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In this paper, we present an interactive visual informatiemieval and recommendation system, called VisIRR, for large-
scale document discovery. VisIRR effectively combines thagigms of (1) a passive pull through a query processes for
retrieval and (2) an active push that recommends items of paténterest to users based on their preferences. Equipped
with an ef cient dynamic query interface against a largelscarpus, VisIRR organizes the retrieved documents intb-hig
level topics and visualizes them in a 2D space, represettimgelationships among the topics along with their keyword
summary. In addition, based on interactive personalizecepate feedback with regard to documents, VisIRR provides
document recommendations from the entire corpus, which arendethe retrieved sets. Such recommended documents
are visualized in the same space as the retrieved documeritgtagsers can seamlessly analyze both existing and newly
recommended ones. This paper presents novel computationaasetthich make these integrated representations and fast
interactions possible for a large-scale document corpusilligtrate how the system works by providing detailed usage
scenarios. Additionally, we present preliminary user stiebults for evaluating the effectiveness of the system.

Categories and Subject Descriptors: H.3r8drmation Storage And Retrieval]: Information Search and Retrieval
General Terms: Design, Algorithms, Performance
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1. INTRODUCTION

A deluge of new documents is appearing every day, any one afhwiight be critical to the
guestions we are investigating. This presents a challemgieh is similar to looking for a needle

in a haystack every day, with limited attention and time ugses. This problem is highly under-
explored, considering how much efforts have been direcedrd developing the related paradigm
of web search. Instead, we often have to solve a subtle igegise problem for which each of
several documents provides clues. By considering this @sf@amation retrieval (IR) problem, the
focus is placed on the long tailecall (making sure that as few relevant documents as possible
are missed), while for web search the focus is generallyeplan faster grati cation oprecision
(making sure that the most relevant documents are contairtee rst page of search results).
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Visual analytics is an effective solution to these highateproblems. Visual analytics systems
for document data can provide an overall understandingtabtarge set of documents and reveal
how the documents are related to each other. Without thedfi@lperactive visualization, this would
have been dif cult and time-consuming.

Often, exploration of large-scale document analysis we®lkeyword search. It is a form of
“pull” technology, in which the user takes actions by forming asgliing queries. However, in
the case where high recall is concerned, what queries te,i$suexample, with regard to proper
keyword usage, becomes crucial in order for users to obtagumdents of interest. As a way to
compensate for this issue,racommendation or a “push’ technology, which the system uses
for nding things of interest to recommend to the user, hasergly become popular in various
study domains. Whereas a search engine is more or less stateld the same for all users, a
recommendation system involves personalization, rementpattributes of the user' interests and
search history.

Despite the fact that personalized recommendation seebesdmatural t to interactive visual-
ization, in the sense of directly utilizing the history ofeusnteractions, there are few examples of
such work. To Il this gap, we present, in what we believe toebmilestone study, a novel visual
analytics system called VisIRR; an interactiisual | nformationRetrieval andRecommendation
for document data, which effectively combines traditiogaéry-based information retrieval with
personalized recommendation.

VisIRR utilizes a scatter plot as the main visualizatiomfoisimilar to IN-SPIRE [Wise et al.
1995]. In other words, topic modeling extracts major togicen a document corpus; documents
are then grouped based on their most closely related topftsrwards, these documents are pro-
jected onto a 2D space via dimension reduction. VisIRR featuarious novel aspects compared to
existing systems; these are described below.

— Ef cient large-scale data processind/isIRR currently contains the pre-processed database of
half a million documents for various supported computatidduch a database can be ef ciently
updated with new documents.

— Interactive visual document analysis via topic modelingiehsion reduction, and alignment tech-
niques As core computational modules, VisIRR adopts state-efétt methods, nonnegative ma-
trix factorization (NMF) for topic modeling and linear didminant analysis (LDA) for dimension
reduction. They offer a much better quality of results, adl &g faster computing time, than
traditional methods, including-means, principal component analysis (PCA), and multidime
sional scaling. Additionally, VisIRR supports a novel aligent capability for both topic modeling
and dimension reduction, in order to maintain the visuéibraconsistency for easy comparison
among different visualization snapshots.

— Preference-based personalized recommendatiiven a user's preferences on particular docu-
ments during their analysis, VisIRR recommends potegtialeresting documents to the users.
This recommendation approach enables users to discovenamts that cannot be found by im-
perfect query processes. To perform this recommendatierdeveloped an ef cient PageRank-
style graph diffusion algorithm.

In order to integrate all of these capabilities into a sojtased visual analytics system, we de-
veloped various building blocks; from front-end GUI's todkaend computational algorithms. This
paper presents these building blocks in detail and withwesild usage scenarios.

The rest of this paper is organized as follows: Section 2udises related work; Section 3 de-
scribes the user interface design and comprehensive usagar®s highlighting key capabilities
of the proposed system; Section 4 presents our ef cient ldaalling processes using a large-scale
data corpus; Section 5 describes the back-end computhti@ihods, which we developed as part
of the system. Section 7 is a brief description of the usatystwhich we conducted for evaluating
the system. Finally, Section 8 concludes the paper and sssufuture work.
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2. RELATED WORK

Information seeking behavior is a complex human activitijjol varies dramatically with sys-
tem capabilities and the user model of these capabilitiear¢hionini and Shneiderman 1988].
lll-de ned document search tasks, such as literature seane often termed “exploratory search'’
tasks, in contrast with well-de ned tasks such as nding a%m, speci c item from a set. In the
past, traditional information retrieval focused much moanehe latter than on the former. More re-
cently, however, advanced approaches were proposed kdinexploratory search tasks. El-Arini
et al. [El-Arini and Guestrin 2011] proposed a new technjgueich retrieves relevant documents
when given a query of a few documents whose rich meta-dath,asiauthor information, are then
utilized in providing recommendations.

