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Introduction:

 

Twenty years ago anarchy threatened floating-point arithmetic.  Over a dozen commercially significant arithmetics 
boasted diverse wordsizes,  precisions,  rounding procedures and over/underflow behaviors,  and more were in the 
works.  “Portable”  software intended to reconcile that numerical diversity had become unbearably costly to 
develop.

Eleven years ago,  when  IEEE 754  became official,  major microprocessor manufacturers had already adopted it 
despite the challenge it posed to implementors.  With unprecedented altruism,  hardware designers rose to its 
challenge in the belief that they would ease and encourage a vast burgeoning of numerical software.  They did 
succeed to a considerable extent.  Anyway,  rounding anomalies that preoccupied all of us in the 1970s  afflict only  
CRAYs  now.

Now atrophy threatens features of  IEEE 754  caught in a vicious circle:
            Those features lack support in programming languages and compilers,
             so those features are mishandled and/or practically unusable,
             so those features are little known and less in demand,  and so
             those features lack support in programming languages and compilers.
To help break that circle,  those features are discussed in these notes under the following headings:

Representable Numbers,  Normal  and  Subnormal,  Infinite  and  NaN  2
Encodings,  Span  and Precision 3-4
Multiply-Accumulate,  a  Mixed Blessing  5
Exceptions in General;  Retrospective Diagnostics  6
Exception:  Invalid Operation;  NaNs  7
Exception:  Divide by Zero;  Infinities 10
            Digression on Division by Zero;  Two Examples 10

Exception:  Overflow 14
Exception:  Underflow 15
             Digression on Gradual Underflow;  an Example 16
Exception:  Inexact 18
Directions of Rounding 18
Precisions of Rounding 19
The Baleful Influence of Benchmarks;  a  Proposed Benchmark 20

Exceptions in General,  Reconsidered;  a  Suggested Scheme 23
Ruminations  on  Programming Languages 29
Annotated Bibliography 30

Insofar as this is a status report,  it is subject to change and supersedes versions with earlier dates.  This version 
supersedes one distributed at a panel discussion of  “Floating-Point Past, Present and Future”  in a series of  San 
Francisco Bay Area Computer History Perspectives  sponsored by  Sun Microsystems Inc.  in  May 1995.  A Post-
Script  version is accessible electronically as   http://http.cs.berkeley.edu/~wkahan/ieee754status/ieee754.ps  .

 

This document was created with FrameMaker 4.0.4
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Representable Numbers:

 

IEEE 754  specifies three types or  

 

Formats

 

   of floating-point numbers:
 
          Single  ( Fortran's  REAL*4,  C's  

 

float

 

 ),           ( Obligatory ),
         Double  ( Fortran's  REAL*8,  C's  

 

double

 

 ),           ( Ubiquitous ),  and
         Double-Extended  ( Fortran REAL*10+,  C's  

 

long double

 

 ),           ( Optional ).
( A fourth  Quadruple-Precision  format is not specified by  IEEE 754  but has become a  

 

de facto

 

  standard among 
several computer makers none of whom support it fully in hardware yet,  so it runs slowly at best.)

Each format has representations for  NaNs (Not-a-Number),  

 

±∞

 

 (Infinity),  and its own set of finite real numbers 
all of the simple form

2

 

k+1-N

 

 n
with two integers   n  ( signed 

 

Significand

 

 )  and   k  ( unbiased signed 

 

Exponent

 

 )  that run throughout two intervals 
determined from the format thus:

 

 

 

                       K+1  Exponent bits:  1 - 2

 

K

 

  <  k  <  2

 

K

 

  .               N  Significant bits:   -2

 

N

 

  <  n  <  2

 

N

 

  .

This concise representation    2

 

k+1-N

 

 n ,  unique to  IEEE 754,  is deceptively simple.  At first sight it appears 
potentially ambiguous because,  if  n  is even,  dividing  n  by  2  ( a right-shift )  and then adding  1  to  k  makes no 
difference.  Whenever such an ambiguity could arise it is resolved by minimizing the exponent  k  and thereby 
maximizing the magnitude of significand  n ;  this is  “ Normalization ”  which,  if it succeeds,  permits a  Normal  
nonzero number to be expressed in the form      2

 

k+1-N

 

 n  =  

 

±

 

2

 

k

 

 ( 1 + 

 

f 

 

)  with a nonnegative  

 

fraction

 

  

 

f

 

 < 1 .

Besides these  Normal  numbers,  IEEE 754  has  Subnormal ( Denormalized )  numbers lacking or suppressed in 
earlier computer arithmetics;  Subnormals,  which permit  Underflow  to be  Gradual,  are nonzero numbers with an 
unnormalized significand  n  and the same minimal exponent  k  as is used for  0 :

Subnormal    2

 

k+1-N

 

 n  =  

 

±

 

2

 

k

 

 (0 + 

 

f 

 

)    has     k  =  2 - 2

 

K

 

   and    0  <  | n |  <  2

 

N-1

 

 ,   so   0 < 

 

f

 

 < 1 .

Thus,  where earlier arithmetics had conspicuous gaps between  0  and the tiniest  Normal  numbers

 

 

 

±

 

2

 

2-2 K

 

 ,  
IEEE 754  fills the gaps with  Subnormals  spaced the same distance apart as the smallest  Normal  numbers:

 

    Subnormals   [--- Normalized Numbers ----- - - -  -  -  -  -   -  -  ->
                 |               |                               |
 0-!-!-+-!-+-+-+-!-+-+-+-+-+-+-+-!---+---+---+---+---+---+---+---!------ - -
   | |   |       |               |                               |

 Powers of 2 :  2

 

2-2 K

 

            2

 

3-2 K

 

                            2

 

4-2 K

 

-+-

 

   

 

Consecutive Positive Floating-Point Numbers

 

   

 

-+-

 

Table of  Formats’  Parameters:

 

 Format Bytes  K+1  N

Single 4 8 24

Double 8 11 53

 Double-Extended

 

≥

 

 10

 

≥

 

 15

 

≥

 

 64

( Quadruple      16 15 113 )
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IEEE 754  encodes floating-point numbers in memory  (not in registers)  in ways first proposed by  I.B. Goldberg 
in  

 

Comm. ACM

 

 (1967) 105-6 ;  it packs three fields with integers derived from the sign,  exponent and significand 
of a number as follows.  The leading bit is the sign bit,  0  for  +  and  1  for  - .  The next  K+1  bits hold a biased 
exponent.  The last  N  or  N-1  bits hold the significand's magnitude.  To simplify the following table,  the 
significand  n  is dissociated from its sign bit so that  n  may be treated as nonnegative.

 

   Encodings  of    

 

±

 

2

 

k+1-N

 

 n    into  Binary Fields :

 

Note that  +0  and    -0  are distinguishable and follow obvious rules specified by  IEEE 754  even though floating-
point arithmetical comparison says they are equal;  there are good reasons to do this,  some of them discussed in 
my  1987   paper  “ Branch Cuts ... .”  The two zeros are distinguishable arithmetically only by either  division-by-
zero  ( producing appropriately signed infinities )  or else by the  CopySign  function recommended by  IEEE 754 / 
854.  Infinities,  SNaNs,  NaNs  and   Subnormal  numbers necessitate four more special cases.

IEEE   Single   and   Double   have no  Nth  bit in their  significant digit  fields;   it is   “ implicit.”   680x0 / ix87  
Extendeds  have an explicit  Nth  bit for historical reasons;  it allowed the  Intel 8087  to suppress the normalization 
of subnormals advantageously for certain scalar products in matrix computations,  but this and other features of the  
8087  were later deemed too arcane to include in  IEEE 754,  and have atrophied.

Non-Extended  encodings are all  “ Lexicographically Ordered,”  which means that if two floating-point numbers in 
the same format are ordered  ( say  x < y ),  then they are ordered the same way when their bits are reinterpreted as  
Sign-Magnitude  integers.  Consequently,  processors need no floating-point hardware to search,  sort and window 
floating-point arrays quickly.  ( However,  some processors reverse byte-order!)  Lexicographic order may also ease 
the implementation of a surprisingly useful function   NextAfter(x, y)   which delivers the neighbor of  x  in its 
floating-point format on the side towards  y .

Algebraic operations covered by  IEEE 754,  namely  + , - ,  · ,  / ,  

 

√

 

   and  Binary <-> Decimal Conversion  with 
rare exceptions,  must be  

 

Correctly Rounded

 

  to the precision of the operation’s destination unless the programmer 
has specified a rounding other than the default.  If it does not  Overflow,  a correctly rounded operation’s error 
cannot exceed half the gap between adjacent floating-point numbers astride the operation’s ideal  ( unrounded )  
result.  Half-way cases are rounded  

 

to Nearest Even

 

,  which means that the neighbor with last digit  0  is chosen.  
Besides its lack of statistical bias,  this choice has a subtle advantage;  it prevents prolonged drift during slowly 
convergent iterations containing steps like these:

While ( ... )  do { y := x+z ;  ... ;   x := y-z } .

A consequence of correct rounding  ( and  Gradual Underflow )  is that the calculation of an expression  X•Y  for 
any algebraic operation  •  produces,  if finite,   a result   (X•Y)·( 1 + ß ) + 

 

µ

 

   where  |

 

µ

 

|  cannot exceed half the 
smallest gap between numbers in the destination’s format,   and   |ß| < 2

 

-N

 

 ,   and  ß·

 

µ

 

 = 0 .  ( 

 

µ

 

 

 

≠

 

 0  only when  
Underflow  occurs.)  This characterization constitutes a weak model of roundoff used widely to predict error bounds 
for software.  The model characterizes roundoff  

 

weakly

 

  because,  for instance,  it cannot confirm that,  in the 
absence of  Over/Underflow or division by zero,  -1 

 

≤

 

  x/

 

√

 

(x

 

2

 

 + y

 

2

 

)  

 

≤

 

 1  despite five rounding errors,  though this is 
true and easy to prove for  IEEE 754,  harder to prove for most other arithmetics,  and can fail on a  CRAY Y-MP.

 

 Number Type Sign

 

 Bit   K+1 bit  

 

Exponent

 

 Nth bit  N-1  bits of   

 

Significand

 

NaNs: ?   binary  111...111 1   binary  1xxx...xxx 

SNaNs: ?   binary  111...111 1   nonzero binary  0xxx...xxx 

Infinities:

 

±

 

  binary  111...111 1 0

Normals:

 

±

 

  k-1 + 2

 

K

 

 1   nonnegative    n - 2

 

N-1

 

   <  2

 

N-1

 

Subnormals:

 

±

 

 0 0   positive  n  <  2

 

N-1

 

 

Zeros:

 

±

 

 0 0 0
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The following table exhibits the span of each floating-point format,  and its precision both as an upper bound   2

 

-N

 

   
upon relative error  ß  and in  “ Significant Decimals.”

 

Span  and  Precision  of  IEEE 754  Floating-Point Formats :

 

Entries in this table come from the following formulas:

Min. Positive Subnormal: 2

 

3 - 2K - N

 

Min. Positive Normal: 2

 

2 - 2K

 

Max. Finite: (1 - 1/2

 

N

 

)   2

 

2K 

 

Sig. Dec., at least: floor( (N-1) Log

 

10

 

(2) )  sig. dec.
at most: ceil( 1 + N Log

 

10

 

(2) )   sig. dec.

The precision is bracketed within a range in order to characterize how accurately conversion between binary and 
decimal has to be implemented to conform to  IEEE 754.  For instance,  “ 6 - 9 ”  Sig. Dec.  for Single  means that,  
in the absence of  OVER/UNDERFLOW,  ...

If a decimal string with at most  6 sig. dec.  is converted to  Single  and then converted back to the 
same number of  sig. dec.,  then the final string should match the original.  Also, ...

If a  Single Precision  floating-point number is converted to a decimal string with at least  9 sig. 
dec.  and then converted back to  Single,  then the final number must match the original.

Most microprocessors that support floating-point on-chip,  and all that serve in prestigious workstations,  support 
just the two  REAL*4  and  REAL*8  floating-point formats.  In some cases the registers are all  8  bytes wide,  and  
REAL*4  operands are converted on the fly to their  REAL*8  equivalents when they are loaded into a register;  in 
such cases,  immediately rounding to  REAL*4  every  REAL*8  result of an operation upon such converted 
operands produces the same result as if the operation had been performed in the  REAL*4  format all the way.

But  Motorola 680x0-based Macintoshes  and  Intel ix86-based PCs  with  ix87-based  ( not  Weitek’s 1167 or 
3167 )  floating-point behave quite differently;  they perform all arithmetic operations in the  Extended  format,  
regardless of the operands’ widths in memory,  and round to whatever precision is called for by the setting of a 
control word.

Only the  Extended  format appears in a  680x0’s  eight floating-point flat registers or an  ix87’s  eight floating-
point stack-registers,  so all numbers loaded from memory in any other format,  floating-point or integer or  BCD,  
are converted on the fly into  Extended  with no change in value.  All arithmetic operations enjoy the  Extended  
range and precision.  Values stored from a register into a narrower memory format get rounded on the fly,  and may 
also incur  OVER/UNDERFLOW.  ( Since the register’s value remains unchanged,  unless popped off the  ix87’s 
stack,   misconstrued ambiguities in manuals or ill-considered  “ optimizations ”  cause some compilers sometimes 
wrongly to reuse that register’s value in place of what was stored from it;  this subtle bug will be re-examined later 
under  " Precisions of Rounding "  below.)

Since the  Extended  format is optional in implementations of  IEEE 754,  most chips do not offer it;  it is available 
only on  Intel’s  x86/x87,  Pentium,  P6  and their clones by  AMD  and  Cyrix,  on  Intel’s 80960 KB,  on  
Motorola’s 68040/60  or earlier  680x0  with   68881/2  coprocessor,  and on  Motorola’s  88110,  all with  64  sig. 

 Format Min. Subnormal Min. Normal Max. Finite

 

2

 

-N Sig. Dec.
Single: 1.4 E-45 1.2 E-38 3.4 E38 5.96 E-8 6 - 9

Double: 4.9 E-324 2.2 E-308 1.8 E308 1.11 E-16 15 - 17
Extended:

 

≤

 

 3.6 E-4951

 

≤

 

 3.4 E-4932

 

≥

 

 1.2 E4932

 

≤

 

 5.42 E-20

 

≥

 

 18 - 21
 ( Quadruple: 6.5 E-4966 3.4 E-4932 1.2 E4932 9.63 E-35    33 - 36  )
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bits and  15  bits of exponent,  but in words that may be  80  or  96  or  128  bits wide when stored in memory.  This 
format is intended mainly to help programmers enhance the integrity of their  Single  and  Double  software,  and to 
attenuate degradation by roundoff in  Double  matrix computations of larger dimensions,  and can easily be used in 
such a way that substituting  Quadruple  for  Extended  need never invalidate its use.  However,  language support 
for  Extended  is hard to find.

