Prediction of Protein Relative Solvent Accessibility
with Support Vector Machines and Long-range
Interaction 3D Local Descriptor

Hyunsoo Kim and Haesun Park *

Department of Computer Science and Engineering,
University of Minnesota,
200 Union Street S.E., 4-192 EE/CS Building,
Minneapolis, MN 55455, U.S.A.

January, 2003
May, 2003, revised

Corresponding author:

Haesun Park

E-mail: hpark@cs.umn.edu

Phone : 612-625-0041(Office), 612-625-4002(Dept. Office)
Fax : 612-625-0572

Keywords: protein structure prediction; solvent accessibility; support vector machines; PSSM;
directed acyclic graph scheme; long range interaction

*This work was supported in part by the National Science Foundation grant CCR-0204109. Any opinions, findings
and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation (NSF).



ABSTRACT

The prediction of protein relative solvent accessibility gives us helpful information for the prediction
of tertiary structure of a protein. The SVMpsi method which uses support vector machines (SVMs)
and the position specific scoring matrix (PSSM) generated from PSI-BLAST has been applied to
achieve better prediction accuracy of the relative solvent accessibility. We have introduced a three
dimensional local descriptor which contains information about the expected remote contacts by the
long-range interaction matrix as well as neighbor sequences. Moreover, we applied feature weights
to kernels in support vector machines in order to consider the degree of significance that depends on
the distance from the specific amino acid. Relative solvent accessibility based on a two state-model,
for 25%, 16%, 5%, and 0% accessibility are predicted at 78.7%, 80.7%, 82.4%, and 87.4% accuracy,
respectively. Three state prediction results provide a 64.5% accuracy with 9%;36% threshold. The
support vector machine approach has successfully been applied for solvent accessibility prediction
by considering long-range interaction and handling unbalanced data.



INTRODUCTION

The task of predicting protein structure from the sequence is important since the function of
a protein is closely related to its structure, which is difficult to be determined experimentally.
There are largely two types of methods in protein structure prediction. The first type includes
threading and comparative modeling, which rely on prior knowledge of similarity among sequence
and known structures. The second type, called de novo or ab-initio methods, predicts the protein
structure from the sequence alone without relying on the similarity or known structure. Currently
it is difficult to predict high resolution three-dimensional (3D) structure from ab-initio methods
for studying the docking of macro-molecules, predicting protein-partner, designing and improving
ligands, and protein-protein interaction.!

For the knowledge based methods, protein secondary structure prediction? 3 % 5 678 has been
studied as an intermediate step for predicting tertiary structure of proteins, especially in the case
when the sequence similarity is lower than 30% since the secondary structure is more conserved than
the protein sequence. The protein solvent accessibility prediction has also been studied based on the
neural network approach® 10: 11,12, 13 with training by the conjugate gradient descent algorithm,
i.e. back-propagation, Bayesian method!4, or information theory!®.

Though the prediction of solvent accessibility is less accurate than that of secondary structure
from the homology approach since it is less conserved than secondary structure,'® there has been
much effort spent to improve the prediction accuracy to obtain important information regarding
a buried or exposed residue for constructing tertiary structure from sequences. For example, the
prediction of secondary structure and solvent accessibility can be aligned to known 3D structure
to detect putative remote homologue for threading. The predictions can also be used as additional
constraints in ab-initio methods.

In this paper, we have introduced long range interaction 3D local descriptor and used the
SVMpsi® method, including feature weights, to improve prediction of protein relative solvent acces-
sibility. We applied a directed acyclic graph (DAG) scheme!® for the 3-class classification problem
in SVMpsi to avoid one-versus-rest classification, which has higher complexity than one-versus-one
classification.