In the context of exploratory interfaces, information fgirey [Pirolli and Card 1999] and scent
theory [Pirolli 1997] suggest making the clusters of raladata clear and facilitating the process of
nding new clusters of interest. To this end, many systenssializing the search result also work
in concert with automated topic modeling or clustering &lpons, especially when the information
space is extremely large or unstructured. IN-SPIRE [Wisa#.e1995] uses thk-means algorithm
in order to extract common themes in visualization. iVistéuing [Lee et al. 2012] is an interactive
document clustering system focusing on user interactiomnisfproving cluster quality. On the other
hand, rather than being restricted to a particular clusetechnique, the Testbed system [Choo
et al. 2013a] offers users a wide variety of clustering athors to choose from and allows the
comparison between their results.

Automated recommender systems have often been applied fwablem of matching individual
papers from a corpus to individuals from a slate of candidatewers [Basu et al. 2001; Wang and
Blei 2011]. More relevant to VisIRR are systems that are nexoratory or analytical in nature.
The Action Science Explorer (ASE) [Dunne et al. 2012] fosuse co-citation network visualiza-
tion with document clusters created manually or by heesgtNewman 2004]. A recently proposed
system, called Apolo [Chau et al. 2011], uses a mixed-tingaapproach that bootstraps initial
user-speci ed categories and classi cations into more poghensive system-suggested new docu-
ment categorizations. However, Apolo uses an exemplaebawthod where the user is assumed
to know a small number of documents within their interest.t@ncontrary, VisIRR starts from an
overview visualization of a fairly large amount of docunsengtrieved by user queries. Once the
documents of interest are identi ed, VisIRR seamlesslypsufs an exemplar-based analysis via
recommendation processes based on user preference twuf@riocuments; thereby, the user's
scope expands gradually beyond the document set retrigvigb binitial query.

To our knowledge, even with related work being abundantimgtudy domain, VisIRR is one of
the rst systems thadlirectly consider personalized preference feedback fargd-scale document
corpus in an interactive visual environment

3. HOW VISIRR WORKS

VisIRR's user interface (Ul) is mainly composed of four pdriTfhe Query Barat the top (Fig. 1(A))
enables users to issue queries dynamically, using varields such as keyword, author name, pub-
lication year, and citation count. THgcatter Plot view(document details are shown in the lower
table) (Fig. 1(B)) visualizes the retrieved documents (af as the recommended documents) us-
ing their topic cluster labels. The color and the size of eamlte in a scatter plot represent the topic
it belongs to and its citation count, respectively. Thisawigan also be generated from any user-
selected subset of data (Fig. 1(D)). TRecommendation viean the top left (Fig. 1(C)) provides
tabular representations of documents rated by users (EQ).upper table) as well as of recom-
mended documents (Fig. 1(C) lower table). These recomniedideuments are also visualized in
the Scatter Plot viewas rectangles; the query-retrieved documents are showicéssc Finally,
the Label panelprovides additional controls such as highlighting andfaiirty particular topics,

1Demo video: https://youtu.be/Dg50PsZmEjs
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Fig. 1 An overview of VisIRR. The user can start by issuing quer)/ (&g., the keyword “dis-
ease’). VisIRR visualizes retrieved documents (circles) scatter plot and a table view (B) along
with a topic cluster summary (E). A node size encodes théaitaount. Users can rate documents
on a 5-star rating scale in order to indicate their particuierest. Based on preference rating,
VisIRR provides a list of recommended items (C), which asogirojected back to the existing
scatter plot view as rectangles, so that a consistent tiqpécapective can be maintained. For better
understanding, the user can appbmputational zoom-ion recommended items in order to obtain
a much clearer summary (D).

changing how the topic summary labels are chosen, and shaliiect edges between the rated and
recommended documents (Fig. 1(E)).

3.1. Interactive Visual Document Exploration

VisIRR currently utilizes a publication database called #krnetMiner data set, which contains
approximately 430,000 academic research articles fromiatyaf disciplines and venues (primar-
ily conferences, journals, and books), as will be describe8ection 4. The following scenarios
illustrate the utility of VisIRR for tasks related to thistdaset.

3.1.1. A Visual Overview of Query-Retrieved Documents. In VisIRR, the user starts by issuing
queries from th&uery Toolbar Suppose the user issues the keyword query “disease' Ia at;
once relevant documents are retrieved based on this girengystem performs topic modeling
and dimension reduction steps in order to generat&tatter Plot viewFig. 1(B)). Since most of
the identi ed topic clusters contain the keyword “diseatbe, user can adjust a slider in theabel
panelin order to obtain more distinctive words of topic summar&s shown in Fig. 2. From the
Scatter Plot viewthe user can drill down to a particular topic cluster, suskha topics about “gene
expression data' (top right), and “image analysis' (top)lé8y hovering over a cursor, the user can
check the document details via a tooltip text and also skimutiph the document list in the lower
table, which is sorted by the number of citations by defadliie user can also pan and zoom in order
to enlarge a particular topic cluster or an area of interest.

3.1.2. Drilling Down via Computational Zoom-in. The user can drill down a particular topic cluster
via our novel interaction calledomputational zoom-inlt enables the user to select an arbitrary
subset of documents by visualizing them as a separate vigwtheir own topic modeling and
dimension reduction results. For example, the subset magistoof semantically unclear topic
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(a) A default topic summary (b) A distinct topic summary

Fig. 2 A comparison between default and distinct topic summaiiég. query word “disease' is
contained in many topics as one of the most representatiwededs (a). Adjusting the slider of
common-vs-unique wordis the Label paneimproves the distinction between topics (b).

clusters involving multiple topics. On the other hand, teerumay select a cluttered region where
many points are mixed together.

