.8692 0.7639 0.7814 0.6988 0.6951 0.7371 0.6821
GNMF 0.9294 0.9428 0.8929 0.8400 0.7838 0.7497 0.7037 0.6999 0.7484 0.6816

Spectral 0.9983 0.9741 0.8179 0.7557 0.7016 0.6573 0.6145 0.6146 0.6530 0.6199

SymNMF 0.9987 0.9815 0.9119 0.9124 0.8707 0.8085 0.8018 0.7789 0.7895 0.7886

(b) The best of clustering accuracy, averaged over 20 subsets.

Table 8: Clustering accuracy on Reuters-21578 data set. The highest clustering accuracy for each k is highlighted.

k = 2 k = 4 k = 6 k = 8 k = 10 k = 12 k = 14 k = 16 k = 18 k = 20

Kmeans 0.7867 0.5755 0.5137 0.5170 0.4191 0.4377 0.4529 0.3712 0.3403 0.3163

SphKmeans 0.7802 0.5738 0.5197 0.5049 0.4140 0.4383 0.4507 0.3687 0.3421 0.3143

NMF 0.9257 0.7737 0.6934 0.6747 0.5568 0.5748 0.5654 0.4608 0.4313 0.4005

GNMF 0.8709 0.7798 0.7439 0.6758 0.7038 0.6502 0.6160 0.5338 0.5704 0.4892

Spectral 0.8885 0.7171 0.6452 0.6452 0.5428 0.5442 0.5637 0.5001 0.4411 0.4338

SymNMF 0.9111 0.8077 0.7265 0.7343 0.6842 0.6420 0.6539 0.6688 0.6188 0.6105

(a) The mean of clustering accuracy, averaged over 20 subsets.

k = 2 k = 4 k = 6 k = 8 k = 10 k = 12 k = 14 k = 16 k = 18 k = 20

Kmeans 0.8750 0.5868 0.4972 0.5196 0.4254 0.4548 0.4766 0.3715 0.3376 0.3186
SphKmeans 0.8945 0.6126 0.5281 0.5351 0.4195 0.4411 0.4770 0.3743 0.3366 0.3154

NMF 0.9332 0.7919 0.7087 0.6879 0.5675 0.6021 0.5799 0.4768 0.4406 0.4183

GNMF 0.8915 0.8010 0.7647 0.7067 0.7248 0.6784 0.6260 0.5387 0.5855 0.4814

Spectral 0.8920 0.7467 0.6754 0.6653 0.5813 0.5755 0.5803 0.5337 0.4569 0.4515

SymNMF 0.9116 0.8248 0.7387 0.7493 0.6820 0.6530 0.6612 0.6723 0.6188 0.6263

(b) The best of clustering accuracy, averaged over 20 subsets.

2. By showing the best clustering accuracy selected
among 5 runs for each subset, we intend to alle-
viate the impact of random initializations on the
variance of clustering quality in these algorithms,
and SymNMF still remains highly competitive. In
a few cases where GNMF achieves the highest clus-
tering accuracy, SymNMF has slightly lower clus-
tering accuracy. However, SymNMF can be much
better than GNMF in other cases.

3. In Section 1, we attribute the success of NMF on
document clustering to the assumption that each
basis vector is a good representation of a topic.
However, comparing the clustering accuracies of
NMF and SymNMF, we can see that this assump-

tion on text corpus is over simplifying. The higher
clustering accuracy given by SymNMF implies non-
linear cluster structures in the data. Also, compar-
ing the clustering accuracies of spectral clustering
and SymNMF, we can see that the formulation of
SymNMF is a more effective way to reveal these
nonlinear cluster structures based on neighboring
relationship.

4. Spherical K-means uses cosine similarity and was
proposed to improve the accuracy of document
clustering over standard K-means [6]. These two
algorithms have comparable performances in our
experiments on text data sets, possibly due to
the removal of the online-update phase. However,

Table 9: Clustering accuracy on COIL-20 data set. The highest clustering accuracy for each k is highlighted.

k = 2 k = 4 k = 6 k = 8 k = 10 k = 20

Kmeans 0.9206 0.7484 0.7443 0.6541 0.6437 0.6083

SphKmeans 0.8918 0.6906 0.6867 0.6242 0.6154 0.5598

NMF 0.9291 0.7488 0.7402 0.6667 0.6238 0.4765

GNMF 0.9345 0.7325 0.7389 0.6352 0.6041 0.4638

Spectral 0.7925 0.8115 0.8023 0.7969 0.7372 0.7014

SymNMF 0.9917 0.8406 0.8725 0.8221 0.8018 0.7397

(a) The mean of clustering accuracy, averaged over 20 subsets. (The last column

shows the results after 20 runs of each algorithm on the entire data set.)

