
Spring 2009

Prof. Hyesoon Kim

• Branches are very frequent

– Approx. 20% of all instructions

• Can not wait until we know where it goes

– Long pipelines– Long pipelines

• Branch outcome known after B cycles

• No scheduling past the branch until outcome known

– Superscalars (e.g., 4-way)

• Branch every cycle or so!

• One cycle of work, then bubbles for ~B cycles?

• -Eliminate branches

– Predication (more on later)

• Delayed branch slot

– SPARC, MIPS – SPARC, MIPS

• Or predict? ☺

• Predict Branches

– And predict them well!

• Fetch, decode, etc. on the predicted path

– Option 1: No execute until branch resovled– Option 1: No execute until branch resovled

– Option 2: Execute anyway (speculation)

• Recover from mispredictions

– Restart fetch from correct path

• Need to know two things

– Whether the branch is taken or not (direction)

– The target address if it is taken (target)

• Direct jumps, Function calls: unconditional

branchesbranches

– Direction known (always taken), target easy to

compute

• Conditional Branches (typically PC-relative)

– Direction difficult to predict, target easy to compute

• Indirect jumps, function returns

– Direction known (always taken), target difficult

• Needed for conditional branches
– Most branches are of this type

• Many, many kinds of predictors for this
– Static: fixed rule, or compiler annotation

(e.g. br.bwh (branch whether hint. IA-64))(e.g. br.bwh (branch whether hint. IA-64))

– Dynamic: hardware prediction

• Dynamic prediction usually history-based
– Example: predict direction is the same

as the last time this branch was executed

• Always predict NT

– easy to implement

– 30-40% accuracy … not so good

• Always predict T• Always predict T

– 60-70% accuracy

• BTFNT

– loops usually have a few iterations, so this is

like always predicting that the loop is taken

– don’t know target until decode

K bits of branch

instruction address

Index

Branch history

table of 2^K entries,

1 bit per entry

Use this entry to

predict this branch:

0: predict not taken

1: predict taken

When branch direction resolved,

go back into the table and

update entry: 0 if not taken, 1 if taken

0xDC08: for(i=0; i < 100000; i++)

{

0xDC44: if((i % 100) == 0)

tick();

0xDC50: if((i & 1) == 1)

T

0xDC50: if((i & 1) == 1)

odd();

}

N

• Example: short loop (8 iterations)

– Taken 7 times, then not taken once

– Not-taken mispredicted (was taken previously)

Act: TTTTTTTNTTTTTTNTTTTTTTNT…

Pred: XTTTTTTTNTTTTTTNTTTTTTTN

Corr: Xooooo MMooooooMMooooooMMCorr: Xooooo MMooooooMMooooooMM

Misprediction rate: 2/8 = 25%

• Execute the same loop again

– First always mispredicted (previous outcome was not taken)

– Then 6 predicted correctly

– Then last one mispredicted again

• Each fluke/anomaly in a stable pattern results in two

mispredicts per loop

DC08: TTTTTTTTTTT ... TTTTTTTTTTNTTTTTTTTT …

100,000 iterations

How often is branch outcome != previous outcome? TN

NT

How often is branch outcome != previous outcome?

2 / 100,000

TN

DC44: TTTTT ... TNTTTTT … TNTTTTT …

2 / 100

DC50: TNTNTNTNTNTNTNTNTNTNTNTNTNTNT …

2 / 2

99.998%

Prediction

Rate
98.0%

0.0%0.0%

2 3

Predict NT

Predict T

Transistion on T outcome

Transistion on NT outcome

0 1

FSM for Last-time

Prediction

0 1

FSM for 2bC

(2-bit Counter)

N

1

����

T

0

����

0

T

1

T T T T
…

T

1 1 1 1

���� ���� ���� ���� ���� ����

T

1

����

T
…1

����

Initial Training/Warm-up1bC:

2

T

����

3

T

3

T

���� ����

…3

N

����

0

T

1

T

2

T

3

T

3

T
… 3

T

���� ���� ���� ���� ��������

2bC:

Only 1 Mispredict per N branches now!

DC08: 99.999% DC44: 99.0%

0 1

2 3

• 98% � 99%

– Who cares?

– Actually, it’s 2% misprediction rate � 1%

– That’s a halving of the number of mispredictions

• So what?