Fig. 3 shows an example of computational zoom-in interactdter performing computational
zoom-in on a highly cluttered area in the original view, tlesulting view successfully reveals
clear topics; e.g., “support vector machines' or “decisiens,’ both of which are widely-adopted
techniques in medical image analysis.

3.1.3. Dynamic Queries and Multi-View Alignment. In addition to exploring visualized clusters,
the user can apply additional queries in order to furtheravadown the retrieved document set.
Suppose the user wants to focus on documents published 2008 then, the user will create
another lter from theQuery Toolbarin conjunction with the previous query in which the keyword
“disease' was used. Given a new set of documents, VisIRRes@another visualization with its
own topic modeling and dimension reduction. The user can twmpare between the new and
previous visualization results, as shown in Figs. 4(a) #dréspectively, by brushing-and-linking
in order to identify, for example, which topic clusters hdeen either more or less popular since
2008. However, since cluster colors and dimension reducésults are computed independently, it
is not possible to easily compare such differences betweetwio scatter plots.

To solve this problem, VisIRR carries out an alignment stepghe new topic modeling and di-
mension reduction results, with respect to the previousalization result, so that visual coherence
in terms of cluster colors and the spatial coordinates & gatnts can be maintained. For instance,
it is much easier to compare an aligned visualization (Fm)4{gainst the previous visualization
(Fig 4(b)) than it is to compare the unaligned visualizat{pig 4(a)). The aligned visualization
helps the user notice that the topic of “outbreak detetsbown as a green cluster in the middle of
Figs. 4(b) and (c), has not been actively studied since 2008.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article AbRcation date: January YYYY.
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Fig. 3A computational zoom-imteraction. A separate view of user-selected data (a lvleatiangle
at the top left), showing a clear overview of these cluttatats, is created via re-computation of a
new topic summary and dimension reduction coordinates.

(a) An unaligned view (b) A reference view (c) An aligned view

Fig. 4 The effects of topic clustering and dimension reductiogratient. A reference view (b)
shows documents retrieved by using the query word “diseésé the other two views (a) and (c)
contain their subset published since 2008, with their ovmictolustering and dimension reduction
steps applied. In an unaligned view (a), it is dif cult to cpare against the reference view (b) due to
the non-correspondence of data point coordinates and ¢hysters. However, in the aligned view
(c), the topics match those in the reference view (b), in sapfitheir semantic meanings; thus, their
spatial correspondences in the scatter plot are revealed.

3.2. Recommendation

This section describes three types of recommendation daiesbwhich are supported by our sys-
tem through several usage scenarios.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article Apkcation date: January YYYY.
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(a) The top-ranked recommended documents (b) The scatter plot of recommended
documents

Fig. 5 Citation-based recommendation results obtained by asgjgn5-star rating to the paper,
"Automatic Classi cation System for the Diagnosis of Alitmer Disease Using Component-Based
SVM Aggregations.' The relevant papers recommended byRA&shre mostly papers with high-
citation counts.

3.2.1. Content-Based Recommendation. The user can assign ratings to documents to indicate
whether she like them or not. Among the retrieved documenigpose the user found a document
titted "Automatic tool for Alzheimer's disease diagnossing PCA and Bayesian classi cation
rules' to be interesting and assigned the document a 5atagr(highly-preferred) by right-clicking
the corresponding data point in the scatter plot. Utilizisgr preference information, VisIRR dis-
covers the recommended documents based on content siynildre rated and the recommended
documents are displayed in tabular format in Becommendation vie@iig. 1(C)).

From the recommended documents, shown in the lower talde 1FT)), the user can understand
that the research on Alzheimer's disease mainly involvesjenanalysis, clustering, and classi ca-
tion. Notice that without such a recommendation capahjilityvided by VisIRR, the user would not
be able to discover these documents since they were notietlin the set retrieved by the query.
In the scatter plot, the user can see these recommended dotsuat the upper left corner around
the rated document and its adjacent topic clusters. To eequietter idea about the recommended
documents, the user can create another visualization Byingmew topic modeling and dimension
reduction steps to this subset (Fig. 1(D)). From the newctspimmary and visualization, the user
can see that the documents directly related to Alzheimésisade are mainly shown at the bottom
half while the upper half of the scatter plot shows documealsted to image analysis, such as
content-based image retrieval and clustering.

3.2.2. Citation- and Co-Authorship-Based Recommendation. Now, among the recommended doc-
uments, the user chooses the document "Automatic Classirc&8ystem for the Diagnosis of
Alzheimer Disease Using Component-Based SVM Aggregdtanbassigns it a 5-star rating. This
time, the user changes its recommendation type to citdtamed in thd(Recommendation vigun
order to obtain highly-cited documents relevant to thedatecument. As a result, the top-ranked
recommended documents are relatively highly cited pageégs 6(a)). After generating another
visualization using only these recommended items, the emobtain their summary. The items
are categorized in topics such as image retrieval, objgettien/recognition, face recognition, and
texture analysis (Fig. 5(b)). Notice that these types obmemendation results would not be easily
obtained by a simple keyword search since the recommendrdramts do not have speci c key-
words in common. Instead, they are only implicitly relatedtte initially chosen document through
a citation network, which VisIRR utilizes in order to proeidecommendations.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article Abfcation date: January YYYY.
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(a) Scatter plot of retrieved and recommended documents (b) Scatter plot of recommended documents

Fig. 6 Co-authorship-based recommendation results based onaiber, pAutomatic Classi ca-
tion System for the Diagnosis of Alzheimer Disease Using gonent-Based SVM Aggregations.'
Edges show direct co-authorship relations from the ratedichent.