MATERIALS AND METHODS

Relative Solvent Accessibility

Amino acid solvent accessibility is the degree to which a residue in a protein is accessible to a
solvent molecule. The relative solvent accessibility can be calculated from

RelAcc; = 100 x Acc;/MazAcc; (1)

where Acc; for the ith residue is the solvent accessibility (given in A) calculated from coordinates
by the DSSP program!?. The number of water molecules around a residue can be approximated



by Acc;/10, and MaxAcc; is the maximum accessibility for the ith residue, which is given for
ambiguous (B, Z) or undetermined (X) residue as well as 20 normal amino acids.'°

We used two kinds of class definitions: (1) buried (B) and exposed (E); (2) buried (B), inter-
mediate (I), and exposed (E). For the two-state definition, we chose the threshold of the relative
solvent accessibility 25%, 16%, 5%, 0%. For the three-state (buried, intermediate, exposed) de-
scription of relative accessibility, we selected the same thresholds as those in Rost and Saner!?,

which are

Buried(B): RelAce < 9%
Intermediate(I): 9% < RelAcc < 36%
Exposed(E): RelAcc > 36%.

The thresholds for the two-state definition and the three-state definition were chosen to compare
our results with the previously published results and to find the dependency of thresholds on the
prediction accuracy of the relative solvent accessibility.

3D Local Descriptor Coding Scheme

A local descriptor which represents the local environment of sequences by sliding window coding
scheme'® 2 can be enhanced by embedding the long-range interaction in order to reflect the three
dimensional local environment. The three dimensional local descriptor represents the environment
of a specific residue not only in the sequence, but also in the three dimensional space.

There are essentially four significant driving forces that cause remote residues to contact. The
first is a disulfide covalent bond which makes the nearest neighbors contact. The most predominant
linkage by disulfide bonds among the secondary structural elements is the coil-coil linkage.'® The
structure of coil region is relatively important since functionally important residues which are in-
volved in a key protein-protein interaction usually lie in the coil regions. The second is a salt bridge.
The oppositely charged residues between (Asp, Glu) and (Lys, Arg) tend to form a salt bridge.
The third is hydrophobic interactions among (Phe, Ile, Leu, Val). Especially, homopairs between
themselves give the most favorable hydrophobic interactions. The fourth is remote hydrogen bonds
which frequently appear since it is a major force that forms a beta sheet.

The most probable remote contact sequence block in an entire sequence with respect to the
current local environment can be found by the long-range interaction matrix2?. The matrix repre-
sents relative frequencies of long range interaction for each amino acid pair. It was obtained from
statistical analysis of the accumulation of long range interactions where two residues are separated
by at least 10 residues in the sequence and at least one of their atomic distances is less than the
sum of the van der Waals radii of the two atoms plus 1.0 A.20 The remote contact expectation score
between a given fragment o and the expected remote contact fragment e is

By = 3~ Plofi) () @
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where o(¢) is the ¢th amino acid in the window fragment, e(%) is the th amino acid in the candidate
fragment, w is the window size, and P(a,b) is the matrix component of the relative frequency of
long-range interactions between two amino acids a and b. The sequences that stabilize proteins by
building remote contacts tend to be more buried than the average accessibility of the rest of the
sequences. However, rather high accessibility can also be found in the stabilization sequences since
the remote contact can be driven by a salt bridge between high polar residues. In a folded protein
structure, hydrophilic side-chains tend to contact polar solvent, but the hydrophobic side-chains
tend to minimize the contact with the polar solvent.?! A weighted hydrophobicity for the current
window can be expressed as

w

> h(i)exp(=i = ((w +1)/2)[?/100), (3)

=1

H.

where h(i) is the hydrophobicity of the ith amino acid in the current window. After identifying
the most probable remote contact sequence block of w residues that has the highest remote contact
expectation score E, with the current window, we can also calculate a weighted hydrophobicity for
remote contact H, using a similar equation as for H. where h(¢) is the hydrophobicity of the ith
amino acid in the remote contact sequence block.