 

Multiply-Accumulate

 

,   a  Mixed Blessing:

 

The  IBM Power PC  and  Apple Power Macintosh,  both derived from the  IBM  RS/6000  architecture,  purport to 
conform to  IEEE 754  but too often use a  “ Fused ”  Multiply-Add  instruction in a non-conforming way.  The idea 
behind a  Multiply-Add  ( or  “ MAC ”  for  “ Multiply-Accumulate ” )  instruction is that an expression like  

 

±

 

a*b 

 

±

 

 c  be evaluated in one instruction so implemented that scalar products like
 a

 

1

 

*b

 

1

 

 + a

 

2

 

*b

 

2

 

 + a

 

3

 

*b

 

3

 

 + ... + a

 

L

 

*b

 

L

 

can be evaluated in about  L+3  machine cycles.  Many machines have a  MAC.  Beyond that,  a  

 

Fused

 

   MAC  
evaluates  

 

±

 

a*b 

 

±

 

 c  with just one rounding error at the end.  This is done not so much to roughly halve the rounding 
errors in a scalar product as to facilitate fast and correctly rounded division without much hardware dedicated to it.

To compute  q = x/y  correctly rounded,  it suffices to have hardware approximate the reciprocal  1/y  to several sig. 
bits by a value  t  looked up in a table,  and then improve  t  by iteration thus:

 t   :=   t  +  (1  -  t*y)*t  .
Each such iteration doubles the number of correct bits in  t  at the cost of two  MACs  until  t  is accurate enough to 
produce  q := t*x .  To round  q  correctly,  its remainder  r := x - q*y  must be obtained exactly;  this is what the  
“ Fused ”  in the  Fused MAC  is for.  It also speeds up correctly rounded square root,   decimal <-> binary   
conversion,  and some transcendental functions.  These and other uses make a  Fused MAC  worth putting into a 
computer's instruction set.  ( If only division and square root were at stake we might do better merely to widen the 
multiplier hardware slightly in a way accessible solely to microcode,  as  TI  does in its  SPARC  chips.)

A  Fused MAC  also speeds up a grubby  “Doubled-Double”  approximation to  Quadruple-Precision  arithmetic by 
unevaluated sums of pairs of  Doubles.  Its advantage comes about from a  Fused MAC's  ability to evaluate any 
product  a*b  exactly;  first let  p :=  a*b  rounded off;  then compute  c := a*b - p  exactly in another Fused MAC,  
so that  a*b = p + c  exactly without roundoff.  Fast but grubby  Double-Double  undermines the incentive to 
provide  Quadruple-Precision  correctly rounded in  IEEE 754's  style.

Fused MACs  generate anomalies when used to evaluate  a*b 

 

±

 

 c*d  in two instructions instead of three.  Which of  
a*b  and  c*d  is evaluated and therefore rounded first?  Either way,  important expectations can be thwarted.  For 
example,  multiplying a complex number by its  complex conjugate  should produce a real number,  but it might not 
with a  Fused MAC.  If   

 

√

 

( q

 

2

 

 - p*r )   is real in the absence of roundoff,  then the same is expected for
SQRT( q*q - p*r )

despite roundoff,  but perhaps not with a  Fused MAC.  Therefore  Fused MACs  cannot be used indiscriminately;  
there are a few programs that contain a few assignment statements from which  Fused MACs  must be banned.

By design,  a  Fused MAC  always runs faster than separate multiplication and add,  so compiler writers with one 
eye on benchmarks based solely upon speed leave programmers no way to inhibit  Fused MACs  selectively within 
expressions,  nor to ban them from a selected assignment statement.

Ideally,  some locution like redundant parentheses should be understood to control the use of  Fused MACs  on 
machines that have them.  For instance,  in  Fortran,  ...

(A*B) +  C*D   and   C*D + (A*B)   should always round  A*B  first;
(A*B) + (C*D)     should inhibit the use of a  Fused MAC  here.

Something else is needed for  C ,  whose  Macro Preprocessor  often insinuates hordes of redundant parentheses.  
Whatever expedient is chosen must have no effect upon compilations to machines that lack a  Fused MAC;  a 
separate compiler directive at the beginning of a program should say whether the program is intended solely for 
machines with,  or solely for machines without a  Fused MAC.
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Exceptions

 

 in General.

 

Designers of operating systems tend to incorporate all trap-handling into their handiwork,  thereby burdening 
floating-point exception-handling with unnecessary and intolerable overheads.  Better designs should incorporate 
all floating-point trap-handling into a run-time  math. library,  along with logarithms and cosines,  which the 
operating system merely loads.  To this end,  the operating system has only to provide default handlers  ( in case the 
loaded library neglects trap-handling )  and secure trap re-vectoring functions for libraries that take up that duty and 
later,  at the end of a task,  relinquish it.

To  Disable  an exception's trap is to let the numeric (co)processor respond to every instance of that exception by 
raising its  Flag  and delivering the result specified as its  “ Default ”  in  IEEE 754.  For example,  the default result 
for  3.0/0.0  is  

 

∞

 

  with the same sign as that  0.0 .  The raised flag stays raised until later set down by the program,  
perhaps after it has been sensed.  IEEE 754  allows for the possibility that raised flags be non-null pointers,  but  
most microprocessors keep one or two bits per flag in a  Status  register  whose sensing and clearing fall outside the 
scope of these notes.  The same goes for bits in a  Control  register that  Enable/Disable  traps;  see manuals for your 
chip and for the programming environment  ( e.g. compiler )  that concerns you.

 

  +-------------------------------------------------------------------+
  |  CAUTION:  Do not change  ( enable or disable )  exception traps  |
  |       in a way contrary to what is expected by your programming   |
  |       environment or application program,  lest unpredictable     |
  |       consequences ensue for lack of a handler or its action.     |
  +-------------------------------------------------------------------+

 

Disputes over exceptions are unavoidable.  In fact,  one definition for  “ Exception ”  is ...

“ Event for which any policy chosen in advance will subsequently
give some reasonable person cause to take exception.”

A common mistake is to treat exceptions as errors and punish the presumed perpetrators;  usually punishment falls 
not upon deserving perpetrators but upon whatever interested parties happen to be in attendance later when 
exceptions arise from what was perpetrated,  error or not.

 

  +-------------------------------------------------------------------+
  |    Exceptions that reveal errors are merely messengers.  What     |
  |    turns an exception into an error is bad exception-handling.    |
  +-------------------------------------------------------------------+

 

Attempts to cope decently with all exceptions inevitably run into unresolved dilemmas sooner or later unless the 
computing environment provides what I call  “ Retrospective Diagnostics.”.  These exist in a rudimentary form in  
Sun Microsystems'  operating system on  SPARCs.  The idea is to log  ( in the sense of a ship's log )  every 
suspicious event that is noticed during a computation.  These events are logged not by time of occurrence  ( which 
could fill a disk very soon )  but by site in a program.  A hashing scheme ensures that events repeated at the same 
site will perhaps update but certainly not add entries to the log.  Neither need an exception that occurs while its flag 
is still raised by a previous exception of the same kind add a new entry to the log.  After a program finishes  ( if it 
ever does ),  its user may be notified discreetly if a dangerous flag like  INVALID  is still raised;  then that flag can 
serve as a pointer to its entry in the log.  The log cannot grow intolerably long,  so unusual entries stand out and 
point to whatever software module put them there.  The user of that software can then identify the module in 
question and ask its supplier whether an entry is something to worry about.
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Exception:  

 

INVALID

 

  operation.

 

Signaled by the raising of the  INVALID  flag whenever an operation's operands lie outside its domain,  this 
exception's default,  delivered only because any other real or infinite value would most likely cause worse 
confusion,  is  NaN ,  which means  “ Not a Number.”  IEEE 754  specifies that seven invalid arithmetic operations 
shall deliver a  NaN  unless they are trapped:

real 

 

√

 

(Negative) ,      0*

 

∞

 

 ,      0.0/0.0 ,      

 

∞

 

/

 

∞

 

,
REMAINDER(Anything, 0.0) ,      REMAINDER( 

 

∞

 

, Anything ) ,

 

∞

 

 - 

 

∞

 

  when signs agree   ( but  

 

∞

 

 + 

 

∞

 

 = 

 

∞

 

  when signs agree ).
Conversion from floating-point to other formats can be  INVALID  too,  if their limits are violated,  even if no  
NaN  can be delivered.

NaN  also means  “ Not any Number ” ;  NaN  does not represent the set of all real numbers,  which is an interval 
for which the appropriate representation is provided by a scheme called  “ Interval Arithmetic.”

NaN  must not be confused with  “ Undefined.”  On the contrary,  IEEE 754  defines  NaN  perfectly well even 
though most language standards ignore and many compilers deviate from that definition.  The deviations usually 
afflict relational expressions,  discussed below.   Arithmetic operations upon  NaNs  other than  SNaNs  ( see 
below )  never signal  INVALID,  and always produce  NaN  unless replacing every  NaN  operand by any finite or 
infinite real values would produce the same finite or infinite floating-point result independent of the replacements.

For example,  0*NaN  must be  NaN  because  0*

 

∞

 

  is an  INVALID  operation ( NaN ).  On the other hand,  for   
hypot(x, y)  :=  

 

√

 

(x*x + y*y)   we find that  hypot(

 

∞

 

, y) = +

 

∞

 

  for all real  y ,  finite or not,  and deduce that  
hypot(

 

∞

 

, NaN) = +

 

∞

 

  too;  naive implementations of  hypot  may do differently.

NaNs  were not invented out of whole cloth.  Konrad Zuse  tried similar ideas in the late  1930s;  Seymour Cray  
built  “ Indefinites ”  into the  CDC 6600  in  1963;  then  DEC  put  “ Reserved Operands ”  into their  PDP-11  
and  VAX.  But nobody used them because they trap when touched.  NaNs  do not trap  ( unless they are  
“ Signaling ”  SNaNs,  which exist mainly for political reasons and are rarely used );  NaNs propagate through most 
computations.  Consequently they do get used.

Perhaps  NaNs  are widely misunderstood because they are not needed for mathematical analysis,  whose 
sequencing is entirely logical;  they are needed only for computation,  with temporal sequencing that can be hard to 
revise,  harder to reverse.  NaNs  must conform to mathematically consistent rules that were  deduced,  not invented 
arbitrarily,  in  1977  during the design of the  Intel 8087  that preceded  IEEE 754.  What had been missing from 
computation but is now supplied by  NaNs  is an opportunity  ( not obligation )  for software  ( especially when 
searching )  to follow an unexceptional path  ( no need for exotic control structures )  to a point where an 
exceptional event can be appraised after the event,  when additional evidence may have accrued.  Deferred 
judgments are 

 

usually

 

  better judgments but 

 

not always

 

,  alas.

Whenever a  NaN  is created from  non-NaN  operands,  IEEE 754  demands that the  INVALID OPERATION  
flag be raised,  but does not say whether a flag is a word in memory or a bit in a hardware  Status Word.  That flag 
stays raised until the program lowers it.  ( The  Motorola  680x0  also raises or lowers a transient flag that pertains 
solely to the last floating-point operation executed.)  The  “ Sticky ”  flag mandated by   IEEE 754  allows 
programmers to test it later at a convenient place to detect previous  INVALID  operations and compensate for 
them,  rather than be forced to prevent them.  However,  ...

 

  +-------------------------------------------------------------------+
  |  Microsoft's  C  and  C++  compilers defeat that purpose of the   |
  |  INVALID  flag by using it exclusively to detect floating-point   |
  |  stack overflows,  so programmers cannot use it  ( via library    |
  |  functions  _clear87  and  _status87 )  for their own purposes.   |
  +-------------------------------------------------------------------+

 

       This flagrant violation of  IEEE 754  appears not to weigh on  Microsoft’s  corporate conscience.
       So far as I know,  Borland's  C ,  C++  and  Pascal  compilers do not abuse the  INVALID  flag that way.

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
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While on the subject of miscreant compilers,  we should remark their increasingly common tendency to reorder 
operations that can be executed concurrently by pipelined computers.  

 

C

 

  programmers may declare a variable   

 

volatile

 

   to inhibit certain reorderings.  A programmer's intention is thwarted when an alleged “ optimization ”  
moves a floating-point instruction past a procedure-call intended to deal with a flag in the floating-point status word 
or to write into the control word to alter trapping or rounding.  Bad moves like these have been made even by 
compilers that come supplied with such procedures in their libraries.  ( See    _control87 ,  _clear87  and  _status87  
in compilers for  Intel  processors.)  Operations’ movements would be easier to debug if they were highlighted by 
the compiler in its annotated re-listing of the source-code.  Meanwhile,  so long as compilers mishandle attempts to 
cope with floating-point exceptions,  flags and modes in the ways intended by  IEEE Standard 754,  frustrated 
programmers will abandon such attempts and compiler writers will infer wrongly that unexercised capabilities are 
unexercised for lack of demand.         . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

IEEE 754's  specification for  NaN  endows it with a field of bits into which software can record,  say,  how and/or 
where the  NaN  came into existence.  That information would be extremely helpful for subsequent  “ Retrospective 
Diagnosis ”  of malfunctioning computations,  but no software exists now to employ it.  Customarily that field has 
been copied from an operand  NaN  to the result  NaN  of every arithmetic operation,  or filled with binary  
1000...000  when a new  NaN  was created by an untrapped  INVALID  operation.  For lack of software to exploit 
it,  that custom has been atrophying.

680x0  and  ix87  treat a  NaN  with any nonzero binary  0xxx...xxx  in that field as an  SNaN  ( Signaling NaN )  to 
fulfill a requirement of IEEE 754.  An  SNaN  may be moved  ( copied )  without incident,  but any other arithmetic 
operation upon an  SNaN  is an  INVALID  operation  ( and so is loading one onto the  ix87's  stack )  that must trap 
or else produce a new nonsignaling  NaN.  ( Another way to turn an  SNaN  into a  NaN  is to turn  0xxx...xxx  into  
1xxx...xxx  with a logical  OR.)  Intended for,  among other things,  data missing from statistical collections,  and 
for uninitialized variables,  SNaNs  seem preferable for such purposes to zeros or haphazard traces left in memory 
by a previous program.  However,  no more will be said about  SNaNs  here.

Were there no way to get rid of  NaNs,  they would be as useless as  Indefinites  on  CRAYs;  as soon as one were 
encountered,  computation would be best stopped rather than continued for an indefinite time to an  Indefinite  
conclusion.  That is why some operations upon  NaNs  must deliver  non-NaN  results.  Which operations?