In addition, the user wants to know what other topics or acdagudy the authors of the rated
paper are involved in. To this end, the user changes the meeniahation type to co-authorship-based
in theRecommendation viewo check direct co-authorship relationships to the ratgabp the user
turns on the "Edges' checkbox by selecting the edge type@siithorship' in thd.abel panel The
existing visualization of the retrieved documents now udels the recommended documents as
well as direct co-authorship relationships of the ratecuduent (Fig. 6(a)). Similar to the previous
case, the user can generate another visualization of reeonhd items in order to acquire a better
idea about them. After varying the number of topic clustérs,user obtains a new visualization
(Fig. 6(b)). From this new visualization, the user gainswiealge about other studies by the authors
of the rated paper, unrelated to Alzheimer's disease (tkergtopic cluster on the right), in the
four areas of blind source separation, gene expressioeckpgaocessing, and neural networks.
This may potentially indicate that researchers originaitgrested in Alzheimer's disease diagnosis
could expand their research by gaining knowledge on whatratbmains the authors of the rated
paper have published in.

3.2.3. Usage Scenarios. Now, suppose the user wants to use VisIRR in order to nd nefsea
papers relevant to data visualization. Unsure about whabtofor, the user searches for all papers
published in those venues whose name contains the keywisuhlization' in theQuery Toolbar
Upon examining topics in theabel paneland theScatter Plot viewFig. 7(a)), the user lters out
the uninteresting topics of rendering volume/surfacesmarfbrmscomputational zoom-ion the
following topics: “visual, data, information,’ “systenmesign, user,’ and “data, visual, set.' The user
then sees a more detailed topic description (Fig. 7(b)) éadssexploring individual documents.
The user selects the paper "Ordered Treemap Layouts,' wéifiets to the visualization of hierarchi-
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(a) A default topic summary (b) A new topic summary aftecomputa-
tional zoom-inon interesting topics

Fig. 7 The initial result based on a keyword query ‘visualizationa venue eld. (a) The user
selects interesting topics. (Bpmputational zoom-ireveals more detailed sub-topics after Itering
out uninteresting topics in (a).

(a) Content-based recommendation results (b) Citation-based recommendation results

Fig. 8 Recommendation results obtained by assigning a 5-stagrti Ordered Treemap Layouts'

cal data using treemap, and assigns it a 5-star rating. Arttheng@commended documents, based on
content similarity (shown in thRecommendation vigythe user also rates two documents, Ordered
and Quantum Treemaps: Making Effective Use of 2D Space tpl@jsHierarchies' and “Spatially
Ordered Treemaps,' as 5-star (Fig. 8(a)). The user notleatstihe three papers, which she rated,
are all recently published papers on the topic of treemayalization. Now, the user wishes to nd
representative papers on the topic of the treemap vistializgechnique, for the purpose of citing
them in her paper. The user uses citation-based recomni@mdaith regard to the rated papers,
and nds "Tree-Maps: A Space-Filling Approach to the Vismalion of Hierarchical Information
Structures' on the top of the recommendation list (Fig. B(Ibhis is the rst paper to propose the
technique and also the most popular paper on this speci festib

4. DATA COLLECTION / INGESTION
In this section, we present the data collection and proogssgihich we performed, in more detail.

4.1. Initial Data Collection

VisIRR can handle a large-scale document corpus with a tlotfeatures ef ciently. To this
end, we started with the ArnetMiner data set, which is coragas approximately half a million
academic papers, books, etc. [Tang et al. 2608)e original data set has numerous missing values
and inconsistencies with regard to author name, publicatenue, etc. To clean-up the data, we
utilized Microsoft Academic Search APih order to obtain the full information about the document;

2The used data is available as 'DBLP-Citation-network V3itfp://arnetminer.org/citation.
Shttp://academic.research.microsoft.com/About/Help.htm.
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thereby, the missing values were lled and the inconsisewere xed. VisIRR currently contains
432,605 documents spanning from year 1825 to 2011.

4.2. Data Ingestion

VisIRR maintains the data information in three differentfis: (1) original elds of data, (2) vector
representation, and (3) graph representations. These @irgamned in an ef cient and scalable
manner. To ef ciently manage the large amount of data in tdhese forms, we optimized various
data processing/storage techniques through databasgumias, pre-computation of frequently
used information, and balanced storage between disk andmgewhich will be described in more
detail below.

4.2.1. Original Data Attributes. For ef cient and exible query support, we encoded the onigji
data into an SQL database including full-text search cdigiabion title, keywords, abstract, and
venue elds. To perform topic modeling and dimension regucsteps, we pre-computed the sparse
vector representations of individual documents by intiéxggatitle, keywords, and abstract elds
using the bag-of-words encoding scheme. Each vector reqta#on is stored in a single le on a
hard disk drive where the name of the le is the document IDthis manner, VisIRR is able to
retrieve the vector representations of documents usirigdbeument ID's in the time complexity
of O(2).

4.2.2. Vector Representation. ViSIRR manages the vector representations of documentsiin-a
ilar manner to cache replacement algorithms; that is, tistoveepresentations already loaded into
the memory are referenced from the memory and will be reld&aen a disk when they are needed
again. When the amount of memory-loaded vectors exceedsdepred limit, the least recently
used vectors are removed from memory. When needed lateiatbéyaded from a disk once again.
In this manner, we avoid loading the entire vector repregent of all the documents from the be-
ginning, which would consume a signi cant amount of time anemory at system startup. VisIRR
also prevents memory usage from blowing up due to the long-tsage of the system.