The final position-specific scoring matrix (PSSM) from PSI-BLAST?? against SWISS-PROT
database?? (after three iterations) is used as an input to support vector machines (SVMs). The
matrix has 20 x m elements, where m is the length of the target sequence, and each element rep-
resents the log-likelihood of that particular residue substitution at that position in the template.
The final position-specific scoring matrix from PSI-BLAST against the SWALL?? non-redundant
protein sequence database is used. We applied PFILT?% 2% to mask out regions of low complexity
sequences, the coiled coil regions, and transmembrane spans. For PSI-BLAST, the E-value thresh-
old for inclusion of 0.001 and three iterations were applied to search the non-redundant sequence
database. The profile matrix elements in the range [-7,7] are scaled to the [0,1] range.

Each residue is represented using 20 components in a vector, based on the PSSM. In order to
allow a window to extend over the N-terminus and the C-terminus, an additional 21st unit (spacer)
was attached to each residue. Then, each input vector has 21 X w components, where w is a sliding
window size. The values for H., E,., and H, are appended to the original feature vector to build
a three dimensional local descriptor. Therefore, each input vector has 21 x w + 3 components. If
the expected remote contact is not found, i.e., the expectation score is smaller than the threshold
(Ey = 1.2 X w), B, and H, are filled with zeros. The window is shifted residue by residue through
a protein chain.

PHDacc!? consists of two different networks with window sizes of 9 and 13 consecutive residues
for jury decision. In Jnet®, a neural network with a sliding window of 17 residues for the first input
and 19 for the second input was designed. Both NETASA? and Manesh et al.’s method!® based
on information theory used a window size of 17. We built input vectors considering consecutive 15
residues for predicting the central 8th residue after finding the optimal window length (See Table
IT).



Support Vector Machines

In many classification problems, different classes cannot be linearly separated in the original
input space. A support vector machine (SVM) finds a nonlinear decision function in the input
space by implicitly mapping the data into a linear separable higher dimensional feature space and
separating the data there by maximizing the geometric margin and minimizing the training error
at the same time. The primal optimization problem is

. 1 -
min EWtw +C ; & (4)

w7£i

s.t. yi[wtxi—i—b]Zl—{i, &>0, i=1,...,n,

where x; represents an input vector, ; = +1 according to whether Xx; is in the positive or negative
class, n is the number of the training data, and C' is a parameter that controls the trade-off between
margin and classification error represented by slack variables &;’s. The corresponding dual quadratic
programming problem with an incorporation of a kernel function can be written as

n 1 n
max Zai —5 Z ooy K (i, x5), (5)
i=1

«
' i, =1

n
s.t. Zaiyizo, 0<<C, i1=1,...,n,
i=1

where o; represents the influence of single ith training example limited by C' and K(x;,x;) is a
kernel function to handle the non-linear separable case.

SVMs find the unique minimum of a convex function for training a given data set.2"> 28 29 30 The
decision boundary is represented as a sparse linear combination of the training set examples.3!> 32
Recently, SVMs have also been shown to perform well in multiple areas of biological analysis
including protein secondary structure prediction,” 8 protein subcellular localization prediction,3?
multi-class protein fold recognition,34 3% 36 gene function from microarray expression data,?” cancer
tissue classification from microarray expression data,3® 39 gene selection for cancer classification,*?
and protein-protein interaction problems.! Also, SVMs are well suited to solve pattern recognition
problems, such as isolated handwritten digit recognition,*? 3D object recognition,*3 44
identification,*® face detection,*® and text categorization.4”> 48 49

speaker

Kernel Feature Weight Scheme

The solvent accessibility for a specific amino acid can be determined by its three dimensional
local environment. We assumed that the contribution can be different since the closer amino acids
may have more influence on accessibility in the local environment. We scaled the feature values
and derived a modified kernel function as

Km(Xi,X]’) = K(WXZ’,WXJ'), (6)
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where W is a diagonal matrix which contains weight factors. However, we scaled all input vectors by
multiplying them with W once, to avoid matrix vector multiplications whenever the kernel function
is calculated. The 20 numerical values that are row elements of the PSSM for an amino acid were
scaled by exp(—22/100) + 1.0, where z is the sequential distance between the specific amino acid
and the amino acid at the window center. The diagonal elements of W for the appended part for
the remote contact residues were set to 1. The scale function was designed to cover the range of
integers z € [—7,7] for the optimal window length 15.