k = 2 k = 4 k = 6 k = 8 k = 10 k = 20

Kmeans 0.9330 0.7977 0.8263 0.7158 0.7037 0.6840

SphKmeans 0.8941 0.7833 0.7464 0.6926 0.6756 0.5694

NMF 0.9288 0.7467 0.7203 0.6612 0.6233 0.4674

GNMF 0.9323 0.7495 0.7413 0.6602 0.6210 0.4688

Spectral 0.9924 0.8990 0.9197 0.8916 0.8171 0.7479

SymNMF 0.9917 0.9097 0.9557 0.8863 0.8597 0.7972

(b) The best of clustering accuracy, averaged over 20 subsets. (The last column
shows the results after 20 runs of each algorithm on the entire data set.)

on COIL-20 image data set, spherical K-means is
consistently worse than standard K-means, which
means that measuring cosine similarity is especially
inappropriate when different clusters cannot be
represented by different basis vectors.

5 Related Work

We have developed an algorithm for SymNMF with
guaranteed convergence to a stationary point in this
paper. Our Newton-like algorithm, to the best of our
knowledge, is different from all previous algorithms
for factorizing a symmetric matrix. As mentioned in
Section 1, the nonnegative factorization of a kernel
matrix (1.3) appeared in Ding et al. [7], where the kernel
matrix K is positive semi-definite and nonnegative.
Their algorithm for solving (1.3) is a variation of the
multiplicative update rule algorithm for NMF [4]. When
K has negative entries, this algorithm for symmetric
NMF is not applicable because it introduces negative
entries into H and violates the constraint H ≥ 0. Later,
Li et al. [14] proposed another multiplicative update
rule algorithm for their formulation of factorizing the
kernel matrix K in semi-supervised clustering, where
K is assumed to be positive semi-definite but not
necessarily nonnegative. However, it was pointed out in
Gonzales and Zhang [8] that multiplicative update rule
algorithms do not have the property that every limit
point is a stationary point. We tested both algorithms
in [7] and [14] on the graph clustering example shown
in Fig. 1a, by replacing K with the similarity matrix A
which is indefinite. Both algorithms failed to converge
to a stationary point.

6 Conclusion

In this paper, we proposed Symmetric NMF (SymNMF)
as a new framework of graph clustering methods. A
graph is represented in a matrix A containing pairwise
similarity values, and SymNMF performs a nonnegative
symmetric factorization of A. The formulation of Sym-
NMF is minH≥0 ‖A−HHT ‖2F , which can be related to
a generalized form of many graph clustering objectives.

Compared to spectral clustering, the nonnegativ-
ity constraint in SymNMF enables H to be easily in-
terpreted into clustering assignments and to naturally
capture the cluster structure embedded in the graph
representation. Compared to NMF, SymNMF allows
incorporating similarity between the data points in the
problem formulation, and we can employ the most suit-
able measure to describe the inherent cluster structure.

Our investigation into the limitations of NMF also
reveals that it has similar assumptions on the cluster
structure with spherical K-means: Both methods at-
tempt to use different basis vectors to represent different
clusters respectively. This seems to explain why spher-
ical K-means is often used as an initialization strategy
for NMF [21].

We developed an efficient Newton-like algorithm for
SymNMF, and showed that SymNMF often achieves
higher clustering quality than spectral clustering and
NMF in experiments with artificial and real-world data.
In addition, choosing the parameters in constructing
similarity matrix is a crucial issue in graph clustering,
and the clustering results of SymNMF are not as
sensitive as spectral clustering to these parameters.

Although the symmetric factorization of a similarity

matrix has been used to build theoretical connection
between different clustering methods [7], SymNMF was
rarely applied as an independent clustering method in
practice. Algorithms with good convergence property,
and also comparisons to other clustering methods (e.g.
NMF, spectral clustering), were even more rare. In
this paper, we strived to develop a general framework
based on SymNMF, one with minimal constraints and
flexible enough for future extensions and applications,
such as semi-supervised learning, image segmentation,
and recommender systems. The proposed algorithm can
easily be parallelized, for example, the evaluation and
Cholesky factorization of different diagonal blocks of the
Hessian can run in parallel. Since a sparse similarity
matrix A is frequently used in clustering, designing
sparse algorithms for SymNMF is also an important
future topic.

Acknowledgments

The authors would like to thank Sangwoon Yun of Korea
Institute for Advanced Study, for his help in designing
a coordinate gradient descent algorithm for SymNMF
[18], and the anonymous reviewers for their valuable
and careful comments.