4.2.3. Graph Representation. The recommendation module (Section 5) requires an inpuyghgra
where nodes correspond to documents and edges represeptihgise similarities/relationships.
We pre-computed three such graphs for the entire data sey wsintents, citation, and co-
authorship, respectively, for the purpose of supportingdie recommendation capabilities. For
a content-based graph, we computed the pairwise cosinéastias between document vectors.
Since the pairwise information requir€§n®) storage whera is the total number of documents,
we maintain the partial information regarding each docutaeimilarity to ten most similar doc-
uments. For a citation graph, edges are formed between dadyairs if one had cited the other.
For the co-authorship graph, edges are created if two doutsslare the same author(s). For each
graph, VisIRR maintains the data structure about each dentisnlist of edges, in terms of the
destination document and its edge value so that it can vettlee edge information for particular
documents irO(1) time complexity.

4.3. Scalable Update for New Data

It is crucial to have the capability of ef ciently expandirige stored information for newly added
documents. This task involves obtaining the represemsitdd new documents as well as updating
information about existing documents. For instance, whegaating the content similarity graph,
where the ten most similar documents and their cosine giityikzalues are kept, we have to com-
pute the pairwise similarity between all the existing doeuts and all the new documents. Then,
we have to compare these similarity values against the muiop ten similarity values and replace
them accordingly. The process is doneQfn nney) time complexity wheren and npey are the
numbers of existing and new documents, respectively.
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5. COMPUTATIONAL METHODS

In VisIRR, we developed various computational modules thasetopic modeling, dimension re-
duction, alignment, and graph-based recommendation,&aghich is described below.

5.1. Topic Modeling

Topic modeling provides a summary of a given set of documientsrms of its major topics. The
resulting topic indices are used to color-code documerdssitatter plot with each topic's represen-
tative keywords (Figs. 1(B) and (E)). Traditionally, topimodeling approaches based on probabilis-
tic graphical modeling, such as probabilistic latent seimandexing [Hofmann 1999] and latent
Dirichlet allocation [Blei et al. 2003], have been widelyeds In our study, however, we employed a
technique which recently became popular; it is called ngatiee matrix factorization (NMF) [Kim
and Park 2007] due to its output consistency from randoralization and also due to its compu-
tational ef ciency [Choo et al. 2013b]. In addition, NMF haghibited superior performance in
document clustering compared to traditional methods sgdiiraeans [Kim and Park 2008; Xu
et al. 2003], which was used in IN-SPIRE [Wise et al. 1995].

Given a nonnegative matrix 2 R™ ", and an integek  min(m; n), NMF nds a lower-rank
approximation given by

X WH; 1)

whereW 2 R™ X andH 2 RX M are nonnegative factors. In the context of topic modeling an
document clustering, each column vectp? R™ 1 of X represents an individual document as an
m-dimensional vector using bag-of-words encoding, alorty adlditional pre-processing steps such
as inverse-document frequency weighting apdhorm normalization. The value &frepresents the
number of topics; each column @ represents a topic, where the value of a particular dimensio
indicates the weight of the corresponding keyword in théctoBy choosing keywords with the
most signi cant weight values, we obtain their topic sumydro perform document clustering,
we utilize each column ofl as the soft clustering vector representation of a documsit that
the column vectoh; 2 R 1 of H represents a soft clustering vector for tkth document, and the
cluster index of the document can be obtained as the dimeirgiex with the largest value im.

The particular NMF algorithm used in our study was based @tartly proposed block principal
pivoting algorithm [Kim and Park 201 Fjwhich is one of the fastest, numerically stable algorithms.
In Section 6, we present the quantitative evaluation, wiklobws the advantage of NMF in topic
modeling applications.

5.1.1. Computational Complexity. The overall computational complexity of NMF is dif cult to
determine since it goes through iterative updated/atndH in a block-coordinate descent frame-
work until its convergence to a local minimum. The dominamtnputation for updating ead
andH takesO(mnK for iterations until we nd an optimal passive index set faetnonnegativity
constraint.

5.2. Dimension Reduction

Dimension reduction computes 2D representations of dontsmi@ a scatter plot (Fig. 1(B)).
VisIRR adopts a supervised dimension reduction methocedadihear discriminant analysis
(LDA) [Howland and Park 2004], which, unlike traditional theds such as PCA and MDS, explic-
itly utilizes additional cluster label information takemmf the document clustering results described
above. Using this information, LDA tries to highlight thauster structure in low-dimensional space.
In detail, given a data matriX 2 R™ ", whose column vectorg 2 R™fori 2 f1;2; ;ng
represent data items and their cluster lalbgle DA rst computes the high-dimensional statistic

4The source code is available at http://www.cc.gatech.dthdrk/nmfsoftware.php.
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called the within- and the between-scatter matri€gsandS,, respectively, as,

n
Sw=a a)x o) and
i=1

S=a, o o
i=1

wherec;; andc represent the centroid of clustirfor I; 2 f1,2; kg and the global centroid,
respectively, i.e.,

n n
g =axl(j=hn=a1d;=1) and
=1 =1

OnceSy andS, are computed, LDA obtains its linear transformation madfik DA, G pa 2 RZ m
which maps am-dimensional data vectorto a two-dimensional vecta= Gx, by solving

GLpa = arg_max trace GSG' ' GesGl 2)
G2R2 m

The columns ofG pa, which is the optimal solution to this equation, are obtdias the leading
generalized eigenvectovof the following generalized eigenvalue problem [Fukun&g80]

Sv= 1 Sw

To ensure numerical stability of the matrix inverse in Eq, {8sIRR uses a regularized version
of LDA, which replacesS, by Sy + gl. In practice, the parametercontrols how compactly LDA
represents each cluster in a 2D scatter plot. We providelarshterface for changing the value of
g, enabling users to focus their analyses at either a clustel or an individual document level. For
more details, we refer readers to [Choo et al. 2009, 2010].

5.2.1. Computational Complexity. The computational complexity of LDA is mainly governed by
the generalized eigenvalue problem. By applying QR decaitipo on a data matrix, we can
solve this problem, whose computational complexit@isnr? [Park et al. 2007].