Parameter Optimization for SVMs

When using SVMs, we need to select a kernel function and the parameter C, and construct
tertiary classifiers based on binary classifiers. After preliminary tests, it was found that the Gaussian
RBF (Radial Basis Function) kernel

K (xi,%;) = exp(—v|xi — x;|°) (7)

was appropriate for our classification problems.

The optimal separating hyperplane can be represented by support vectors of which ¢; is nonzero.
Each support vector contributes one local Gaussian function centered at that data point. The
parameters v and C can be selected from the optimization process, and they were found to be
v = 0.01, C' = 1.0 for our 2-state model, and v = 0.01, C = 1.5 for our 3-state model. We also
tested linear kernels and polynomial kernels

K(Xi,X]’) =X;Xj (8)

K(xi,%;) = [a x; - x; + b]° 9)

with various degrees d and a = b = 1. Various even and odd degrees for the polynomial kernels
were tested but no special difference in prediction accuracies was observed.

Table I shows that the RBF kernel produces the most accurate prediction results for the solvent
accessibility.

Handling Unbalanced Data

In binary classification problems, if the number of samples of one class is much larger than
that of the other class, the decision boundary tends to be determined to make a better decision
for the larger class for the purpose of maximizing the total accuracy. For handling the unbalanced
data, there are three kinds of approaches. The first method discards training points of the larger
sized class to balance the number of training points of both classes. Though this approach reduces
the number of points to gain balance and lower complexity, it may eliminate points that contain
critical information for classification. The second approach duplicates the training points of the
smaller size to achieve balance. The third method uses different penalty parameters in the SVM



formulation 30 such as

n 1 n
max Zai - § Z aiajyz'yjK(Xi,Xj) (10)
i=1 i,5=1

n
s.t. Zaiyi:0
i=1
OSaiSC-H lfyz:]-
0<o; <C_, ify; =—1.

Using different penalty parameters (Cy and C_), we can resolve the situation that the recall value
of the smaller class is too small to produce good prediction accuracy.

We used the third method to treat unbalanced data for most classifications. The duplicate
method was used for fully buried residue classification since it was difficult to choose a good pair of
penalty parameters when the difference in the number of data points in two classes was too large.
The first method was adopted for the KP480 data set since there was not enough memory to store
the entire KP480 sliding window data points.

Training and Testing Data Sets

We used 3 different data sets. The first data set (HMK24) consists of 19 training sequences and
5 test sequences. The training set contains the sequences of 1bp2, 1cpv, 1ctf, 1gcr, 11z1, 1mbd, 1pcy,
1rn3, 1tpp, 2act, 2alp, 2apr, 2sga, 3dfr, 3tln, 4fxn, 451c, 5cpa, and 9pap. The test set contains the
sequences of 1nxb, lubq, 2cpp, 2prk, and 2sns. The buried residues are defined as those with less
than 20% of relative solvent accessibility for the 2-state model, and buried (0-5%), intermediate
(5-40%), or exposed (> 40%) for the 3-state model, to compare our results with the previously
published results.’

The second data set (RS126) contains 126 proteins with less than 25% pairwise sequence identity.
This data set has been used to study conservation and prediction of solvent accessibility in protein
families. 10

The third data set (KP480) was designed based on CB513 by removing proteins that are shorter
than 30 residues and those from the result of PSI-BLAST that contained only a few sequences in
the first iteration.?

Three dimensional coordinates of proteins were obtained from the PDB databank®® and the
solvent accessibility was calculated with the DSSP program of Kalbsch and Sander!”. The relative
solvent accessibility was calculated by Eqn. (1). The groups (buried (B), exposed (E); buried (B),
intermediate (I), exposed (E)) were determined by the corresponding thresholds. The second and
third data sets were divided into 7 folds that have similar number of proteins for cross-validation
tests. The first data set was studied without a cross-validation test.