References

[1] D. P. Bertsekas, “Projected newton methods for opti-
mization problems with simple constraints,” SIAM J.
Control and Optimization, vol. 20, no. 2, pp. 221–246,
1982.

[2] ——, Nonlinear programming, 2nd ed. Belmont, MA:
Athena Scientific, 1999.

[3] D. Cai, X. He, J. Han, and T. S. Huang, “Graph
regularized nonnegative matrix factorization for data
representation,” pp. 1548–1560, 2011.

[4] M. Catral, L. Han, M. Neumann, and R. J. Plemmons,
“On reduced rank nonnegative matrix factorization for
symmetric matrices,” Linear Algebra and Its Applica-
tions, vol. 393, pp. 107–126, 2004.

[5] I. Dhillon, Y. Guan, and B. Kulis, “A unified view of
kernel k-means, spectral clustering and graph cuts,”
University of Texas at Austin, Tech. Rep. TR-04-25,
2005.

[6] I. Dhillon and D. S. Modha, “Concept decompositions
for large sparse text data using clustering,” Machine
Learning, vol. 42, pp. 143–175, 2001.

[7] C. Ding, X. He, and H. D. Simon, “On the equivalence
of nonnegative matrix factorization and spectral clus-
tering,” in SDM ’05: Proc. of SIAM Int. Conf. on Data
Mining, 2005, pp. 606–610.

[8] E. F. Gonzales and Y. Zhang, “Accelerating the lee-
seung algorithm for non-negative matrix factorization,”
Rice University, Tech. Rep. TR05-02, 2005.

[9] C. T. Kelley, Iterative Methods for Linear and Nonlin-
ear Equations. Philadelphia, PA: SIAM, 1995.

[10] H. Kim and H. Park, “Sparse non-negative matrix fac-
torizations via alternating non-negativity-constrained
least squares for microarray data analysis,” Bioinfor-
matics, vol. 23, no. 12, pp. 1495–1502, 2007.

[11] ——, “Nonnegative matrix factorization based on al-
ternating non-negativity-constrained least squares and
the active set method,” SIAM J. on Matrix Analysis
and Applications, vol. 30, no. 2, pp. 713–730, 2008.

[12] J. Kim and H. Park, “Sparse nonnegative matrix fac-
torization for clustering,” Georgia Inst. of Technology,
Tech. Rep. GT-CSE-08-01, 2008.

[13] B. Kulis, S. Basu, I. Dhillon, and R. Mooney, “Semi-
supervised graph clustering: a kernel approach,” in
ICML ’05: Proc. of the 22nd Int. Conf. on Machine
learning, 2005, pp. 457–464.

[14] T. Li, C. Ding, and M. I. Jordan, “Solving consensus
and semi-supervised clustering problems using nonneg-
ative matrix factorization,” in ICDM ’07: Proc. of the
7th IEEE Int. Conf. on Data Mining, 2007, pp. 577–
582.

[15] C.-J. Lin, “Projected gradient methods for nonnegative
matrix factorization,” Neural Computation, vol. 19,
no. 10, pp. 2756–2779, 2007.

[16] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral
clustering: Analysis and an algorithm,” in Advances in
Neural Information Processing Systems 14, 2001, pp.
849–856.

[17] J. Shi and J. Malik, “Normalized cuts and image
segmentation,” IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 22, no. 8, pp. 888–905, 2000.

[18] P. Tseng and S. Yun, “A coordinate gradient descent
method for nonsmooth separable minimization,” Math-
ematical Programming, vol. 117, no. 1, pp. 387–423,
2009.

[19] L. van der Maaten and G. Hinton, “Visualizing data
using t-SNE,” J. Machine Learning Research, vol. 9,
pp. 2579–2605, 2008.

[20] U. von Luxburg, “A tutorial on spectral clustering,”
Statistics and Computing, vol. 17, no. 4, pp. 395–416,
2007.

[21] S. Wild, J. Curry, and A. Dougherty, “Improving
non-negative matrix factorizations through structured
initialization,” Pattern Recognition, vol. 37, pp. 2217–
2232, 2004.

[22] W. Xu, X. Liu, and Y. Gong, “Document clustering
based on non-negative matrix factorization,” in SIGIR
’03: Proc. of the 26th Int. ACM Conf. on Research and
development in informaion retrieval, 2003, pp. 267–
273.

[23] S. Yun, P. Tseng, and K.-C. Toh, “A block coordinate
gradient descent method for regularized convex separa-
ble optimization and covariance selection,” Mathemat-
ical Programming, vol. 129, pp. 331–355, 2011.

[24] L. Zelnik-Manor and P. Perona, “Self-tuning spectral
clustering,” in Advances in Neural Information Pro-
cessing Systems 17, 2004, pp. 1601–1608.