5.3. Alignment

In VisIRR, users can dynamically create multiple scattetgplvith (1) different parameter values,
e.g., the number of topic clusters in NMF and a regulariraiioLDA, and (2) a new set of data
from a different query or user selection. In order to maimtansistency between different scatter
plots and facilitate their easy comparison, VisIRR aligiffecent topic clustering and dimension
reduction results. By aligning the topic clustering resthe same topic cluster indices are expected
to have coherent meanings. By aligning dimension reducésults, the same data points are located
in a similar position within a 2D space between differenttgraplots.

For topic cluster alignment, VisIRR utilizes the Hungarggorithm [Kuhn 1955]. Given two
sets of cluster assignments for data items, the Hungargorigim nds the optimal matching of
cluster indices between the two sets so that the number ofoondata items within the matching
cluster pairs can be maximized. Based on the matching rédalRR changes the topic cluster
indices and the colors of the newly created scatter plot veisipect to those in the reference scatter
plot. In this manner, VisIRR maintains the topic clusteriged/colors with their consistent semantic
meanings among multiple visualization results.

For the alignment of dimension reduction results, we empka@ytechnique called Procrustes
analysis [Hurley and Cattell 1962; Ed and Park 1999], which nds the best mapping from one
result to the other via high-dimensional rotation. Protasisanalysis has been widely applied to
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image registration in the eld of computer vision; howeviéhas never been used in interactive
visualization applications. Furthermore, we improved @higinal Procrustes analysis by incorpo-
rating translation and isotropic scaling factors; thagisen two reduced-dimensional matrices in
a two-dimensional spac¥; Y 2 R2 ", wheren represents the number of data points, respectively,
our alignment algorithm solves
mn X nxly kQY mily ; ©)

Q: my; ny ;K
whereQ 2 R? 2 is an orthogonal matrix (performing the rotation in a tweadnsional space),
nmx and ny are two-dimensional column vectors (performing transkgtik is a scalar (performing
isotropic scaling), andlis ann-dimensional column vector whose elements are all 1's. The s
lution for Eq. (3) can be obtained as follows. First, we perfa singular value decomposition on

Y m1l X mx1] Tas
Y m1l X m1l T=usvT;

whereU;V 2 R? 2 are orthogonal matrices ar®l2 R? 2 is a diagonal matrix. Now, the optimal
solutions ofQ; andk are obtained as

Q=VUT;k= tracdS)=trace Y m1] Y nvllT :

andny andny are obtained as the column-wise mean vectobs ahdY, respectively.
This alignment step helps users understand how similarffareint the placement of the corre-
sponding data items and topic clusters are between diffgrenws.

5.3.1. Computational Complexity. Thek k co-membership frequency matrix between the two
sets ofk clusters is the input to the Hungarian algorithm. It ta®€s) computations, wherkis the
number of clusters armdrepresents the number of data items. Then the Hungariarithigcas the
computational complexity dd k® . The input to Procrustes analysis also ta®¢s) computations;
then, the main algorithm runs ef ciently since it works oretimatrix of size 2 2. As will be seen
in Section (6), these alignment algorithms have minimaa# on the running time of VisIRR.

5.4. Recommendation

The main input to the recommendation algorithm is the peatsoed preference to particular docu-
ments, which are interactively assigned by users on a 5atiagrscale (Fig. 1(B)). All the docu-
ments are initially set to have a 3-star rating (neutralgnexice); however, users can interactively
assign ratings to documents, where 1 star corresponds tdexg@nce value of -2, and 5 stars corre-
spond to +2, etc.

Given such a user preference input, VisIRR identi es docote¢o recommend by performing
a graph diffusion algorithm on a weighted graph of the erdweument corpus. Such a graph can
be based on contents, citation network, or co-authorshiwark, depending on the user's choice
(Section 3.2). In particular, VisIRR adopts a heat kerreddal graph diffusion algorithm [Chung
2007], which gives much faster convergence than traditialgorithms. In detail, given an input
graphw 2 RN N petweerN documents, where each column\ifis normalized to have a unii -
norm, and a user preference vegp RN 1, where thd-th componenp; indicates the preference
value of thei-th document, VisIRR computes the recommendation scortove@ RN 1 of N
documents as

n
r=ad (1 a)wkp (4)
k=0

wherea andn are user-speci ed parameters currently seate 0:7 andn= 3. An intuitive expla-
nation of this formulation is that the preference vahis propagated to its neighboring nodes with
the corresponding weights speci ed in graphduring the rst iteration. Then, the resulting values
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are propagated again on the same gihaplith the scaling(1 a) at the next iteration, and so on.
Finally, those values computed from each iteration are @dgeto form the nal recommendation
score vector. Once converged, VisIRR selects the documents with theeigscores im as the
documents to recommend.

All the computations in this algorithm, which are basicathatrix-vector multiplications, are
performed based on sparse representations. TherefomagadW and p have a small number of
non-zero entries, the computation is usually fast. In aaoiditVisIRR supports the capabilities of
interactively adding/removing the rated documents as aglthanging the ratings of the existing
documents. Such computations are performed dynamicallymgaction, which essentially makes
p have only one non-zero entry. It allows us to maintain thé-tiege ef ciency of computations
during frequent user interaction.

5.4.1. Computational Complexity. The running time of the recommendation algorithm varies sig
ni cantly. Thus, it is dif cult to de ne its computational omplexity since it would depend on the
number of seed documents' edges, as well as on those of tighivors. Usually, if the seed docu-
ments have the smaller number of neighbors, the recommienddgorithm would run faster.