Disagreements about some of them are inevitable,  but that grants no license to resolve the disagreements by 
making arbitrary choices.  Every real  ( not logical )  function that produces the same floating-point result for all 
finite and infinite numerical values of an argument should yield the same result when that argument is  NaN.  
( Recall  hypot  above.)

The exceptions are  C  predicates  “ 

 

x == x

 

 ”  and  “ 

 

x != x

 

 ”,  which are respectively  1  and  0  for every 
infinite or finite number  x  but reverse if  x  is  Not a Number ( NaN );  these provide the only simple unexceptional 
distinction between  NaNs  and numbers in languages that lack a word for  NaN  and a predicate  IsNaN(x).  Over-
optimizing compilers that substitute  1  for   

 

x == x

 

  violate  IEEE 754.

IEEE 754  assigns values to all relational expressions involving  NaN .  In the syntax of  C ,  the predicate  

 

x != y

 

  is  True  but all others,   

 

x < y

 

 ,  

 

x <= y

 

 ,  

 

x == y

 

 ,  

 

x >= y

 

  and  

 

x > y

 

 ,  are  False  whenever  
x  or  y  or both are  NaN,  and then all but  

 

x != y

 

  and  

 

x == y

 

  are  INVALID  operations too and must so 
signal.  Ideally,  expressions  

 

x !< y

 

 ,  

 

x !<= y

 

 ,  

 

x !>= y

 

 ,  

 

x !> y

 

  and  

 

x !>=< y

 

  should be valid and  
quietly  True  if  x  or  y  or both are  NaN ,  but arbiters of taste and fashion for  ANSI Standard C  have refused to 
recognize such expressions.  In any event,  

 

!(x < y)

 

  differs from  

 

x >= y

 

  when  NaN  is involved,  though 
rude compilers  “ optimize ”  the difference away.  Worse,  some compilers mishandle  NaNs  in all relational 
expressions.

Some language standards conflict with  IEEE 754.  For example,  APL  specifies  1.0  for  0.0/0.0 ;  this 
specification is one that  APL's  designers soon regretted.  Sometimes naive compile-time optimizations replace 
expressions  

 

x/x

 

  by  1  ( wrong if  x  is  zero,  

 

∞

 

  or  NaN )  and  

 

x - x

 

  by  0  ( wrong if  x  is  

 

∞

 

  or  NaN )  and  

 

0*x

 

  and  

 

0/x

 

  by  0  ( wrong if ... ),  alas.
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Ideally,  certain other  

 

Real

 

  expressions unmentioned by  IEEE 754  should signal  INVALID  and deliver  NaNs ;  
some examples in  Fortran  syntax are ...

(Negative)**(Noninteger) ,      LOG(Negative) ,      ASIN(Bigger than 1) ,
SIN(

 

∞

 

) ,      ACOSH(Less than 1) ,     ...,      all of them  INVALID .
These expressions do behave that way if implemented well in software that exploits the transcendental functions 
built into the  680x0  and  ix87 ;  here  i387  and successors work better than  8087 and 80287.

A number of real expressions are sometimes implemented as  INVALID  by mistake,  or declared  Undefined  by ill-
considered language standards;  a few examples are  ...

0.0**0.0  =  

 

∞

 

**0.0  =  NaN**0.0  =  1.0 ,   not  NaN ;
COS( 2.0**120 )  =  -0.9258790228548378673038617641... ,  not  NaN.

More examples like these will be offered under  DIVIDE by ZERO  below.

Some familiar functions have yet to be defined for  NaN .  For instance  max{x, y}  should deliver the same result 
as  max{y, x}  but almost no implementations do that when  x  is  NaN .  There are good reasons to define  
max{NaN, 5} := max{5, NaN} := 5  though many would disagree.

Differences of opinion persist about whether certain functions should be  INVALID  or defined by convention at 
internal discontinuities;  a few examples are  ...

1.0**

 

∞

 

  =  (-1.0)**

 

∞

 

  =  1.0  ? ( NaN  is better.)
ATAN2(0.0, 0.0)  =  0.0  or  +

 

π

 

  or  -

 

π

 

  ? ( NaN  is worse.)
ATAN2(+

 

∞

 

, +

 

∞

 

)  =  

 

π

 

/4  ? ( NaN  is worse.)
SIGNUM(0.0)  =  0.0  or  +1.0  or  -1.0  or  NaN ? ( 0.0  is best.)
SGN(0.0)  =  0 . ( Standard BASIC )
SIGN(+0.0)  =  SIGN(-0.0)  =  +1.0 . ( Fortran Standard )
CopySign(1.0, 

 

±

 

0.0)  =  

 

±

 

1.0   respectively. ( IEEE 754/854 )

As time passes,  so do disputes over the value that should be assigned to a function at a discontinuity.  For example,  
a consensus is growing that  x**0 = 1  for every  x ,  including  0 ,  

 

∞

 

  and  NaN .  If some day we agree that  1**x 
= 1  for every  x ,  then  1**NaN = 1  will follow;  but for the time being  NaN  is the preferred alternative for  
1**NaN ,  and for  1**

 

∞

 

  too provided it signals.  It seems unlikely that  0  will ever be preferred to  NaN  for  
sign(NaN).  And yet,  unwise choices continue to be inflicted upon us with the best of intentions,  so the struggle to 
correct them is unending.

Between  1964 and 1970  the  U.S. National Bureau of Standards  changed its definition of  
arccot(x)  from   

 

π

 

/2  -  arctan(x)    to   arctan(1/x) ,  thereby introducing a jump at   x = 0 .  This 
change appears to be a bad idea,  but it is hard to argue with an arm of the  U.S.  government.

Some programmers think invoking language locutions that enable the trap to abort upon  INVALID  operations is 
the safe way to avoid all such disputes;  they are mistaken.  Doing so may abort searches prematurely.  For 
example,  try to find a positive root  x  of an equation like

( TAN(x) - ASIN(x) )/x**4  =  0.0
by using  Newton's  iteration or the  Secant  iteration starting from various first guesses between  0.1  and  0.9 .  In 
general,  a root-finder that does not know the boundary of an equation's domain must be doomed to abort,  if it 
probes a wild guess thrown outside that domain,  unless it can respond to  NaN  by retracting the wild guess back 
toward a previous guess inside the domain.  Such a root-finder is built into current  Hewlett-Packard  calculators 
that solve equations like the one above far more easily than do root-finders available on most computers.
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Exception:  

 

DIVIDE by ZERO

 

.

 

This is a misnomer perpetrated for historical reasons.  A better name for this exception is
“ Infinite  result computed  Exactly  from  Finite operands. ”

An example is  3.0/0.0 ,  for which  IEEE 754  specifies an  Infinity  as the default result.  The sign bit of that result 
is,  as usual for quotients,  the exclusive  OR  of the operands' sign bits.  Since  0.0  can have either sign,  so can  

 

∞

 

;  
in fact,  division by zero is the only algebraic operation that reveals the sign of zero.  ( IEEE 754  recommends a 
non-algebraic function  CopySign  to reveal a sign without ever signaling an exception,  but few compilers offer it,  
alas.)

Ideally,  certain other real expressions should be treated just the way  IEEE 754  treats divisions by zero,  rather 
than all be misclassified as errors or  “ Undefined ”;  some examples in  Fortran syntax are ...

(

 

±

 

0.0)**(NegativeNonInteger)  =  +

 

∞

 

  ,
(

 

±

 

0.0)**(NegativeEvenInteger) =  +

 

∞

 

  ,
(

 

±

 

0.0)**(NegativeOddInteger)  =  

 

±∞

 

  resp.,
ATANH(

 

±

 

1.0)  =  

 

±∞

 

  resp.,
LOG(

 

±

 

0.0)  =  -

 

∞

 

 .

The sign of  

 

∞

 

  may be accidental in some cases;  for instance,  if  TANdeg(x)  delivers the  TAN  of an angle  x  
measured in degrees,  then

TANdeg(90.0 + 180*Integer)
is infinite with a sign that depends upon details of the implementation.  Perhaps that sign might best match the sign 
of the argument,  but no such convention exists yet.   ( For  x  in radians,  accurately implemented  TAN(x)  need 
never be infinite ! )

Compilers can cause accidents by evaluating expressions carelessly.  For example,  when  y  resides in a register,   
evaluating   x-y   as   -(y-x)  reverses the sign of zero if  y = x ;  evaluate it as   -y + x   instead.  Simplifying  x+0  
to  x  misbehaves when  x  is  -0 .  Doing that,  or printing  -0  without its sign,  can obscure the source of a  -

 

∞

 

.

Operations that produce an infinite result from an infinite operand or two must not signal  DIVIDE by ZERO.  
Examples include

 

∞

 

 + 3 ,     

 

∞

 

*

 

∞

 

 ,     EXP(+

 

∞

 

) ,     LOG(+

 

∞

 

) ,    ... .
Neither can

3.0/

 

∞

 

  =  EXP(-

 

∞

 

)  =  0.0 ,         ATAN(

 

±∞

 

)  =  

 

±π

 

/2 ,
and similar examples be regarded as exceptional.  Unfortunately,  naive implementations of complex arithmetic can 
render  

 

∞

 

  dangerous;  for instance,  when  (0 + 3

 

ı

 

)/

 

∞

 

  is turned naively into  (0 + 3

 

ı

 

)(

 

∞

 

 - 

 

ı

 

0)/(

 

∞

 

2

 

 + 0

 

2

 

)  it generates 
a  NaN  instead of the expected  0 ;  MATLAB  suffers from this affliction.

If all goes well,  infinite intermediate results will turn quietly into correct finite final results that way.  If all does not 
go well,  Infinity  will turn into  NaN  and signal  INVALID.  Unlike integer division by zero,  for which no integer 
infinity nor  NaN  has been provided,  floating-point division by zero poses no danger provided subsequent  
INVALID  signals,  if any,  are heeded;  in that case disabling the trap for  DIVIDE by ZERO  is quite safe.

 

......   Digression on  Division-by-Zero   ......

 

Schools teach us to abhor  Division-by-Zero  and to stand in awe of the  Infinite.  Actually,  adjoining  Infinity  to 
the real numbers adds nothing worse than another exception to the familiar cancellation laws

(1/x)x  =  x/x  =  1 ,     x-x  =  0 ,
among which the first is already violated by  x = 0 .  That is a small inconvenience compared with the 
circumlocutions we would resort to if  Infinity  were outlawed.  Two examples to show why are offered below.
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The first example shows how  Infinity  eases the numerical solution of a differential equation that appears to have 
no divisions in it.  The problem is to compute  y(10)  where  y(

 

t

 

)  satisfies the  Ricatti  equation
dy/d

 

t

 

  =  

 

t

 

 + y

 

2

 

   for all   

 

t

 

 

 

≥

 

 0 ,    y(0) = 0 .
Let us pretend not to know that  y(

 

t

 

)  may be expressed in terms of  Bessel  functions  J... ,  whence
y(10)  =  -7.53121 10731 35425 34544 97349 58··· .   Instead a numerical method will be used to solve the 
differential equation approximately and as accurately as desired if enough time is spent on it.

Q(

 

θ

 

, 

 

t

 

, Y)  will stand for an  

 

Updating Formula

 

   that advances from any  estimate  Y 

 

≈

 

 y(

 

t

 

)  to a later estimate  
Q(

 

θ

 

, 

 

t

 

, Y) 

 

≈

 

 y(

 

t

 

+

 

θ

 

) .  Vastly many updating formulas exist;  the simplest that might be applied to solve the given  
Ricatti  equation would be  Euler's  formula:

Q(

 

θ

 

, 

 

t

 

, Y)  :=  Y + 

 

θ

 

·(

 

t

 

 + Y

 

2

 

) .
This  “ First-Order ”  formula converges far too slowly as  

 

stepsize

 

  

 

θ

 

  

 

shrinks;  a faster  “ Second-Order ”  formula,  
of  Runge-Kutta  type,  is  Heun's :

 f  :=  

 

t

 

 + Y

 

2

 

 ;       q  :=  Y + 

 

θ

 

·f  ;
 Q(

 

θ

 

, 

 

t

 

, Y)  :=  Y + ( f  +  

 

t

 

+

 

θ

 

 + q

 

2

 

 )·

 

θ

 

/2 .

Formulas like these are used widely to solve practically all ordinary differential equations.  Every updating formula 
is intended to be iterated with a sequence of  stepsizes   

 

θ

 

  that add up to the distance to be covered;  for instance,  
Q(...)  may be iterated  N  times with constant stepsize  

 

θ

 

 := 10/N  to produce  Y(n·

 

θ

 

) 

 

≈

 

 y(n·

 

θ

 

)  thus:

Y(0) := y(0) ;
for  n = 1 to N  do  Y(n·

 

θ

 

) :=  Q( 

 

θ

 

, (n-1)·

 

θ

 

,  Y((n-1)·

 

θ

 

) ) .

Here the number  N  of  

 

timesteps

 

   is chosen with a view to the desired accuracy since the error  Y(10) - y(10)  
normally approaches  0  as  N  increases to  Infinity.  Were  Euler's  formula used,  the error in its final estimate  
Y(10)  would normally decline as fast as  1/N ;  were  Heun's,  ...  1/N

 

2

 

 .  But the  Ricatti  differential equation is not 
normal;  no matter how big the number  N  of steps,  those formulas’ estimates  Y(10)  turn out to be huge positive 
numbers or overflows instead of  -7.53··· .  Conventional updating formulas do not work here.

The simplest unconventional updating formula  Q  available turns out to be this rational formula:

     Q(

 

θ

 

, 

 

t

 

, Y) :=   Y + (

 

t

 

 + 

 

θ

 

  +  Y

 

2

 

)·

 

θ

 

/( 1 - 

 

θ

 

·Y )             if     |

 

θ

 

·Y| <     ,

:=   ( 1/

 

θ

 

 + (

 

t

 

 + 

 

θ

 

)·

 

θ

 

 )/( 1 - 

 

θ

 

·Y )  - 1/

 

θ

 

        otherwise.

The two algebraically equivalent forms are distinguished to curb rounding errors.  Like  Heun's,  this  Q  is a second-
order formula.  ( It can be compounded into a formula of arbitrarily high order by means that lie beyond the scope 
of these notes.)  Iterating it  N  times with stepsize  

 

θ

 

 := 10/N  yields a final estimate  Y(10)  in error by roughly  
(105/N)

 

2

 

  even if  Division-by-Zero  insinuates an  Infinity  among the iterates  Y(n·

 

θ

 

) .  Disallowing  Infinity  and  
Division-by-Zero  would at least somewhat complicate the estimation of  y(10)  because  y(

 

t

 

)  has to pass through  
Infinity  seven times as  

 

t

 

  increases from  0  to  10 .    ( See the graph on the next page.)