– If a pipeline can fetch 5 instructions at a cycle and the branch – If a pipeline can fetch 5 instructions at a cycle and the branch
resolution time is 20 cycles

– To Fetch 500 instructions

– 100 accuracy : 100 cycles

– 98 accuracy:
• 100 (correctly fetch) + 20 (misprediction)*10 = 300 cycles

– 99 accuracy
• 100 (correctly fetch) + 20 misprediction *5 = 200 cycles

1 1 ….. 1 0

BHR

00 …. 00

00 …. 01

00 …. 10
2 3

Pattern History Table

previous one

BHR

(branch

history

register)

11 …. 11

0 1
index

Yeh&patt’92

• Branches are correlated
Branch X: if (cond1)

….

Branch Y: if (cond 2)

….

…….1 0

BHR

PHT

….

Branch Z : if (cond 1 and cond 2)

Branch

X

Branch

Y

Branch

Z

1 0 0

1 1 1

0 1 0

0 0 0

…….1 1

…….01

…….00

1 1 ….. 1 0

2bc

2bc

2bcBHR

index
XOR

2bc

0x809000

PC

McFarling’93

Predictor size: 2^(history length)*2bit

2bc

2bc

2bc0x809000PC

2^n entry table

2bc

n-bit

Typical Local predictor

When does it work?

-Loop,

-Repeat pattern
a++;

if (!(a%3)) { ..}

• Branch Target Buffer

– IF stage: need to know fetch addr every cycle

– Need target address one cycle after fetching a branch

– For some branches (e.g., indirect) target known

only after EX stage, which is way too lateonly after EX stage, which is way too late

– Even easily-computed branch targets need to wait until

instruction decoded and direction predicted in ID stage

(still at least one cycle too late)

– So, we have a fast predictor for the target

that only needs the address of the branch instruction

• BTB indexed by instruction address (or fetch

address)

• We don’t even know if it is a branch!

• If address matches a BTB entry, it is

predicted to be a branch

Direction prediction

can be factored out

into separate table
predicted to be a branch

• BTB entry tells whether it is taken (direction) and

where it goes if taken

• BTB takes only the instruction address, so

while we fetch one instruction in the IF stage

we are predicting where to fetch the next one

from

main()

{

foo();

printf(“still hungry\n”);

foo(){

…..

return

}
BTB

printf(“still hungry\n”);

….

foo();

printf(“full\n”);

}

}
BTB

??

• Function returns are frequent, yet

– Address is difficult to compute

(have to wait until EX stage done to know it)

– Address difficult to predict with BTB

(function can be called from multiple places)(function can be called from multiple places)

main()

{

foo();

printf(“still hungry\n”);

foo(){

…..

return

}
0x800

0x804 printf(“still hungry\n”);

….

foo();

printf(“full\n”);

}

0x804

0x900

0x904

• But return address is actually easy to
predict

– It is the address after the last call instruction

that we haven’t returned from yet

– Hence the Return Address Stack– Hence the Return Address Stack

main()

{

foo();

printf(“still hungry\n”);

foo(){

…..

return

}
0x800

0x804 printf(“still hungry\n”);

….

foo();

printf(“full\n”);

}

0x804

0x900

0x904
0x9040x804

• Call pushes return address into the RAS

• When a return instruction decoded,

pop the predicted return address from RAS

• Accurate prediction even w/ small RAS

for (ii =0; ii < 10; ii++)

{

…

} Loop branch is iterated 10 times all the time

• Special treatment for loop branches

• Prepare to branch (HPL-PD)

– Software gives hints to the hardware about

what the branch target will be. It saves us the

target prediction since it has already been

written into one of the target registers.written into one of the target registers.

• Special Loop predictor (Intel’s Pentium M)

– Detect a loop branch

– Train the max iteration counter value

TARG A+1

A
T N

α β

A

δ

?

ρ

br.cond TARGET R1 = MEM[R2]

branch R1

Conditional (Direct) Branch Indirect Branch

•Use the BTB

•A special indirect branch predictor (Intel’s Core-2)

• Predication

• Loop unrolling

(normal branch code)

C B

D

A
T N

B

C

D

A

(predicated code)

if (cond) {

b = 0;

}

else {

Convert control flow dependency to data dependency

Pro: Eliminate hard-to-predict branches (in traditional architecture)

Eliminate branch divergence (in CUDA)

Cons: Extra instructions

D

p1 = (cond)

branch p1, TARGET

mov b, 1

jmp JOIN

TARGET:

mov b, 0

A

B

C

D

A

B

C

else {

b = 1;

} p1 = (cond)

(!p1) mov b, 1

(p1) mov b, 0

• Comparison instructions set condition codes (CC)

• Instructions can be predicated to write results only when CC meets
criterion (CC != 0, CC >= 0, etc.)