5.5. Implementation

The front-end Ul and visualization of the system were immatad in JAVA, partly based on the
FODAVA testbed system [Choo et al. 2013a]. NetBeans RicarEIPlatform and IDEwere used
for exible window management. The back-end computationatules, NMF and LDA, were orig-
inally written in MATLAB, but were later converted into a JAVibrary.® For querying and access-
ing the database, we used the H2 libréry.

6. QUANTITATIVE EVALUATION

In this section, we present the quantitative evaluationltesFirst, we explain our choice of the
topic modeling module's design. Next, we report the runringe of each module.

6.1. Comparison of Topic Modeling Methods

We experiment with four well-known document clustering dogic modeling methods: NM¥,
LDA,® k-means'® and information bottleneck (IB) [Slonim and Tishby 208&]For k-means and
IB, which do not explicitly produce topics but rather givecdment clusters, we treated each cluster
as atopic. Fok-means, in order to obtain its representative keyword$) eastroid was regarded as
the word distribution vector of its corresponding topicr B, from each word cluster, we selected
the keywords with the highest probability values over thd@euments belonging to the correspond-
ing topic.

Among the four methods, we compared the computing time gpid tmherence score. To eval-
uate topic coherence, we used pointwise mutual informgfdil) [Newman et al. 2010], which,

t 1 t .

o” o p(Wi,Wj)
PMI = log ———~ 27

a & 9w plw)

Shttp://netbeans.org/features/platform/index.html
Shttp://www.mathworks.com/products/javabuilder/
"http:/Aww.h2database.com/html/main.html

8We used code available at https://github.com/kimjingu/regyiac-matlab.

SWe used code available at http:/psiexp.ss.uci.edu/relsgmogramsiata/toolbox.htm.
10e used built-in MATLAB function.

11we used code available at http://ai.stanford.edal/Code/ibsisequ.m.
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Table | The PMI scores averaged over 20 runs. The best performahees\are shown in bold.

| Filtering keywords| Data size (termdoc) | NMF | LDA | k-means| B |

“lagrange’ 3,947 515 0.8535| 0.7015| 0.5874 | 0.6709
“disease’ 12,515 2,608 0.7426| 0.6918| 0.3812 | 0.4483
“scalable’ 25,664 13,112 0.5314] 0.6203| 0.2904 | 0.3412

Table Il The computing times averaged over 20 runs. The best perfm@nealues are shown in
bold.

| Filtering keywords| Data size (termdoc) | NMF | LDA | k-means| B |

“lagrange’ 3,947 515 6.62 5.50 5.12 26.32
“disease' 12,515 2,608 28.82 | 36.68 | 249.93 | 113.74
“scalable’ 25,664 13,112 134.55| 231.44] 2,651.10| 265.76

Table Il Computing times of each module averaged over three runsd&td deviation is included
in parenthesis for the recommendation module, which shdwggdvolatility.

\ | 2,000docs| 971docs| 515docs |

Topic modeling 12,152 7,244 3,953
Dimension reduction 8,995 4,070 1,903
Alignment 1,097 867 899
Recommendation || 605 (452) | 989 (585) | 1,330 (692)

wherep(w;;w;) represents the probability @f andw; co-occurring in a common document and
p(wi;wj) is the probability ofw; occurring in a document. We used the top ten keywords, i.e.,
t = 10. For each model, we report the averaged PMI score ovealalllated topics.

We set the number of topic clusters to 20. For the other passiave used the default setting
available in the original implementation. All implemerndeats were developed in MATLAB. For the
data sets used in this part of the study, we lItered the Arrieévidata set mentioned in Section 4
using a particular keyword to generate data subsets fordberienent.

Table | shows the PMI scores averaged over 20 runs. OvetslE Bind LDA show higher topic
coherence compared temeans and IB. In terms of the computing times in Table I, Niv&s
shown to run the fastest for large data sets. These expdshresults demonstrate the superiority
of NMF, which was used as the core topic modeling module inRRs

6.2. Running Time Breakdown

Table 11l shows the computing times of our computation medwdveraged over three runs for data
sets of different sizes. Topic modeling and dimension rédnanodules take less time when the
data set size is smaller. On the other hand, the time conshynaégnment stays relatively the same
with various data set sizes. The running time of the recontiaton module shows high volatility,
in the range from 50 seconds to 2,000 seconds per iteratime & is mostly affected by the rated
documents' edge count, as discussed in Section 5.4.1.

7. CONFIRMATORY USER STUDY

It is acknowledged that evaluation of information visuatian and visual analytic systems are chal-
lenging [Plaisant 2004]. Insight-based evaluation [Sarait al. 2005; Plaisant et al. 2008] has
recently gained popularity as an alternative to traditi¢inae-and-accuracy measures. As a prelim-
inary gauge of how well our usage scenarios matches reabebsavior, we conducted an end-user
evaluation of VisIRR.
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Table IV The Ul action counts across all participants and tasks.

Action Description Count
. . A tooltip showing document detalils triggered by
Checking tooltip text hovering over a table row or a scatter plot node 38,897
Rating documents The user assigns a non-default 1-5 star rating 80
9 from table entries or scatter plot nodes
. A The user opens the detail dialog box
Checking document details for one or more documents 146
. The user copies document information
Bookmarking documents to the clipboard 35
. . The user performs a lter (by keyword, year,
Performing ltering citation count, or author's name) on the current resuylts 24

This study has been designed to provide evidence-by-exisi¢hat is, our goal was to provide
support for our implicit VisIRR design claims. For examplee sought to show that recommen-
dations outside the initial query-retrieved documentstesipful in nding useful documents and
that VisIRR serves its intended purpose when utilized by wsars. This should prove that our
assumptions made in the user scenarios discussed in S8atiere valid.