What becomes complicated is not the program so much as the process of developing and verifying a program that 
can dispense with  Infinity.  First,  find a very tiny number  

 

ε

 

   barely small enough that   1 + 10 

 

√

 

ε

 

   rounds off to  
1 .  Next,  modify the foregoing rational formula for  Q   by replacing the divisor   ( 1 - 

 

θ

 

·Y )   in the  “ otherwise ”  
case by  ( ( 1 - 

 

θ

 

·Y )  +  

 

ε

 

 )  .  Do not omit any of these parentheses;  they prevent divisions by zero.  Then perform 
an error-analysis to confirm that iterating this formula produces the same values  Y(n·

 

θ

 

)  as would be produced 
without  

 

ε

 

  except for replacing infinite values  Y  by huge finite values.

Survival without  Infinity   is always possible since  “ Infinity ”  is just a short word for a lengthy explanation.  The 
price paid for survival without  Infinity  is lengthy cogitation to find a not-too-lengthy substitute,  if it exists.

 

1
2---

 

1
2---

 

1
2---
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End of first example.

The second example that illustrates the utility of  Infinity  is part of the fastest program known for computing a few 
eigenvalues of a real symmetric matrix.  This part can be programmed to run well on every commercially 
significant computer that conforms to  IEEE 754,  but not in any single higher-level language that all such 
computers recognize.

 .

Every real symmetric matrix reduces quickly to a tridiagonal form like  T  with the  same eigenvalues

 

τ

 

[1] < 

 

τ

 

[2] < ... < 

 

τ

 

[

 

n

 

] .  The task is to find some of them specified either by an interval in which they lie or by their 
indices.  Typically a few dozen eigenvalues may be sought when the dimension  

 

n

 

  is in the thousands.  For this task 
the fastest and most accurate algorithm known is based upon the properties of two functions   

 

f

 

 = 

 

f 

 

(

 

σ

 

)  and  
k = k(

 

σ

 

)   defined for real variable  

 

σ

 

  thus:

t
108642

15

10

5

0

-5

-10

-15

  Maple V r3  plots the solution  y(t)  of a  Ricatti  equation 

 

Let    T 

 

a

 

1

 

[ ]

 

b

 

2

 

[ ]

 

    

 

b

 

2

 

[ ]

 

a

 

2

 

[ ]

 

b

 

3

 

[ ]

 

   
 

 

b

 

3

 

[ ]

 

a

 

3

 

[ ]

 

b

 

4

 

[ ]

 

  
  

 

b

 

4

 

[ ]

 

a

 

4

 

[ ] …

 

 
   

 

… …

 

b n

 

[ ]

 

    

 

b n

 

[ ]

 

a n

 

[ ]

 

=

 

          No   

 

b 

 

[ 

 

j 

 

] = 0 .

          Let   

 

q 

 

[1] :=  0   and

                  

 

q 

 

[ 

 

j 

 

]  :=  

 

b 

 

[ 

 

j 

 

]

 

2

 

  >  0

                      for   1 <  

 

j

 

   

 

≤ 

 

 

 

n

 

 .
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σ

 

 := 

 

σ

 

 + 0 ;                             |      If  

 

σ

 

 = 0 ,  this ensures it is  +0 ,
       k := 

 

n

 

 ;   

 

f

 

 := 1 ; |
       FOR  

 

j

 

  = 1, 2, 3, ..., 

 

n

 

  IN TURN, |
          DO  {  

 

f

 

 := ( 

 

σ

 

 - [ 

 

j 

 

] ) - 

 

q 

 

[ 

 

j 

 

]/

 

f

 

  ; |      Note:  This loop has no explicit
                      k := k - SignBit(

 

f 

 

)           }  ; |                    tests nor branches.
       k(

 

σ

 

) := k ;   

 

f 

 

(

 

σ

 

) := 

 

f

 

 . |

 

(  The function  SignBit(

 

f 

 

)  :=  0    if   

 

f

 

  > 0  or  if   

 

f

 

  is  +0 or -0 ,
                    :=  1     if   

 

f

 

  < 0  or  if   

 

f

 

  is   -0 ;
   its value at  

 

f

 

  = -0  may not matter but its value at  

 

f

 

  = -

 

∞

 

    does.  It can be computed by using logical right-shifts
   or  by using

( 

 

f

 

  < 0.0 )                           in  C ,  or
0.5 - SIGN(0.5, 

 

f

 

 )             in  Fortran,   or
0.5 - CopySign(0.5, 

 

f

 

 )     from  IEEE 754 .
   However,  the use of shifts or  CopySign  is mandatory on computers that depart from  IEEE 754  by flushing
   UNDERFLOWed  subtractions to  -0.0  instead of  UNDERFLOWing Gradually,   q. v. below.
   Through an unfortunate accident,  the arguments of  CopySign  are reversed on   Apple  computers,  which otherwise
   conform conscientiously to  IEEE 754;  they require    SignBit( 

 

f

 

)  :=  0.5 - CopySign(

 

f

 

 , 0.5)           .)

 

The function  

 

f 

 

(

 

σ

 

)  is a  

 

continued fraction

 

:

 

         

 

   .

The eigenvalues  

 

τ

 

[

 

j

 

]  of  T  are the zeros of  

 

f 

 

(

 

σ

 

) ,  separated by the poles of  

 

f 

 

(

 

σ

 

)  at which it interrupts its 
monotonic increasing behavior to jump from  +

 

∞

 

  to  -

 

∞

 

.  The integer function  k(

 

σ

 

)  counts the eigenvalues on 
either side of  

 

σ

 

  thus:

 

τ

 

[1]  <  

 

τ

 

[2]  <  ...  <  

 

τ

 

[k(

 

σ

 

)]   

 

≤

 

  

 

σ

 

  <   

 

τ

 

[k(

 

σ

 

)+1]  <  ...  <  

 

τ

 

[

 

n

 

] ,      and

 

                   τ

 

[k(

 

σ

 

)]   =  

 

σ

 

      just when      

 

f 

 

(

 

σ

 

) = 0 .

Evidently the eigenvalues  

 

τ

 

[

 

j

 

]  of  T  are the  

 

n

 

  values of  

 

σ

 

  at which  k(

 

σ

 

)  jumps,  and may be located by  Binary 
Search  accelerated by interpolative schemes that take values of  

 

f 

 

(

 

σ

 

)  into account too.  Although rounding errors 
can obscure  

 

f 

 

(

 

σ

 

)  severely,  its monotonicity and the jumps of  k(

 

σ

 

)  are practically unaffected,  so the eigenvalues 
are obtained more accurately this way than any other.  And quickly too.

If  Infinity  were outlawed,  the loop would have to be encumbered by a test and branch to prevent  Division-by-
Zero.  That test cannot overlap the division,  a slow operation,  because of sequential dependencies,  so the test 
would definitely slow down the loop even though zero would be detected extremely rarely.  The test's impact would 
be tolerable if the loop contained only one division,  but that is not what happens.

Because division is so slow,  fast computers pipeline it in such a way that a few divisions can be processed 
concurrently.  To exploit this pipelining,  we search for several eigenvalues simultaneously.  The variable  

 

σ

 

  
becomes a small array of values,  as do  

 

f

 

   and  k ,  and every go-around the loop issues an array of divisions.  In 
this context the tests,  though  “ vectorized ”  too,  degrade speed by  25%  or more,  much more on machines with 
multiple pipelines that can subtract and shift concurrently with division,  regardless of what else a branch would 
entail whenever a zero divisor were detected.  By dispensing with those tests,  this program gains speed and 
simplicity from  Infinity  even if  Division-by-Zero  never happens.

End of second example.

 

a

 

f

 

σ( ) σ

 

a n
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–

 

b n
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2

 

σ
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2

 

σ

 

a n

 

2–

 

[ ]

 

–

 

b n

 

2–

 

[ ]

 

2

 

σ

 

a n

 

3–

 

[ ]

 

–

 

…

 

–

 

b

 

2

 

[ ]

 

2

 

σ

 

a

 

1

 

[ ]

 

–----------------------–
------------------------------------------------------------------------–

---------------------------------------------------------------------------------------------------------------–
-----------------------------------------------------------------------------------------------------------------------------------------------------–=
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How many such examples are there?  Nobody knows how many programs would benefit from  Infinity  because it 
remains unsupported by programming language standards,  and hence by most compilers,  though support in 
hardware has been abundant for over a decade.  To get some idea of the impediment posed by lack of adequate 
support,  try to program each of the foregoing two examples in a way that will compile correctly on every machine 
whose hardware conforms to  IEEE 754.  That ordeal will explain why few programmers experiment with  Infinity,  
whence few programs use it.

In my experience with a few compilers that support  IEEE 754  on  PCs  and  Macintoshes,  Infinity  and  NaNs  
confer their greatest benefits by simplifying test programs,  which already tend to grossly worse complexity than the 
software they are designed to validate.  Consequently my programs enjoy enhanced reliability because of  IEEE 
754  regardless of whether it is in force where they run.

......  End of Digression ......

 

Exception:  

 

OVERFLOW.

 

This happens after an attempt to compute a finite result that would lie beyond the finite range of the floating-point 
format for which it is destined.  The default specified in  IEEE 754  is to approximate that result by an appropriately 
signed  Infinity.  Since it is approximate,  OVERFLOW  is also  INEXACT.  Often that approximation is 
worthless;  it is almost always worthless in matrix computations,  and soon turns into  NaN  or,  worse,  misleading 
numbers.  Consequently  OVERFLOW  is often trapped to abort seemingly futile computation sooner rather than 
later.

Actually,  OVERFLOW  more often implies that a different computational path should be chosen than that no path 
leads to the desired goal.  For example,  if the  Fortran  expression   x / SQRT(x*x + y*y)   encounters  
OVERFLOW  before the  SQRT  can be computed,  it should be replaced by something like

(s*x) / SQRT( (s*x)*(s*x) + (s*y)*(s*y) )
with a suitably chosen tiny positive  Scale-Factor  s .  ( A power of  2  avoids roundoff.)  The cost of computing and 
applying  s  beforehand could be deemed the price paid for insurance against  OVERFLOW.  Is that price too high?

The biggest finite  IEEE 754 Double  is almost  1.8 e308 ,  which is so huge that  OVERFLOW  occurs extremely 
rarely if not yet rarely enough to ignore.  The cost of defensive tests,  branches and scaling to avert  OVERFLOW  
seems too high a price to pay for insurance against an event that hardly ever happens.  A lessened average cost will 
be incurred in most situations by first running without defensive scaling but with a judiciously placed test for  
OVERFLOW  ( and for severe  UNDERFLOW );  in the example above the test should just precede the  SQRT.  
Only when necessary need scaling be instituted.  Thus our treatment of  OVERFLOW  has come down to this 
question:  how best can  OVERFLOW  be detected?

The ideal test for  OVERFLOW  tests its flag;  but that flag cannot be mentioned in most programming languages 
for lack of a name.  Next best are tests for  Infinities  and  NaNs  consequent upon  OVERFLOW,  but prevailing 
programming languages lack names for them;  suitable tests have to be contrived.  For example,  the  C  predicate  

 

(z != z)

 

  is  True  only when  z  is  NaN  and the compiler has not  “ optimized ”  overzealously;

 

(1.0e37 /(1 + fabs(z)) == 0)

 

  is  True  only when z  is infinite;  and  

 

(z-z != 0)

 

  is  True  only 
when  z  is  NaN  or  infinite,  the  INVALID  trap has been disabled,  and optimization is not overzealous.

A third way to detect  OVERFLOW  is to enable its trap and attach a handler to it.  Even if a programming 
language in use provides control structures for this purpose,  this approach is beset by hazards.  The worst is the 
possibility that the handler may be entered inadvertently from unanticipated places.  Another hazard arises from the 
concurrent execution of integer and floating-point operations;  by the time an  OVERFLOW  has been detected,  
data associated with it may have become inaccessible because of changes in pointers and indices.  Therefore this 
approach works only when a copy of the data has been saved to be reprocessed by a different method than the one 
thwarted by  OVERFLOW,  and when the scope of the handler has been properly localized;  note that the handler 
must be detached before and reattached after functions that handle their own  OVERFLOWs  are executed.
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The two costs,  of saving and scoping,  must be paid all the time even though  OVERFLOW  rarely occurs.  For 
these reasons and more,  other approaches to the  OVERFLOW  problem are to be preferred,  but a more extensive 
discussion of them lies beyond the intended scope of this document.

When  OVERFLOW's  trap is enabled,  the  IEEE 754  default  Infinity  is not generated;  instead,  the result's 
exponent is  “ wrapped,”  which means in this case that the delivered result has an exponent too small by an 
amount  2

 

K-1

 

·3  that depends upon its format:
Double-Extended  ...  too small by  24576 ;   2

 

24576

 

 = 1.3 E 7398
Double   ...  too small by   1536 ;     2

 

1536

 

 = 2.4 E 462
Single   ...  too small by     192 ;      2

 

192

 

 = 6.3 E 57

 

(  Though required by  IEEE 754,  the latter two are not performed by   ix87  nor  680x0
    nor some other machines without help from suitable trap-handling software. )

 

In effect,  the delivered result has been divided by a power of  2  so huge as to turn what would have overflowed 
into a relatively small but predictable quantity that a trap-handler can reinterpret.  If there is no trap handler,  
computation will proceed with that smaller quantity or,  in the case of format-converting  FSTore  instructions,  
without storing anything.  The reason for exponent wrapping is explained after  UNDERFLOW.

 

Exception:  

 

UNDERFLOW

 

.

 

This happens after an attempt to approximate a nonzero result that lies closer to zero than the intended floating-
point destination's  “ Normal ”  positive number nearest zero.  2.2 e-308  is that number for IEEE 754  Double.  A 
nonzero  Double  result tinier than that must by default be rounded to a nearest  Subnormal  number,  whose 
magnitude can run  from  2.2 e-308  down to  4.9 e-324  ( but with diminishing precision ),  or else by  0.0  when no 
Subnormal is nearer.  IEEE 754  Extended  and  Single  formats have different  UNDERFLOW  thresholds,  for 
which see the table  “ Span and Precision of  IEEE 754  Floating-Point Formats ”  above.  If that rounding incurs no 
error,  no  UNDERFLOW  is signaled.