• Compiler tries to predict if a branch condition is likely to produce
many divergent warps

– If guaranteed not to diverge: only predicates if < 4 instructions– If guaranteed not to diverge: only predicates if < 4 instructions

– If not guaranteed: only predicates if < 7 instructions

• May replace branches with instruction predication

• ALL predicated instructions take execution cycles

– Those with false conditions don’t write their output

• Or invoke memory loads and stores

– Saves branch instructions, so can be cheaper than serializing
divergent paths

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Transforms an M-iteration loop into
a loop with M/N iterations

– We say that the loop has been unrolled N

times
for(i=0;i<100;i+=4){for(i=0;i<100;i+=4){

a[i]*=2;

a[i+1]*=2;

a[i+2]*=2;

a[i+3]*=2;

}

for(i=0;i<100;i++)

a[i]*=2;

Some compilers can do this (gcc -funroll-loops)

Or you can do it manually (above)

http://www.cc.gatech.edu/~milos/CS6290F07/

• Less loop overhead

for(i=0;i<100;i+=4){

a[i] += 2;

a[i+1] += 2;

a[i+2] += 2;

a[i+3] += 2;

for(i=0;i<100;i++)

a[i] += 2;

a[i+3] += 2;

}

How many branches?

http://www.cc.gatech.edu/~milos/CS6290F07/

• Allows better scheduling of instructions
R2 = R3 * #4
R2 = R2 + #a

R1 = LOAD 0[R2]
R1 = R1 + #2

STORE R1 � 0[R2]
R3 = R3 + 1

BLT R3, 100, #top

R2 = R3 * #4

R2 = R3 * #4

R2 = R2 + #a

R1 = LOAD 0[R2]

R1 = R1 + #2

STORE R1 � 0[R2]

R1 = LOAD 4[R2]

R1 = R1 + #2

STORE R1 � 4[R2]R2 = R3 * #4
R2 = R2 + #a

R1 = LOAD 0[R2]
R1 = R1 + #2

STORE R1 � 0[R2]
R3 = R3 + 1

BLT R3, 100, #top

R2 = R3 * #4
R2 = R2 + #a

R1 = LOAD 0[R2]
R1 = R1 = #2

STORE R1 � 0[R2]
R3 = R3 + 1

BLT R3, 100, #top

STORE R1 � 4[R2]

R1 = LOAD 8[R2]

R1 = R1 + #2

STORE R1 � 8[R2]

R1 = LOAD 12[R2]

R1 = R1 + #2

STORE R1 � 12[R2]

R3 = R3 + 4

BLT R3, 100, #top

http://www.cc.gatech.edu/~milos/CS6290F07/

• Get rid of small loops

for(i=0;i<4;i++)

a[i]*=2;

a[0]*=2;

a[1]*=2;

a[2]*=2;

a[3]*=2;

for(0) Difficult to schedule/hoist

insts from bottom block to

top block due to branches

Easier: no branches in the way

for(1)

for(2)

for(3)

http://www.cc.gatech.edu/~milos/CS6290F07/

• VLIW = Very Long Instruction Word

• Everything is statically scheduled
– All hardware resources exposed to compiler

Int Op 2 Mem Op 1 Mem Op 2 FP Op 1 FP Op 2Int Op 1

– All hardware resources exposed to compiler

– Compiler must figure out what to do and when to do it

– Get rid of complex scheduling hardware

– More room for “useful” resources

• Examples:
– Texas Instruments DSP processors

– Transmeta’s processors

– Intel IA-64 (EPIC), ATI Graphics processor

I1 I2

I3 I4

I1 I2

I3 I4

I5
I5 NOP

• Let the compiler do all of the hard work
– Expose functional units, bypasses, latencies,

etc.

– Compiler can do its best to schedule code well

– Compiler has plenty of time to do analysis– Compiler has plenty of time to do analysis

– Compiler has larger scope (view of the
program)

• Works extremely well on regular codes
– Media Processing, Scientific, DSP, etc.

• Can be energy-efficient
– Dynamic scheduling hardware is power-hungry

• Latencies are not constant
– Statically scheduled assuming fixed latencies

• Irregular applications
– Dynamic data structures (pointers)
– “Common Case” changes when input changes

• Code can be very large
– Every resource exposed also means that– Every resource exposed also means that

instructions are “verbose”,
with fields to tell each HW resource what to do

– Many, many “NOP” fields

• 3wide VLIW machine � 6 wide VLIW
machine?

• Where are instruction parallelism?

• Goal: Keep the best of VLIW, fix problems

– Keep HW simple and let the compiler do its job

– Support to deal with non-constant latencies

– Make instructions more compact

• The reality

– Compiler still very good at regular codes

– HW among the most complex ever built by

Intel

– Good news: compiler still improving

• VLIWish