7.1. Procedure

The participants in the study were rst provided with a livendo of the system (lasting ve to
ten minutes, depending on questions). Then, the partitspsed the system to conduct searches
using their own queries and to complete a set of pre-de nslstén the eld of eitherubiquitous
computingor information visualizatior(e.g., “Describe any apparent sub elds or application srea
of information visualization.”). Finally, we deployed arg®n of the IBM Computer System Us-
ability Questionnaire (CSUQ) [Lewis 1995] along with a fether subjective assessment questions
speci c to VisIRR.

The system was deployed on a workstation with 2.5GHz Int@ln{arocessors and 8 GB RAM
running 64-bit Windows 7. The workstation included a 30kimoonitor for VisIRR and a 19-inch
monitor (as a task response window).

We recruited seven male PhD students between the ages & &drdlled in various technical de-
gree programs (engineering, computer science, and rabpofis such, they were all experienced in
researching academic literature using online resourags & Google Scholar and the IEEE/ACM
digital libraries. We asked the participants to self-rdueirt familiarity with information visualiza-
tion and ubiquitous computing literature; all the partaips self-rated four or less on a seven-point
Likert scale for information visualization; six out of sevetudents did the same for ubiquitous
computing. Participants completed the tasks with regarthécarea they were less familiar with.
VisIRR was con gured to log the user's Ul actions; their actitypes are summarized in Table IV.
We observed users non-intrusively while they completekistas

7.2. Results

Table IV shows the raw action count across all users and sifistaAlthough we do not provide
rigorous comparison against other baseline settingsetbesnts partially support our subjective
impression, which was formed while watching users compietks; the users consistently made use
of major VisIRR features (visualization, ratings, reconmah&tions, and details-on-demand). Since
one of our most basic questions was whether the users wouldliigamake use of the novel features
such as ratings and recommendations, this preliminanjtress encouraging. The numbers of
checking tooltip text in Table IV are somewhat exaggeratechhse VisIRR tooltips have a very
short timeout triggering their appearance.

All the users made at least nine distinct document ratingssacall tasks; interestingly, they did
so relatively evenly, from different portions of the Ul (trecommended documents, the query lists,
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and the scatter plot). Document details were dispropaatiy triggered from the visualization
(112/146), indicating that the participants both integdcivith the visualization and drilled down
into document details from there. Although this may havenlzkee to the relatively small panel size
assigned to the query-retrieved document list, it con rnfdh our subjective observations and
post-test user comments, e.dt;s'good to have that rst clustering result ... It's easy go deeper
down from one or two clusters.

On the subjective CSUQ, scores were generally ve or highvith the lowest rated scores ob-
served for questions, such abte system has all the functions and capabilities | exp¢othave;
“The system gives error messages that clearly tell me how poolslems; and “Whenever | make
a mistake using the system, | (am able to) recover easily amklg.” We suspect that these rat-
ings re ect occasional software bugs and crashes, whichiroed during some of the participant
sessions.

Our results also suggest a potential interesting contragsér behavior with more traditional
keyword-based search algorithms; in exploratory taskb weyword search engines, one might
expect to see multiple iterations of keyword re nement améhspect results for a given task; how-
ever, our users performed relatively few lter actions {alyword re nements rather than by author,
time, or citation). Because VisIRR recommendations exghedsearch query outside its original
bounds (and highlight those nodes outside the boundsfittgrkeyword terms is less necessary.
Of course, we hypothesize that rating-based re nement isenpooductive, since it requires less
expertise from the user in generating useful keyword setpgrat least one user clearly agreed by
saying that VisIRR *. is de nitely much better than blindly searching (on) G@®Scholar or (on)
basic search engines using just a few keywdrds.

8. CONCLUSION AND FUTURE WORK

In this paper, we presented a visual analytics system c&li®dRR, which is an interactive vi-
sual information retrieval and recommendation system émudhent discovery. One of the primary
contributions of VisIRR is that it effectively combines hqgtaradigms of passive query processes
and active recommendation by re ecting user preferencdtfaek. In addition, VisIRR tackles a
large-scale document corpus directly, through ef ciertadaanagement and by updating new data,
as well as through a suite of state-of-the-art computatiorethods such as topic modeling (e.g.,
NMF), dimension reduction (e.g., LDA), alignment (e.g.,idarian algorithm and Procrustes anal-
ysis), and personalized recommendation (e.g., heat kbassdd graph diffusion algorithm)

In future work, we plan to support ef cient, interactive iopnodeling and 2D layout algorithms.
In fact, many users have often mentioned visualization noting up immediately due to the non-
trivial computational time of the various algorithms invedl. To this end, the development of paral-
lel and distributed algorithms can improve the usabilityhaf system, in terms of responsivity and
speed.

Additionally, users sometimes tried to move documents usters to see what other documents
or clusters move correspondingly. Fast and interactivie tgodeling and layout algorithms, which
incorporate such user feedback, would substantially ingtbe usability of VisIRR [Endert et al.
2012].

Moreover, VisIRR's recommendation module relies heavityaitation and co-authorship net-
work information, which may not be readily available forately new documents. To solve this
issue, we plan to integrate additional approaches in oaextract structured information, such
as entity resolution and disambiguation, which are prgpaigtinguished among different authors
with the same name.

Finally, we plan to expand the capabilities of VisIRR to atiypes of document data analy-
sis, such as social media data and news articles. These dfpkda, however, poses other chal-
lenges; for instance, citation or co-authorship inform@tinay not be available. Furthermore, topic
modeling results may not be reliable given documents withatdength. These issues can limit
VisIRR's recommendation capabilities; to handle them,i@gaital information, such as social net-
work and/or co-viewing information, should be utilized whmaking a recommendation. In addi-
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tion, other topic modeling and document embedding methew&gble for short documents, could
be used in VisIRR [Yan et al. 2013; El-Arini et al. 2013].
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