Subnormal numbers,  also called  “ Denormalized,”  allow  UNDERFLOW  to occur  Gradually;  this means that 
gaps between adjacent floating-point numbers do not widen suddenly as zero is passed.  That is why  Gradual  
UNDERFLOW  incurs errors no worse in absolute magnitude than rounding errors among  Normal  numbers.  No 
such property is enjoyed by older schemes that,  lacking  Subnormals,  flush  UNDERFLOW  to zero abruptly and 
suffer consequent anomalies more fundamental than afflict  Gradual  UNDERFLOW.

For example,  the  C  predicates  

 

x == y

 

  and  

 

x-y == 0

 

  are identical in the absence of  OVERFLOW  only if  
UNDERFLOW  is  Gradual.  That is so because  

 

x-y

 

  cannot  UNDERFLOW Gradually;  if  

 

x-y

 

  is  Subnormal  
then it is  Exact.  Without  Subnormal  numbers,  x/y  might be  0.95  and yet  x-y  could  UNDERFLOW  abruptly 
to  0.0 ,  as could happen for  x  and  y  tinier than  20  times the tiniest nonzero  Normal  number.  Consequently,  
Gradual Underflow  simplifies a theorem very important for the attenuation of roundoff in numerical computation:

If  p  and  q  are floating-point numbers in the same format,  and if   1/2  

 

≤

 

  p/q  

 

≤

 

  2 ,   
then  p - q  is computable exactly   ( without a rounding  error )   in that format.   But     
if  UNDERFLOW   is not  Gradual,  and if  p - q   UNDERFLOWs,   it is not exact.

More generally,  floating-point error-analysis is simplified by the knowledge,  first,  that  IEEE 754  rounds every 
finite floating-point result to its best approximation by floating-point numbers of the chosen destination's format,  
and secondly that the approximation's absolute uncertainty  ( error bound )  cannot increase as the result diminishes 
in magnitude.  Error-analysis,  and therefore program validation,  is more complicated,  sometimes appallingly more 
so,  on those currently existing machines that do not  UNDERFLOW Gradually.
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Though afflicted by fewer anomalies,  Gradual UNDERFLOW  is not free of them.  For instance,  it is possible to 
have   

 

x/y == 0.95

 

   coexist with   

 

(x*z)/(y*z) == 0.5

 

   because  

 

x*z

 

  and probably also  

 

y*z

 

  
UNDERFLOWed  to  Subnormal  numbers;  without  Subnormals  the last quotient turns into either an ephemeral  
0.0  or a persistent  NaN  ( INVALID 0/0 ).   Thus,  UNDERFLOW  cannot be ignored entirely whether  Gradual  
or not.

UNDERFLOWs  are uncommon.  Even if flushed to zero they rarely matter;  if handled  Gradually  they cause 
harm extremely rarely.  That harmful remnant has to be treated much as  OVERFLOWs  are,  with testing and 
scaling,  or trapping,  etc.  However,  the most common treatment is to ignore  UNDERFLOW  and then to blame 
whatever harm is caused by doing so upon poor taste in someone else's choice of initial data.

UNDERFLOWs  resemble ants;  where there is one there are quite likely many more,  and they tend to come one 
after another.  That tendency has no direct effect upon the  i387-486-Pentium  nor  M68881/2,  but it can severely 
retard computation on other implementations of  IEEE 754  that have to trap to software to  UNDERFLOW  
Gradually  for lack of hardware to do it.  They take extra time to  Denormalize  after  UNDERFLOW  and/or,  
worse,  to prenormalize  Subnormals  before multiplication or division.  ( Gradual UNDERFLOW  requires no 
prenormalization before addition or subtraction of numbers with the same format,  but computers usually do it 
anyway if they have to trap  Subnormals.)   Worse still is the threat of traps,  whether they occur or not,  to 
machines like the  DEC Alpha  that cannot enable traps without hampering pipelining and/or concurrency;  such 
machines are slowed also by  Gradual UNDERFLOWs  that do not occur!

Why should we care about such benighted machines?  They pose dilemmas for developers of applications software 
designed to be portable  (after recompilation)  to those machines as well as ours.  To avoid sometimes severe 
performance degradation by  Gradual UNDERFLOW,  developers will sometimes resort to simple-minded 
alternatives.  The simplest violates  IEEE 754  by flushing every  UNDERFLOW  to  0.0 ,  and computers are being 
sold that flush by default.  ( DEC Alpha  is a recent example;  it is advertised as conforming to  IEEE 754  without 
mention of how slowly it runs with traps enabled for full conformity.)  Applications designed with flushing in mind 
may,  when run on  ix87s  and  Macs,  have to enable the  UNDERFLOW  trap and provide a handler that flushes to 
zero,  thereby running slower to get generally worse results!  ( This is what  MathCAD  does on  PCs  and on  
Macintoshes.)  Few applications are designed with flushing in mind nowadays;  since some of these might 
malfunction if  UNDERFLOW  were made  Gradual  instead,  disabling the  ix87  UNDERFLOW  trap to speed 
them up is not always a good idea.

A format’s usable exponent range is widened by almost its precision  N  to fully  

 

±

 

2

 

K

 

  as a by-product of  Gradual 
Underflow;  were this its sole benefit,  its value to formats wider than  Single  could not justify its price.  Compared 
with  Flush-to-Zero,  Gradual Underflow  taxes performance unless designers expend time and ingenuity or else 
hardware.  Designers incapable of one of those expenditures but willing to cut a corner off  IEEE 754  exacerbate 
market fragmentation,  which costs the rest of us cumulatively far more than whatever they saved.

 

......   Digression on  Gradual Underflow   ......

 

To put things in perspective,  here is an example of a kind that,  when it appears in benchmarks,  scares many 
people into choosing  Flush-to-Zero  rather than  Gradual UNDERFLOW.  To simulate the diffusion of heat 
through a conducting plate with edges held at fixed temperatures,  a rectangular mesh is drawn on the plate and 
temperatures are computed only at intersections.  The finer the mesh,  the more accurate is the simulation.  Time is 
discretized too;  at each timestep,  temperature at every interior point is replaced by a positively weighted average 
of that point's temperature and those of nearest neighbors.   Simulation is more accurate for smaller timesteps,  
which entail larger numbers of timesteps and tinier weights on neighbors;  typically these weights are smaller than  
1/8 ,  and timesteps number in the thousands.
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When edge temperatures are mostly fixed at  0 ,  and when interior temperatures are mostly initialized to  0 ,  then at 
every timestep those nonzero temperatures next to zeros get multiplied by tiny weights as they diffuse to their 
neighbors.  With fine meshes,  large numbers of timesteps can pass before nonzero temperatures have diffused 
almost everywhere,  and then tiny weights can get raised to large powers,  so  UNDERFLOWs  are numerous.  If  
UNDERFLOW  is  Gradual,  denormalization will produce numerous subnormal numbers;  they slow computation 
badly on a computer designed to handle subnormals slowly because the designer thought they would be rare.  
Flushing  UNDERFLOW  to zero does not slow computation on such a machine;  zeros created that way may speed 
it up.

When this simulation figures in benchmarks that test computers' speeds,  the temptation to turn slow  Gradual 
UNDERFLOW  Off  and fast  Flush-to-Zero  On  is more than a marketing manager can resist.  Compiler vendors 
succumb to the same temptation;  they make  Flush-to-Zero  their default.  Such practices bring to mind calamitous 
explosions that afflicted high-pressure steam boilers  a century or so ago because attendants tied down noisy over-
pressure relief valves the better to sleep undisturbed.

 

 +---------------------------------------------------------------------+
 |  Vast numbers of  UNDERFLOWs  usually signify that something about  |
 |  a program or its data is strange if not wrong;  this signal should |
 |  not be ignored,  much less squelched by flushing  UNDERFLOW  to  0.|
 +---------------------------------------------------------------------+

 

What is strange about the foregoing simulation is that exactly zero temperatures occur rarely in  Nature,  mainly at 
the boundary between colder ice and warmer water.  Initially increasing all temperatures by some negligible 
amount,  say  10

 

-30

 

 ,  would not alter their physical significance but it would eliminate practically all  
UNDERFLOWs  and so render their treatment,  Gradual  or  Flush-to-Zero,  irrelevant.

To use such atypical zero data in a benchmark is justified only if it is intended to expose how long some hardware 
takes to handle  UNDERFLOW  and subnormal numbers.  Unlike many other floating-point engines,  the  i387  and 
its successors are slowed very little by subnormal numbers;  we should thank  Intel's  engineers for that and enjoy it 
rather than resort to an inferior scheme which also runs slower on the  i387-etc.

......  End of Digression  ......

When  UNDERFLOW's  trap is enabled,  the  IEEE 754  default  Gradual Underflow  does not occur;  the result's 
exponent is  “ wrapped ”  instead,  which means in this case that the delivered result has an exponent too big by an 
amount  2

 

K-1

 

·3  that depends upon its format:
Double-Extended  ...  too big by  24576 ;   2

 

24576

 

 = 1.3 E 7398
Double   ...  too big by   1536 ;     2

 

1536

 

 = 2.4 E 462
Single   ...  too big by     192 ;      2

 

192

 

 = 6.3 E 57

 

(  Though required by  IEEE 754,  the latter two wraps are not performed by   ix87  nor  680x0
    nor some other machines without help from suitable trap-handling software. )

 

In effect,  the delivered result has been multiplied by a power of  2  so huge as to turn what would have 
underflowed into a relatively big but predictable quantity that a trap-handler can reinterpret.  If there is no trap 
handler,  computation will proceed with that bigger quantity or,  in the case of format-converting  FSTore  
instructions,  without storing anything.

Exponent wrapping provides the fastest and most accurate way to compute extended products and quotients like
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when  N  and  M  are huge and when the numerator and/or denominator are likely to encounter premature  OVER/
UNDERFLOW  even though the final value of  

 

Q

 

   would be unexceptional if it could be computed.  This situation 
arises in certain otherwise attractive algorithms for calculating eigensystems,  or  Hypergeometric  series,  for 
example.

What  

 

Q

 

   requires is an  OVER/UNDERFLOW  trap-handler that counts  OVERFLOWs  and  UNDERFLOWs  
but leaves wrapped exponents unchanged during each otherwise unaltered loop that computes separately the 
numerator's and denominator's product of sums.  The final quotient of products will have the correct significant bits 
but an exponent which,  if wrong,  can be corrected by taking counts into account.  This is by far the most 
satisfactory way to compute  

 

Q

 

 ,  but for lack of suitable trap-handlers it is hardly ever exploited though it was 
implemented on machines as diverse as the  IBM 7094  and  /360  ( by me in  Toronto  in the  1960s;  see  Sterbenz 
(1974) ),  a  Burroughs B5500  ( by  Michael Green   at  Stanford  in  1966 ),  and a  DEC VAX ( in  1981  by  
David Barnett,  then an undergraduate at  Berkeley ).  Every compiler seems to require its own implementation.

 

Exception:  

 

INEXACT

 

.

 

This is signaled whenever the ideal result of an arithmetic operation would not fit into its intended destination,  so 
the result had to be altered by rounding it off to fit.  The  INEXACT  trap is disabled and its flag ignored by almost 
all floating-point software.  Its flag can be used to improve the accuracy of extremely delicate approximate 
computations by  “ Exact Preconditioning,”  a scheme too arcane to be explained here;  for an example see  pp. 107-
110  of  Hewlett-Packard’s HP-15C 

 

Advanced Functions Handbook

 

 (1982) #00015-90011.  Another subtle use for 
the  INEXACT  flag is to indicate whether an equation  f(x) = 0  is satisfied exactly  

 

without

 

  roundoff  ( in which 
case  x  is exactly right )  or  

 

despite

 

  roundoff  ( in which not–so–rare case  x  may be arbitrarily erroneous ).

A few programs use  REAL  variables for integer arithmetic.  M680x0s  and  ix87s  can handle integers up to  65  
bits wide including sign,  and convert all narrower integers to this format on the fly.  In consequence,  arithmetic 
with wide integers may go faster in floating-point than in integer registers at most  32  bits wide.  But then when an 
integer result gets too wide to fit exactly in floating-point it will be rounded off.  If this rounding went unnoticed it 
could lead to final results that were all unaccountably multiples of,  say,  16  for lack of their last few bits.  Instead,  
the  INEXACT  exception serves in lieu of an  INTEGER OVERFLOW  signal;  it can be trapped or flagged.

Well implemented  Binary-Decimal  conversion software signals  INEXACT  just when it is deserved,  just as 
rational operations and square root do.  However,  an undeserved  INEXACT  signal from certain transcendental 
functions like  X**Y  when an exact result is delivered accidentally can be very difficult to prevent.

 

Directions

 

  of  Rounding:

 

The default,  reset by turning power off-on,  rounds every arithmetic operation to the nearest value allowed by the 
assigned precision of rounding.  When that nearest value is ambiguous  ( because the exact result would be one bit 
wider than the precision calls for )  the rounded result is the  “ even ”  one with its last bit zero.  Note that rounding 
to the nearest  16-,  32-  or  64-bit  integer  ( float-to-int  store )  in this way takes both  1.5  and  2.5  to  2 ,  so the 
various  INT,  IFIX,  ...  conversions to integer supported by diverse languages may require something else.  One of 
my  Fortran  compilers makes the following distinctions among roundings to nearest integers:

IRINT,  RINT, DRINT    round to nearest even,  as  ix87 FIST  does.
NINT, ANINT, DNINT     round half-integers away from  0 .
INT, AINT, DINT        truncate to integers towards  0 .

Rounding towards  0  causes subsequent arithmetic operations to be truncated,  rather than rounded,  to the nearest 
value in the direction of  0.0 .  In this mode,  store-to-int provides  INT  etc.  This mode also resembles the way 
many old machines now long gone used to round.
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The  “ Directed ”  roundings can be used to implement  Interval Arithmetic,  which is a scheme that approximate 
every variable not by one value of unknown reliability but by two that are guaranteed to straddle the ideal value.  
This scheme is not so popular in the  U.S.A.  as it is in parts of  Europe,  where some people distrust computers.

Control-Word  control of rounding modes allows software modules to be re-run in different rounding modes 
without recompilation.  This cannot be done with some other computers,  notably  DEC Alpha,  that can set two bits 
in every instruction to control rounding direction at compile-time;  that is a mistake.  It is worsened by the 
designers' decision to take rounding direction from a  Control-Word  when the two bits are set to what would 
otherwise have been one of the directed roundings;  had Alpha  obtained only the round-to-nearest mode from the  
Control-Word,  their mistake could have been transformed into an advantageous feature.