Final Prediction



We obtained one-versus-one classifiers (E/B) for the 2-state (exposed/buried) relative solvent
accessibility, and three one-versus-rest classifiers (B/~B, I/~I, E/~E) and three one-versus-one
classifiers (B/I, E/B, and I/E) for the 3-state relative solvent accessibility from SVMs. We adopted
a directed acyclic graph (DAG) scheme!® for which prediction results were as good as the jury
results that used all six binary classifiers. The jury decision scheme suffers from unbalanced data
in its one-versus-rest classifiers.?

If a residue is predicted to be not buried (~B) from E/B one-versus-one classifier, I/E classifier
is applied, while if the residue is not exposed (~E) from E/B classifier, B/I classifier is applied to
check if it is buried or intermediate. Three different kinds of DAG schemes can be constructed,
which are DAG1 (starts with B/I), DAG2 (starts with E/B), DAG3 (starts with I/E). We observed
that the prediction results were almost the same in all cases.

RESULTS AND DISCUSSION

Holbrook et al.? achieved 72.0% overall prediction accuracy for the test set in the binary model
with window size of 11 and 54.0% prediction of solvent accessibility in the ternary model with
window size of 7 using 10 hidden nodes. We obtained 78.7% in the 2-state model and 62.4% in
the 3-state model using window size of 15 for the first data set. The improvement is 6.7% for the
2-state model and 8.4% for the 3-state model.

Manesh et al'® reported 70.0% prediction accuracy for the 2-state model with threshold 9%,
and 58.1% for the 3-state model with thresholds 9%;16% using information theory with a set of 215
protein sequences that is used by NETASA?6. We discuss only these values for fair comparisons,
although they also reported other results by calculating accessible surface area (ASA) instead of
DSSP. PHDacc!? showed 86% of the completely buried sites were correctly predicted as having
0% relative accessibility. Jnet® reported 75.0% prediction accuracy when the relative solvent ac-
cessibility threshold between buried and exposed is 25%, and 86.6% for fully buried residues using
PSI-BLAST?? profiles. We cannot directly compare between Jnet and SVMpsi since Jnet used
the CB480 data set which is slightly different from the KP480 data set. Recently, G.Pollastri et
al.'® achieved 77.2% for the 2-state model with threshold 25% by BRNNs (Bidirectional Recurrent
Neural Networks) as well as PSI-BLAST profiles. They claimed that the improvement is due both
to the larger training sets and the BRNN architectures, which can capture long-range interactions.

Table III shows that the methods using PSI-BLAST (i.e. Jnet®, BRNNs!® and SVMpsi®)
were able to obtain much better prediction accuracies than other methods. The SVMpsi method
with long-range interaction 3D local descriptor is comparable or better than the other methods in
predicting protein relative solvent accessibility. Though a direct comparison of our method with
BRNNs is difficult due to the fact that different training sets are used in the tests, both the BRNNs
and SVMpsi, as methods that consider long-range interactions, produce relatively good prediction
results.

We performed some additional experiments to test the influence of different factors on the
prediction accuracy improvement. There are three factors, i.e., SVMs, long range interaction



3D local descriptor, and kernel feature weight scheme. When we used only SVMs with 21 x w
components for each input vector without H,, E,, and H,, the cross-validated prediction accuracies
for KP480 data set with the 2-state models (25%, 16%, 5%, 0% thresholds) and the 3-state model
(9%;36% threshold) were 77.5%, 77.7%, 79.8%, 86.3%, and 61.9%, respectively. The results are
lower than the SVMpsif results in Table III that were achieved by taking advantage of all three
factors. We also tested using 3D local descriptors and SVMs without kernel feature weight scheme
to estimate the contribution of the feature weight scheme. It was found that the contribution of
the feature weight scheme was relatively small (less than about 0.2%) or sometimes not significant
at all since the results were almost the same as the SVMpsi' results. It shows that our prediction
accuracy improvement was mainly due to SVMs and 3D local descriptor. We expect additional
improvement with a more reliable long range interaction matrix generated from a larger number of
proteins and more accurate remote contact prediction methods.