All these rounding modes round to a value drawn from the set of values representable either with the precision of 
the destination or selected by rounding precision control to be described below.  The sets of representable values 
were spelled out in tables above.  The direction of rounding can also affect  OVER/UNDERFLOW ;  a positive 
quantity that would  OVERFLOW  to  +

 

∞

 

  in the default mode will turn into the format's biggest finite floating-
point number when rounded towards  -

 

∞

 

.  And the expression  “ X - X ”  delivers  +0.0  for every finite  X  in all 
rounding modes except for rounding directed towards  -

 

∞

 

,  for which  -0.0  is delivered instead.  These details are 
designed to make  Interval Arithmetic  work better.

Ideally,  software that performs  Binary-Decimal  conversion  ( both ways )  should respect the requested direction 
of rounding.  David Gay  of  AT&T Bell Labs  has released algorithms that do so into the public domain  ( Netlib );  
to use less accurate methods now is a blunder.

 

Precisions

 

  of  Rounding:

 

IEEE 754  obliges only machines that compute in the  Extended  ( 

 

long double

 

   or  REAL*10 )  format to let 
programmers control the precision of rounding from a  Control-Word.  This lets  ix87  or  M680x0   emulate the 
roundoff characteristics of other machines that conform to  IEEE 754  but support only  Single  ( C's  

 

float

 

,  or  
REAL*4 )  and  Double ( C's  

 

double

 

,  or  REAL*8 ),  not  Extended.  Software developed and checked out on 
one of those machines can be recompiled for a  680x0  or  ix87  and,  if anomalies excite concerns about differences 
in roundoff,  the software can be run very nearly as if on its original host without sacrificing speed on the  680x0  
or  ix87.  Conversely,  software developed on these machines but without explicit mention of  Extended  can be 
rerun in a way that portends what it will do on machines that lack  Extended.  Precision Control  rounds to  24  sig. 
bits to emulate  Single,  to  53  sig. bits to emulate  Double,  leaving zeros in the rest of the  64  sig. bits of the  
Extended  format.

The emulation is imperfect.  Transcendental functions are unlikely to match.  Although  Decimal -> Binary   
conversion must round to whatever precision is set by the  Control-Word,   Binary -> Decimal  should ideally be 
unaffected since its precision is determined solely by the destination’s format,  but ideals are not always attained.  
Some  OVER/UNDERFLOWs  that would occur on those other machines need not occur on the  ix87 ;  IEEE 754  
allows this,  perhaps unwisely,  to relieve hardware implementors of details formerly thought unimportant.

Few compilers expose the  Control-Word  to programmers.  Worse,  some compilers have revived a nasty bug that 
emerged when  Double-Precision  first appeared among  Fortran  compilers;  it goes like this:  Consider

S  =  X
T  =  ( S - Y )/( . . . )

in a  Fortran  program where  S  is  SINGLE PRECISION,  and  X  and  Y  are  DOUBLE  or  EXTENDED 
PRECISION  variables or expressions computed in registers.  Compilers that supplant  S  by  X  in the second 
statement save the time required to reload  S  from memory but spoil  T .  Though  S  and  X  differ by merely a 
rounding error,  the difference matters.
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The Baleful Influence of Benchmarks:

 

Hardware and compilers are increasingly being rated entirely according to their performance in benchmarks that 
measure only speed.  That is a mistake committed because speed is so much easier to measure than other qualities 
like reliability and convenience.  Sacrificing them in order to run faster will compel us to run longer.  By 
disregarding worthwhile qualities other than speed,  current benchmarks penalize conscientious adherence to 
standards like  IEEE 754;  worse,  attempts to take those qualities into account are thwarted by political constraints 
imposed upon programs that might otherwise qualify as benchmarks.

For example,  a benchmark should compile and run on every commercially significant computer system.  This rules 
out our programs for solving the differential equation and the eigenvalue problem described above under the  
Digression on Division-by-Zero.  To qualify as benchmarks,  programs must prevent exceptional events that might 
stop or badly slow some computers even if such prevention retards performance on computers that,  by conforming 
conscientiously to  IEEE 754,  would not stop.

The  Digression on Gradual Underflow  offered an example of a benchmark that lent credibility to a misguided 
preference for  Flush-to-Zero,  in so far as it runs faster than  Gradual Underflow  on some computers,  by 
disregarding accuracy.  If  Gradual Underflow's  superior accuracy has no physical significance there,  neither has 
the benchmark's data.

Accuracy poses tricky questions for benchmarks.  One hazard is the ...

 

Stopped Clock Paradox:

 

  Why is a mechanical clock more accurate stopped than running?         
A running clock is almost never exactly right,  whereas a stopped clock is exactly right twice a day.  
( 

 

But  WHEN  is it right?  Alas,  that was not the question

 

.)

The computational version of this paradox is a benchmark that penalizes superior computers,  that produce merely 
excellent approximate answers,  by making them seem less accurate than an inferior computer that gets exactly the 
right answer for the benchmark's problem accidentally.  Other hazards exist too;  some will be illustrated by the 
next example.

Quadratic equations like
p x

 

2

 

  -  2 q x  +  r  =  0
arise often enough to justify tendering a program that solves it to serve as a benchmark.  When the equation's roots  
x1  and  x2  are known in advance both to be real,  the simplest such program is the procedure  

 

Qdrtc

 

  exhibited 
on the next page.

In the absence of premature  Over/Underflow,  

 

Qdrtc

 

   computes  x1  and  x2  at least about as accurately as they 
are determined by data  { p, q, r }  uncorrelatedly uncertain in their last digits stored.  It should be tested first on 
trivial data to confirm that it has not been corrupted by a misprint nor by an ostensible correction like   
“  x1 := (q+s)/p ;   x2 := (q-s)/p  ”   copied naively from some elementary programming text.  Here are some trivial 
data:

{ p = Any nonzero,  q = r = 0 };            x1 = x2 = 0 .

{ p = 2.0 ,   q = 5.0 ,   r = 12.0 };          x1 = 2.0 ,   x2 = 3.0 .

{ p = 2.0 E-37,   q = 1.0 ,   r = 2.0 };     x1 

 

≈

 

 1.0 ,   x2 

 

≈

 

 1.0 E 37 .

Swapping  p  with  q  swaps  { x1, x2 }  with  { 1/x2, 1/x1 } .

{

 

µ

 

*p, 

 

µ

 

*q, 

 

µ

 

*r}  yields  {x1, x2}  independently of nonzero  

 

µ

 

 .
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A Proposed Accuracy Benchmark

 

         Procedure  Qtest( Qdrtc ):
           Parameter  n = 15 ;   ...  

 

In time,  n  may grow.

 

           Real Array  r[1:n] ;  ...  

 

Choose precision here.

 

           r[1] := 2^12 + 2.0 ;      ... 

 

for   24 sig. bits,

 

           r[2] := 2^12 + 2.25 ;         ...    

 

and 6 hex.

 

           r[3] := 16^3 + 1 + 1.0/16^2 ; ...   

 

6  hex. IBM.

 

           r[4] := 2^24 + 2.0 ;          ...   

 

48 bits CRAY -

 

           r[5] := 2^24 + 2.25 ;         ...     

 

rounded;

 

           r[6] := 2^24 + 3.0 ;          ...   

 

48 bits chopped.

 

           r[7] := 94906267.0 ;          ...   

 

53  sig. bits.

 

           r[8] := 94906267 + 0.25 ;     ...   

 

53  sig. bits.

 

           r[9] := 2^28 - 5.5 ;          ...   

 

PowerPC, i860.

 

           r[10] := 2^28 - 4.5 ;         ...   

 

PowerPC, i860.

 

           r[11] := 2^28 + 2.0 ;         ...   

 

56  sig. bits,

 

           r[12] := 2^28 + 2.25 ;        ...   

 

  and 14 hex.

 

           r[13] := 16^7 + 1 + 1.0/16^6 ; ...  

 

14 hex. IBM.

 

           r[14] := 2^32 + 2.0 ;         ...   

 

64  sig. bits.

 

           r[15] := 2^32 + 2.25 ;        ...   

 

64  sig. bits.

 

           e := +Infinity ;
           for  j := 1  to  n  do {
             t := Qtrial( Qdrtc, r[j] ) ;   ...  

 

Could be  NaN.

 

             If  ((t < e) or not(t = t))  then  e := t } ;
           Display( " Worst accuracy is ", e, " sig. bits" ) ;
            Return ;  End  Qtest.

         Real Function  Log2(x) := Log(Abs(x))/Log(2.0) ;

         Real Function  Qtrial( Qdrtc, r ):
           p := r-2 ;  q := r-1 ;  Qtrial := 0 ;
           Display( Nameof(Qdrtc), " for  r = ", r ) ;
           If  p 

 

≤

 

 0  then {
             Display(" Qtrial(..., r)  expects  r > 2 .") }
           elseif  not((r-q)=1 & (q-p)=1)  then {
             Display("  r  is too big for  Qtrial(..., r).") }
           else {
             Call  Qdrtc( p, q, r,  x1, x2 ) ;
             e1 := -Log2( x1 - 1 ) ;        ...  

 

Could be  NaN .

 

             e2 := -Log2( (x2 - 1) - 2/p ) ;... 

 

Heed parentheses!

 

             Qtrial := Min{ e1, e2 } ; ...  

 

Min{NaN,NaN} is NaN .

 

             Display(" gets ", e1, " and ", e2, " sig. bits")
             If  not( x1 

 

≥

 

 1.0 )  then
               Display(" and root ", x1, " isn't at least  1.")};
           Display(  ) ;  Return( Qtrial ) ;  End  Qtrial.

        Procedure  Qdrtc( p, q, r,  x1, x2 ):
           Real  p, q, r, s, x1, x2 ;     ...  

 

Choose precision here.

 

           s := 

 

√

 

( q*q - p*r ) ;          ...  

 

NaN  if  

 

√

 

( < 0 ).

 

           S := q + CopySign(s, q) ;      ...  

 

Fortran’s  SIGN  O.K.

 

           If S = 0 then { x1 := x2 := r/p }  else
              { x1 := r/S ;  x2 := S/p }; ...  

 

NaNs  if not real,

 

           Return;  End  Qdrtc.           ...  

 

or else it may abort.
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The proposed benchmark program  

 

Qtest

 

  runs  

 

Qdrtc

 

  on a battery of data sets each chosen to expose the worst 
rounding error of which a computing system is capable.  The system's precision appears next to its data  r  as an 
annotation in  

 

Qtest

 

.  Each datum  r  is expressed in a way that avoids damaging roundoff at the precision under 
test and,  since  r  is a large positive number but not too large,  the other two coefficients  p := r-2  and  q := r-1  are 
also computed uncontaminated by roundoff in function  

 

Qtrial

 

.  Therefore  

 

Qtrial

 

  knows the correct roots    
x1 = 1  and  x2 = 1 + 2/p  exactly and can compare them with the roots  x1  and  x2  computed by  

 

Qdrtc

 

  to 
determine its accuracy.

More important than accuracy are mathematical relationships implied by correlations among data.  In this problem,  
inequalities   q

 

2

 

 

 

≥

 

 p r   and    0 < p < q < r  and   p-q 

 

≥

 

 q-r   can all be confirmed directly by tests,  and imply that 
both roots must be real and no less than  1.0 .  When  

 

Qdrtc

 

  fails to honor those implications,  

 

Qtrial

 

  notices.

What should we expect would-be benchmark  

 

Qtest

 

  to find when it runs in  8-byte  floating-point on some 
current computer systems?  Tabulated under  Precision  is how many significant bits are stored in the named 
system's  8-byte  format;  different systems trade off precision and range differently,  and this should be taken into 
account before one system is condemned for getting less accuracy than another.  Next comes the worst  Accuracy  

 

Qtest

 

  encountered;  evidently as many as half the sig. bits stored in computed roots can be inaccurate.  Worse,  
the smaller computed root can fall short of  1.0  in the sig. bit whose position is tabulated last.  These findings cry 
out for explanation;  how can some computer systems get worse accuracy than others that store the same number of 
sig. bits?
    

The explanation is easy for the  IBM /370 ;  its hexadecimal floating-point loses two or three sig. bits compared 
with binary floating-point of the same width.  No matter;  these formerly ubiquitous machines are disappearing.

The best accuracy,  32 sig. bits,  is achieved on inexpensive  ix86/87-based PCs  and  680x0-based Macintoshes  
whose hardware permits every algebraic (sub)expression,  though no named variable wider than  8  bytes appears in 
it,  to be evaluated in  Extended  registers  10 bytes  wide,  and by software systems  ( compilers )  that neither 
disable nor eschew that capability regardless of whether they support named  10-byte variables.  These computer 
systems also accept,  without premature over/underflows,  a wider range of input data  {

 

µ

 

*p, 

 

µ

 

*q, 

 

µ

 

*r}  than do the 
others,  though this robustness cannot be explored by  

 

Qtest

 

  without crashing some systems.

 

Expected Results from  Qtest( Qdrtc )  on  8-byte Floating-Point

 

Computer 
Hardware

Software    
System

Precision     
sig. bits

Accuracy     
sig. bits

How  far  <  1   
sig. bit

 

ix86/87-  &        
Pentium- based  

PCs

Fortran,  C,      
Turbo-Basic,  
Turbo-Pascal 53 32 33.3

680x0 - based        
Sun III,            

Macintosh
Fortran,  C

DEC VAX D Fortran,  C 56 28 29.3
ix86/87    &    
Macintosh

MATLAB 3.5, 
MathCAD 2.5

53 26.5 27.8SGI MIPS,  
SPARC,          

DEC VAX G

Fortran,                  
C ,                   

MATLAB 4.x
IBM /370 Fortran,  C 56 26.4 26.4

CRAY Y-MP Fortran,  C 48 24 25.3
Intel 860,        
PowerPC,       

IBM RS/6000
Fortran,  C 53

NaN  from

 

√

 

( < 0 )

NaN  from

 

√

 

( < 0 )
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MATLAB  and  MathCAD  on  ix86/87  and  680x0  platforms store almost every subexpression into internal  8-
byte  scratch variables,  thereby wasting time as well as the  10-byte  registers' superior accuracy and range;  that is 
why their accuracy is no better on machines with  10-byte  registers than on machines without.

The final mystery is the  NaN  (Not a Number)  obtained from the  i860,  IBM RS/6000  and  PowerPC  instead of 
roots.  The  NaN  arises from the square root of a negative number  q*q - p*r ,  although tests performed upon input 
data would find that   QQ := q*q  and  PR := p*r   do satisfy  QQ 

 

≥

 

 PR .  This paradox arises out of the  Fused 
Multiply-Accumulate  instruction possessed by those machines.  ( The  i860’s  MAC  is only partially fused.)  The 
paradox can be suppressed by inhibiting that instruction at compile time,  but doing so generally would slow those 
machines;  therefore,  their compiler was designed  to render that inhibition inconvenient and unusual.  If  

 

Qtest

 

  
were run on these machines in their unusual mode,  would that constitute a fair test?

Fairness raises troublesome issues for a benchmark.  What if custodians of a computer family allege unfairness?  
Letting them tweak a benchmark slightly to render it  “ fair ”  lets them overcompensate in devious ways very 
difficult to expose.  For example,  replace  

 

Qdrtc

 

  by an ostensibly algebraically equivalent procedure  …

 

       Procedure  PPCQdrtc( p, q, r,  x1, x2 ):
         Real  o, p, q, r, s, x1, x2 ;   ...  

 

Choose precision here.

 

         S := p*r ;  o := p*r - S ;      ...  

 

Suits  PowerPC  well.

 

         s := 

 

√

 

((q*q - S) - o) ;         ...  

 

NaN  if  

 

√

 

( < 0 ).

 

         S := q + CopySign(s, q) ;       ...  

 

Fortran’s  SIGN  O.K.

 

         If S = 0 then { x1 := x2 := r/p }  else
            { x1 := r/S ;  x2 := S/p };  ...  

 

NaNs  if not real,

 

         Return;  End  PPCQdrtc.         ...  

 

or else may abort.

Aside from running slightly slower,  

 

Qtest

 

(

 

PPCQdrtc

 

)  differs from  

 

Qtest

 

( 

 

Qdrtc

 

 )  only by getting  53  sig. 
bits instead of  NaN  on the  PowerPC  and  RS/6000,  which then win the prize for accuracy.  Which of  

 

Qtest

 

( 

 

Qdrtc

 

 )  and  

 

Qtest

 

( 

 

PPCQdrtc

 

 )  assesses accuracy more fairly?

In general,  insisting that a benchmark exist in only one version,  and that it run successfully  ( no NaNs ! )  on 
every machine,  may cripple speed or accuracy or robustness on computers with advantageous features others lack.  
Permitting variety may invalidate comparison.  As it is now,  

 

Qtest

 

( 

 

Qdrtc

 

 )  tells us something I think worth 
knowing regardless of whether it is admitted to the ranks of industry-approved benchmarks.

 

Exceptions in General

 

,  Reconsidered:

 

The prevailing attitude towards exceptions is changing.  Previously they were declared to be errors that would abort 
an offending program.  Abortion could be prevented only by defensive programming that tested for every error 
condition in advance.  Punitive policies and paranoid practices persist,  but now in competition with other options 
afforded programmers by  IEEE 754  though handicapped by their near invisibility in programming languages.  
How might exception-handling be practiced if other options were supported properly?  The  Standard Apple 
Numerical Environment ( SANE ),  documented in the  Apple Numerics Manual (1988),  is one approach.  What 
follows is another I have implemented partially.

First,  exception-classes must have names,  preferably the same names in all languages.  Venerable languages that 
limit names' lengths still live,  so the names have to be short;  here are suggestions for five-letter names for floating-
point exceptions plus a few others:



 

Work in Progress:                       Lecture Notes on the Status of  IEEE 754                    May 31, 1996 2:44 pm

Page 24

 Name Description of Exception

 

 -------------------- -----------------------------------------------------------------------------------------------

 

 INXCT INeXaCT  due to floating-point roundoff or over/underflow
 UNFLO floating-point UNderFLOw,  Gradual  or not
 DIVBZ Infinity  exactly from finite operand(s);  e.g.,  1/0
 OVFLO floating-point OVerFLOw

 INTXR INTeger arithmetic eXception or eRror like overflow or  1/0

 INVLD INVaLiD operation,  most likely one from the list that follows
    ZOVRZ 0.0 / 0.0                  :
    IOVRI Infinity / Infinity     :    These four are the rational
    IMINI Infinity - Infinity     :      Removable Singularities.
    ZTMSI 0.0 * Infinity           :
    FODOM Function computed Outside its DOMain;  e.g.,  

 

√

 

(-3)
    DTSTR Attempted access outside a DaTa STRucture or array
    NLPTR De-referencing a  NiL  PoinTeR
    UNDTA UNinitialized DaTum or vAriable,  or  SNaN

These names are intended to identify such flags as may exist to signal exceptions to a program,  and such modes as 
a programmer may choose to predetermine the program's response to exceptions.

More important than the spellings are the length and structure of the list.  It must be parsimonious;  if allowed to 
grow indefinitely it can accrete names unknown to most of us or with overlapping meanings,  and then our 
programs would mishandle their exceptions.  The list should be comprehensive enough to leave no kind of 
exception uncovered by a name;  the list above may be incomplete.  It does include names for exceptions
practically undetectable on some systems;  examples are  UNFLO  on a  CRAY Y-MP,  IOVRI  on machines that 
lack  Infinity,  DTSTR  on systems that do not check array-bounds,  and  INXCT  on non-conformers to  IEEE 754.  
The list is structured less to reflect how or where the exception is detected  ( as  C's  nearly useless  ERRNO  does )  
and more to reflect what may be done to remedy it.  For example,  expressions  0/0,  

 

∞

 

/

 

∞

 

,  

 

∞

 

-

 

∞

 

  and  

 

∞

 

*0  are 
distinguished because,  to produce anything of more use than a  NaN,  they require different versions of  l'Hospital's
rule for the removal of removable singularities.

Though different named exceptions require different remedies,  the list of remedies worth considering for any 
particular named exception class fits into a short menu for a preprogrammed exception-handling library.  Selection 
from an adequate menu will serve applications programmers far better than coding up each his own handler.  Here 
are five-letter names for the few exception-handling modes thought worth putting into a menu:

PAUSE,  ABORT,  PREMT,  IEEED,  PSUBS,  KOUNT,  ABSNT

To select mode  PAUSE  for handling,  say,  OVFLO  is to request that each floating-point overflow suspend 
computation and invoke a debugger to display the values of variables defined at that moment,  after which the 
onlooker may either abort computation or else resume it as if the overflow had been handled in the previously 
prevailing mode.  PAUSE  is a debugging mode applicable to every other exception-handling mode.

ABORT  is a mode now common for severe exceptions;  it empties buffers,  closes files and returns to the operating 
system.  PREMT  pre-empts the handling of a designated exception for whatever language ambience had been over-
ridden by a previously invoked mode.  For example,  to  PREMT  ZOVRZ  in  APL  is to re-establish the definition  
0/0 = 1 ;  to  PREMT  ZOVRZ  in  ADA  is to put  0.0/0.0  back among  Arithmetic Errors  that drop execution into 
a program module's error handler,  if one has been provided,  or else  ABORTs.  PREMT  is indispensable when a 
language sports control structures like

 ON ERROR  { do something else or go somewhere else } ;
and

ABSENT ERROR  { try something }  ELSE  { do something else } ;
but lacks locutions to distinguish among different kinds of exceptions.
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( Control  structures like those palliate exceptions rather than handle them all well.  The main deficiency is a lack of recognizable 
names for modes defined implicitly by  { do something else }  clauses;  a name known to an independently compiled 
subprocedure of the  {try something}  clause could tell it which exceptions of its own to hide and which to expose.  Other 
deficiencies exacerbate the cost of scoping:  Which variables in the  {try something}  clause are to be saved,  and in what state,  
for the  {do something else}  clause to use after the  ERROR ?   A satisfactory discussion lies beyond the scope of these notes.)

 

IEEED  names the  Default Mode  in which every exception mentioned by  IEEE 754/854  must be handled,  by 
default,  unless a programmer asks explicitly for another mode.  ( This requirement is violated by a few computer 
systems that run much faster in some other mode,  and by some compilers whose authors fear the consequences of 
unleashing  Infinity  and  NaN  upon a programmer who has not said he wants them.)  To every named floating-
point exception except  INXCT  and   UNFLO,  IEEED  has assigned what I call a  “ presubstitution ”;  that is a 
precomputed number whose magnitude and possibly its sign will be substituted for the result of an exceptional 
floating-point operation.  For  DIVBZ  and  OVFLO,  IEEED  presubstitutes  

 

±∞

 

  with an appropriate sign.  For the  
INVLDs  ZOVRZ, IOVRI, IMINI, ZTMSI  and  FODOM,  IEEED  presubstitutes  NaN.  ( For  INXCT,  IEEED  
does not presubstitute but yields an approximation in accordance with current modes of rounding direction and 
precision;  IEEED  for  UNFLO  is  Gradual.)  For example,  with  DIVBZ  in  IEEED  mode,   LOG(0.0) = -

 

∞

 

  is 
not trapped as an  ERROR  though it does raise the  DIVBZ  flag.

PSUBS  is a generalization of  IEEED  that presubstitutes any number,  computed by the program in advance,  for 
any floating-point exception.  For example,  PSUBS( 0.0, 

 

±

 

 )  for  UNFLO  replaces  Gradual Underflow  by  Flush-
to-Zero  with preservation of sign;  invoke  PSUBS( 0.0 )  to flush  UNFLO  to  +0.0 .  Similarly,  PSUBS( y )  for  
ZOVRZ  replaces a subsequent  SIN(x*y)/x  by  y  whenever  x = 0.0 .  Thus programmers can remove some 
removable singularities with  PSUBS  without explicit tests nor branches.  It is no panacea.  Those tests and 
branches may have to be introduced implicitly  ( by the compiler ? )  for vectorized machines like  CRAYs.  Neither 
can  PSUBS( COS(x) )  for  ZOVRZ  shield  ( SIN(x) - SIN(y) )/(x-y)  from damage caused by roundoff when  x  is 
too near  y ;   use   PSUBS(1.0)   and   COS((x+y)/2)*

 

(

 

 SIN((x-y)/2) / ((x-y)/2) 

 

)

 

    respectively instead.

Here is a nontrivial application of presubstitution.  It simplifies an economical way to compute the continued fraction  

 

f

 

(x) ,  introduced above during the  Digression on Division by Zero,  and simultaneously its derivative  

 

f

 

'

 

(x) .  They 
might be computed for many different values  x  if they serve in  Newton’s  iteration  x —>  x - 

 

f

 

(x)/

 

f

 

'

 

(x)  for solving  

 

f

 

(x) = 0 .  While  

 

f

 

(x)  is being computed from the recurrence   f

 

n

 

 := (x - a

 

n

 

) - q

 

n

 

/f

 

n-1

 

 ,  starting with  f

 

1

 

 := x-a

 

1

 

  and 
ending with  

 

f

 

(x) := f

 

n

 

 ,  another recurrence computes its derivative.  Because multiplication can go rather faster than 
division,  two divisions have been replaced by one division and two multiplications in the recurrences,  but at the cost 
of introducing auxiliary variables  r

 

j

 

 = 1/f

 

j

 

 ,  h

 

j

 

 = q

 

j

 

·r

 

j-1

 

  ( so  f

 

j

 

 = (x-a

 

j

 

) - h

 

j

 

  and  f

 

'

 

j-1

 

 = -f

 

j-1

 

·h

 

j

 

'/h

 

j

 

 ) .  Recall that every  
q

 

j

 

 > 0 ;  this implies that every  f

 

'

 

j

 

 

 

≥

 

 1  and,  absent over/underflow,  that no  h

 

j

 

 = 0  unless  f

 

j-1

 

  and  f

 

'

 

j-1

 

  are both 
infinite.   Overflow  or  0·

 

∞

 

  could interfere with the computation of  f

 

'

 

j

 

  if nothing else were done about them.  What 
we shall do about them is precompute an array of quotients  P

 

j

 

 := q

 

j+1

 

/q

 

j

 

  and presubstitute.

 

Sovflo := PSUBS( 1.0E150, 

 

±

 

 )  for  OVFLO ;   ...

 

   Save prior presubstitution for  Overflow.

 

Sztmsi := PSUBS( 0.0 )  for  ZTMSI ;   ... 

 

 

 

Save prior presubstitution for  0·

 

∞

 

 .

 

f := x-a

 

1

 

 ;   f

 

'

 

 := 1 ;

for  j = 2, 3, ..., n  in turn,
     do { r := 1/f ;

h := q

 

j

 

·r ;

f := (x-a

 

j

 

) - h  ;

Sf

 

'

 

 := f

 

'

 

 ;

f

 

'

 

 := (h·r)·f

 

'

 

 + 1 ;   ...

 

  Presubstitution replaces  0·

 

∞

 

  here.

 

PSUBS( P

 

j

 

·Sf

 

'

 

)  for  ZTMSI  } enddo ;

 

f

 

'

 

(x) := f

 

'

 

 ;      

 

f

 

(x) := f ;

PSUBS(Sovflo) for OVFLO ;  PSUBS(Sztmsi) for ZTMSI ;  ...

 

 

 

 Restore prior presubstitutions.

 

This program has no floating-point test-and-branch.  Instead,  the first  PSUBS  replaces an overflowed  f

 

'

 

   by a huge 
but finite  

 

±

 

1.0E150,  and then the  PSUBS  inside the do-loop accomplishes the same effect as if it and the previous 
assignment were replaced by ...

 

if  ( f

 

'

 

 is finite )  then   f

 

'

 

 := ( h·r)·f

 

'

 

 + 1 ;
 else   f

 

'

 

 := P

 

j-1

 

·SSf

 

'

 

 + 1  endif

SSf

 

'

 

 := Sf

 

'

 

 .
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Mode  KOUNT(k)  exploits exponent-wrapping to count  OVER/UNDERFLOWs  in an integer variable  k  as if it 
were a leftward extension of the floating-point exponent field.  We have seen one application above;  it was the fast 
and accurate evaluation of expressions like  Q  described under  UNDERFLOW.  If implemented fast enough,  this 
mode also speeds up the comparison of complex magnitudes   |x + 

 

ı

 

y| = 

 

√

 

(x

 

2

 

 + y

 

2

 

)   via the relationship

|x + 

 

ı

 

y|  <  |u + 

 

ı

 

v|     if and only if     (x-u)·(x+u)  <  (v-y)·(v+y) .

 

( To attenuate roundoff first swap so that  |x| 

 

≥

 

 |y|  and  |u| 

 

≥

 

 |v|.)

 

OVFLO  and  UNFLO  flags do not get raised in  KOUNT  mode.
. . . . . . . . . . . . . . . . . . . . .