The SVMpsi method has already been shown to achieve a good performance for protein sec-
ondary structure prediction in our previous work.® In this paper, we present the first application of
the support vector machines approach to predict protein relative solvent accessibility using a novel
long range interaction 3D local descriptor that contains information of the hydrophobicity for the
current window, possibility of remote contact, and hydrophobicity for the expected remote contact
window. Though the profiles are only slightly modified using some statistical knowledge on the re-
mote contact in a protein sequence, the method achieves a very high degree of prediction accuracy.
While the protein secondary structure tends to be determined by local sequence environment, the
solvent accessibility is much more related to the tertiary interactions between residues far apart in
the sequence, but close in three dimensional space.
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kernel function

E/B!

B/12

E/B?

I/E?

linear

75.83

68.98 80.38

67.04

polynomial (d=
polynomial (d=
polynomial (d=4)

2) 76.68
3) 76.73
76.67

68.91 81.28
68.98 81.35
68.88 81.40

67.88
67.52
67.40

RBF

76.84

69.08 81.69

68.08

Table I: Prediction accuracy with different type of Kernel functions in SVMs. The sliding window
size 13 was used for E/B, 15 for the others. Results for E/B! was obtained with the threshold of 25
in case of the 2-state model. Results for B/I?, E/B2, and E/I? are obtained with thresholds 9;36 in
case of the 3-state model. The results are on the RS126 with PSI-BLAST profiles and a L; norm
soft margin SVM. With the RBF kernel function, parameters v and C' are optimized based on the

data set. Combined results of 7-fold cross validation are shown.

clagsifier =11 [=13 [=15 =17 [=19 [*
E/B! 76.82 76.84 76.75 76.60 76.60 13
B/I? 69.11 69.06 69.08 69.16 69.12 17
E/B2 81.42 81.55 81.69 81.57 81.53 15
I/E? 67.94 68.24 68.08 68.02 68.03 13

Table II: Dependency of the testing accuracy on the window length for each binary classifier.
Results for E/B! are obtained with threshold 25 in case of 2-state model. Results for B/1%, E/B?,
and E/I? are obtained with thresholds 9;36 in case of the 3-state model. The results are on the
RS126 with PSI-BLAST profile and a L soft margin SVM with the RBF kernel function using the
corresponding optimized v and C parameters. The [* value is the optimal window length for each

binary classifier. Combined results of 7-fold cross validation are shown.
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method state threshold(%)
2-state(25%) 2-state(16%) 2-state(5%) 2-state(0%) 3-state(9%,36%)

PHDacc - 74.8 - 86.0 57.5
SVMpsi* 76.8 77.8 79.8 86.2 59.6
Jnet* 75.0 - 79.0 86.6 -

Jnet! 76.2 - 79.8 86.5 -
BRNNs 77.2 - 81.2 86.5 -
NETASA 70.3 - 74.6 87.9 -
SVMpsit 78.7 80.7 82.4 87.4 64.5

Table III: Accuracy of the relative solvent accessibility for different thresholds. Jnet*, BRNNs,
and SVMpsi methods are based on the PSI-BLAST profiles. Results for SVMpsi* are obtained for
the same data set, i.e. RS126, with PHDacc. Results for SVMpsi' are obtained from KP480 data
set. Combined results of 7-fold cross validation are shown except that the results of BRNNs are
obtained from 3-fold cross validation. PHDacc results are from Rost and Sander!?, Jnet results are
from Cuff and Barton (Jnet*: PSI-BLAST profiles, Jnet’: combined PSI-BLAST and HMMER2
profiles)®, BRNNs results are from Pollastri et al.'®, and NETASA results are from Ahmad and

Gromiha.26
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