For nearly three decades,  no other floating-point exception-handling modes than  PAUSE, ABORT, PREMT, 
IEEED, PSUBS  and  KOUNT  have been found both worthwhile and compatible with concurrent execution of 
floating-point and integer operations on very fast processors.  If not due to a lack of imagination,  this state of 
affairs justifies efforts to promulgate a modest library of exception-handling modes rather than leave every 
programmer to his own devices.  A few more floating-point modes require support on systems that conform to  
IEEE 754 :

        Directed Roundings ( DIRND ):     ToNEAR,  ToZERO, ToPOSV, ToNEGV
        Rounding Precisions ( RNDPR ):    ToSNGL,  ToDBLE, ToEXTD

Rounding Precision  modes are pertinent only to hardware that evaluates every floating-point expression in the  
Double-Extended  ( REAL*10+ )  format.  However,  they do raise a question of general interest:

What if a program attempts to invoke a nonexistent or unsupported mode?

An error-message protesting the use of an undefined name,  or else the response to  C's  

 

#ifdef

 

  command for 
conditional compilation,  would answer this question at compile-time.  At run-time the answer to an environmental 
inquiry concerning an unsupported mode's status might best be  ABSNT,  defined herewith to be the name of no 
mode.  ABSNT  is the mode of  INXCT,  UNFLO  and  DIRND  on a  CRAY Y-MP,  for example.

Flags and modes are variables of type  Flag  and  Mode  that may be sensed,  saved and set by library programs.  I 
prefer programs that are syntactically functions but actually swap values.  For example,  my function 
Fflag( OVFLO, NewFlag )  returns the current value of the  OVFLO  flag and resets that flag to  NewFlag.  
Fflag(OVFLO)  merely returns the value without changing it.  A flag's value resembles a pointer,  in that it may be 
either  Null  or some  non-Null  value returned by  Fflag,  and also resembles a  Boolean  value insofar as  Null  
behaves like  False,  and every other flag like  True.  Consequently a typical pattern of use for  Fflag  goes like this:

 

 

  SavOV :=  Fflag( OVFLO, Null ) ;   ...  

 

saves & clears  OVFLO  flag.
 

 

  X :=  expression that may  Overflow  prematurely ;

 

 

 

  If  Fflag( OVFLO, SavOV )  then    ...  

 

having restored  OVFLO  flag

 

               X :=  alternative expression ;

 

At the end,  premature  OVFLOs  have been hidden,  and the  OVFLO  flag is raised just if it was raised before or if 
the alternative expression  X  overflowed.

Similarly,  Fmode( DIRND, NewDir )  swaps the  DIRND  mode for saving,  sensing and restoring.  For example,  
if function  g( z )  is contrived either to return a monotonic increasing function of its argument  z  and of its 
rounding errors  ( this can be tricky ),  or else to take proper account of  Fmode( DIRND, …),  then a few 
statements like 

 

      SavDir :=  Fmode( DIRND, ToNEGV ) ;   

 

...   Rounding towards  -

 

∞

 

      xlo    :=  g( zlo ) ;                 

 

...     yields upper bound.

 

      Dummy  :=  Fmode( DIRND, ToPOSV ) ;   

 

...   Rounding towards  +

 

∞

 

      xhi    :=  g( zhi ) ;                 

 

...     yields lower bound.

 

      Dummy  :=  Fmode( DIRND, SavDir ) ;   

 

...   Restores prior rounding.
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guarantee that   xlo 

 

≤

 

 g(zlo) 

 

≤

 

  exact g(z)  

 

≤

 

 g(zhi) 

 

≤

 

 xhi   despite roundoff.  This is admittedly a cumbersome way 
to obtain what  Interval Arithmetic  would deliver easily if it received the support it deserves from popular 
programming languages.

Here follows a simple example of flags and modes working together.  The  Euclidean Length  ( Norm )  of a  
Double-Precision  vector  x   is    Vnrm( x[1:L] )  :=   

 

√

 

( x[1]

 

2

 

 + x[2]

 

2

 

 + x[3]

 

2

 

 + ... + x[L]

 

2

 

 ) .   This simple formula 
arises in so many matrix computations that every matrix package like  LAPACK  and  MATLAB  contains a 
subprogram devoted to it.  It poses two technical challenges;  how may we ...
  1.  avoid an incorrect result caused by premature  Overflow  of some  x[j]

 

2

 

  or  Underflow  of too many of
        them though the true value of  Vnrm  is unexceptional?

  2.  avoid excessive accumulation of roundoff when  L  is huge?  ( For example,  consider the case when every
         x[j]  for  j > 1  is barely small enough that  x[j]

 

2

 

 + x[1]

 

2

 

  rounds to  x[1]

 

2

 

 ;  then  Vnrm  can come out too
           small by about  L/4  units in its last place if the additions are performed left-to-right.  L  usually stays
            below a few hundred,  but often runs into several thousands.)

These challenges are worth overcoming only if doing so does not slow computation of  Vnrm  too much compared 
with the obvious subprogram:

 

             Double  Vnrm( Double x[1:L] ) ;
               s := 0.0 ;
               For  j := 1 to L  do   s :=  s + x[j]*x[j]  ;
               Return{ Vnrm := 

 

√

 

s }.

 

On a  680x0-based  Macintosh  or  PC  with  ix87,  our problem has an easy solution provided the compiler 
supports  IEEE 754 Double-Extended  ( REAL*10+):  begin the obvious subprogram with the declaration

 

               Double-Extended  s := 0 .

 

Then the sum-of-squares  s  will accumulate in a register with  3  more bits of exponent range and  11  more bits of 
precision then  Vnrm  and  x[...].  Thus,  with no loss of speed,  Over/Underflow  is precluded unless  Vnrm  must 
lie out of range,  and roundoff is kept below  1 + L/8192 units  in its last place.  These are typical benefits of an  
Extended  format.  Moreover,  this subprogram honors   Directed Roundings  and the  KOUNT  mode of  Over/
Underflow.

In the absence of  Extended,  a craftier subprogram is needed to fiddle with flags and modes during the computation 
of  Vnrm ,  and particularly to ensure that the last expression computed and  Returned  also raises and merges only 
those flags that deserve alteration,  or else  KOUNTs.  If the program to do so presented on the next page appears 
too baroque,  compare it with slower,  less accurate and more elaborate subprograms that now infest portable 
libraries like  LAPACK.

The  SANE  library provides two procedures  ProcEntry  and  ProcExit  to save and restore all flags and modes,  
and merge old flags with new,  simultaneously.  However  SANE  makes no provision for exceptions other than 
those mentioned by  IEEE 754  nor for modes other than  ABORT  and  IEEED  nor for computer systems that do 
not conform to  IEEE 754.  My scheme lets a programmer utter,  for example,

 

  If ( Fmode(INXCT, IEEED) = ABSNT ) then  Dummy := Fflag(INXCT, True)
                                     else  Dummy := Fflag(INXCT, Null);

 

after which his program repeatedly preconditions data until a rounding error renders further repetition unnecessary,  
on machines that detect  INXCT,  but preconditions just once otherwise.
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  Double  Vnrm( Double x[1:L] ) ;
    OVm := Fmode(OVFLO, IEEED) ;  UNm := Fmode(UNFLO, IEEED) ;
    OVf := Fflag(OVFLO, Null) ;   UNf := Fflag(UNFLO, Null) ;  ...  

 

swaps!

 

    b := 1 ;  d := 1 ;  ...  

 

these will be scale factors,  if needed.

 

    s := 0 ;  c := 0 ;  ...  c

 

  will compensate for additive roundoff.

 

    For  j := 1 to L  Do {
       r := x[j]*x[j] ;
       t := s ;  s := (r+c) + t ;  ...  

 

Compensate for this roundoff:

 

       c := ((t-s) + r) + c } ;    ...  

 

Heed parentheses!

 

    OVf := Fflag(OVFLO, OVf) ;

    If ( Fflag(UNFLO, Null) & (s < 0.5

 

969

 

) )             ...  

 

Constants

 

                  Then {  b := 2.0

 

996

 

 ;  d := 0.5

 

996

 

 }    ...  

 

suit only

 

       Else If ( OVf )                                   ...  

 

IEEE 754

 

                  Then {  b := 0.5

 

754

 

 ;  d := 2.0

 

754

 

 } ;  ...  

 

 Double.

 

    If ( b 

 

≠

 

 1 )  Then {  ...  

 

Redo accumulation with scaled  x[j]'s.

 

       s := 0 ;  c := 0 ;

       For  j := 1 to L  Do {
          t := b*x[j] ;  r := t*t ;
          t := s :  s := (r+c) + t ;
          c := ((t-s) +r) + c } } ;
    UNf := Fflag(UNFLO, UNf) ;
    OVm := Fmode(OVFLO, OVm) ;  UNm := Fmode(UNFLO, UNm) ;
    Return{ Vnrm := d*

 

√

 

s } .

 

====================================================================================================

 

I need three more library programs.  Two of them are swapping functions.  Fpsubs( ExceptionName,  NewValue )  
supports presubstitution.  Second,  Kountf( k, Initk )  designates  k  to be the integer variable into which  OVER/
UNDERFLOWs  will be counted,  reads out the current value of  k ,  and then resets it to the value of  Initk .  Those 
two may be embedded in  Fmode.  The third program inserts or updates entries in the log of  Retrospective 
Diagnostics  or reads it out,  but that is a story for another day.

. . . . . . . . . . . . . . . . . . . . . . . . . . .

The foregoing schemes to handle floating-point exceptions can be called elaborate,  complicated,  cumbersome,  ...;  
add your own pejoratives.  I shall rejoice if somebody shows me a simpler way to accomplish all of what my 
proposal tries to do.  Meanwhile,  onlookers who need not know about all these complications can stay in their 
blissful state of ignorance because IEEE 754  was designed with their state of mind in mind.

IEEE 754  establishes  

 

partially nested computational domains

 

.  What this means is best illustrated by examples:

Rare individuals who intend to perform floating-point computations exactly,  without roundoff,  must pay close 
attention to the  INXCT  exception;  the rest of us ignore it because we are willing to tolerate roundoff.  Someone 
whose concept of  Real Number  excludes  Infinity  must watch out for  DIVBZ ;   those of us who ignore it accept  

 

±∞

 

  as the uttermost among the  Reals.  Quantities so small as  1.0E-307  lie beneath our notice most the time,  so 
we ignore  UNFLO ;  and  IEEE 754  specifies that  Underflow  be  Gradual  to reduce the risk of harm from what 
we disdain.  A few people can ignore  OVFLO  in a situation where any sufficiently big number will do;  this belief 
could be tested by recomputing with  OVFLO  in a few modes like  PSUBS( 1.0E32, 

 

±

 

 ),  PSUBS( 1.0E64, 

 

±

 

 ),  
PSUBS( 1.0E128, 

 

±

 

 ),  ...  instead of  IEEED = PSUBS( Infinity, 

 

±

 

 ) .  No one can ignore  INVLD  unless someone 
else has used  Fflag( INVLD, ... )  or  Fmode( INVLD, PSUBS )  or  IsNaN(...)  to cope with that exception.

In short,  most of us can ignore most exceptions most the time provided someone else has thought about them.  
That  “ someone else ”  needs our support lest we all be obliged to face some ugly problems unaided.
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Ruminations

 

  on  Programming Languages:

 

Mediaeval thinkers held to a superstition that  Thought  was impossible without  Language;  that is how  “dumb”  
came to change its meaning from  “speechless”  to  “stupid.”  With the advent of computers,  “Thought”  and  
“Language”  have changed their meanings,  and now there is some truth to the old superstition:  In so far as 
programming languages constrain utterance,  they also constrain what a programmer may contemplate productively 
unless disrupted by bitter experience or liberated by vigorous imagination.  Considering how relatively few 
programmers grapple daily with floating-point arithmetic,  and how few of those have time to contemplate 
unsupported features of  IEEE 754,  it comes as no surprise that computer linguists receive hardly any requests to 
support those features.

Most computer linguists find floating-point arithmetic too disruptive.  Their predilection for  “ referential 
transparency,”  which means that a well-formed expression's meaning should not change from one context to 
another,  runs counter to an imperative of approximate calculation:

The precisions with which expressions are evaluated must depend upon context because the accuracy 
required of an approximation depends more upon the uses to which it will be put and upon the 
resources available to compute it than upon alleged precisions of constituent subexpressions.

Consequently,  rules promulgated in 1963,  inherited from  Fortran IV,  for evaluating mixed-precision expressions 
are not optimal and never were;  those rules turn pernicious when applied to more than two precisions,  especially 
when precisions can vary at run-time.  See  C. Farnum's  1988  paper for better ways to handle mixed precisions.

These pernicious rules are deeply imbedded in  

 

C++

 

  insofar as its operator overloading explicitly disallows the 
expected type of a result to influence the choice of an operator now selected by consulting only the types of its 
operands.  This restriction precludes certain troublesome ambiguities,  but it also precludes fully effective  

 

C++

 

 
implementations of intensely desirable but context-dependent programming ambiances like ...

Mixed Precisions  arbitrarily  Variable  at run-time.
Interval Arithmetic  arbitrarily mixable with  Non-Interval Arithmetic.
Ostensibly Coordinate-Free  expressions concerning  Objects  in  Linear Spaces.

Mixed-precision expressions should ideally be evaluated at the widest of the precision of operands in the expression 
not segregated by explicit coercions.  Non-interval expressions must be evaluated as if they were intervals when 
mixed with  Interval Arithmetic  expressions.   In ostensibly coordinate-free  Linear Algebra,  expressions must be 
evaluated in some coordinate system determinable from context if it is determined at all.  These context-dependent 
languages become burdensomely awkward to use when the programmer is obliged to utter explicitly those 
coercions and conversions that a compiler could almost always determine quickly from context.

Computer linguists also dislike functions with side-effects and functions affected by implicit variables not explicit 
in argument lists.  But floating-point operations can raise  IEEE 754  exception flags as side-effects,  and operations 
are affected implicitly by exception-handling and rounding modes eligible at run-time according to  IEEE 754.  
Alas,  that standard omitted to bind flags and modes to locutions in standard programming languages,  and this 
omission grants computer linguists a licence for inaction.

The side-effects and implicit variables in  IEEE 754  admit tractable disciplines;  they are not whimsical.  Moreover 
other computational domains exist where context-dependence,  side-effects and implicit variables are rampant.  
Examples of side-effects and implicit variables abound in operating systems,  input/output and file-handling,  real-
time control systems,  and synchronization of parallel computing.

In short,  the features of  IEEE 754  that computer linguists disdain raise issues that cannot be evaded by avoiding 
floating-point;  they have to be addressed elsewhere anyway,  and in forms more obnoxious than in  IEEE 754.  
Programmers ambitious enough to try to apply those features but left to their own devices cannot transport their 
meager successes to different computer systems;  their situation could worsen only if palliatives were incorporated 
into language standards,  and there is some risk of that.  Thoughtful action is needed now to avert an intensification 
of market fragmentation that retards development of robust numerical software and diminishes the market and its 
rewards for all of us.
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