
Spring 2009

Prof. Hyesoon Kim

• “Compute Unified Device Architecture”

• Available for GeForce 8, 9 Series, Quadro

FX5600/4600, and Tesla solutions

• Targeted software stack

– Compute oriented drivers, language, and tools– Compute oriented drivers, language, and tools

• Driver for loading computation programs into

GPU

– Standalone Driver - Optimized for computation

– Interface designed for compute - graphics free API

• Cuda provides general DRAM memory

addressing (just like CPU)© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• A quiet revolution and potential build-up
– Calculation: 367 GFLOPS vs. 32 GFLOPS

– Memory Bandwidth: 86.4 GB/s vs. 8.4 GB/s

• Until a few years, programmed through graphics API

• The GPU is viewed as a compute device that:
– Is a coprocessor to the CPU or host

– Has its own DRAM (device memory)

– Runs many threads in parallel

• Data-parallel portions of an application are • Data-parallel portions of an application are
executed on the device as kernels which run in
parallel on many threads

• Differences between GPU and CPU threads
– GPU threads are extremely lightweight

• Very little creation overhead

– GPU needs 1000s of threads for full efficiency
• Multi-core CPU needs only a few© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

CPU
(host)

GPU w/
local DRAM

(device)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• NVIDIA GPU Computing Architecture
– Via a separate HW interface

– In laptops, desktops, workstations, servers

• 8-series GPUs deliver 50 to 200 GFLOPS
on compiled parallel C applications

GeForce 8800

• GPU parallelism is doubling every year

• Programming model scales transparently

• Programmable in C with CUDA tools

• Multithreaded SPMD model uses application
data parallelism and thread parallelism

Tesla S870

Tesla D870

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

16 highly threaded SM’s, >128 FPU’s, 367 GFLOPS, 768

MB DRAM, 86.4 GB/S Mem BW, 4GB/S BW to CPU

Thread Execution Manager

Input Assembler

Host

Load/store

Global Memory

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

Executed at CPU

Executed at GPU

helloworld.cu

Int main()

{

CUT_DEVICE_INIT();

dim3 threads (1, 2, 4);

dim3 grid (2,1);

helloworld<<< grid, threads >>> (); Executed at GPU

Many threads

helloworld_kernel.cu

__global__ void

helloworld()

{

printf(“hello world! I’m a thread with block Id:{%d %d}, Thread Id{%d %d %d}\n”,

blockIdx.x, blockIdx.y, threadIdx.x, threadIdx.y, threadIdx.z);

}

helloworld<<< grid, threads >>> ();

return;

}

dim3 threads (1, 2, 4);

dim3 grid (2,1);
helloworld<<< grid, threads >>> ();

Output
Hello World! I am a thread with BlockId: {0,0}, ThreadId:{0,0,0}
Hello World! I am a thread with BlockId: {0,0}, ThreadId:{0,1,0}
Hello World! I am a thread with BlockId: {0,0}, ThreadId:{0,0,1}Hello World! I am a thread with BlockId: {0,0}, ThreadId:{0,0,1}
Hello World! I am a thread with BlockId: {0,0}, ThreadId:{0,1,1}
Hello World! I am a thread with BlockId: {0,0}, ThreadId:{0,0,2}
Hello World! I am a thread with BlockId: {0,0}, ThreadId:{0,1,2}
Hello World! I am a thread with BlockId: {0,0}, ThreadId:{0,0,3}
Hello World! I am a thread with BlockId: {0,0}, ThreadId:{0,1,3}
Hello World! I am a thread with BlockId: {1,0}, ThreadId:{0,0,0}
Hello World! I am a thread with BlockId: {1,0}, ThreadId:{0,1,0}
Hello World! I am a thread with BlockId: {1,0}, ThreadId:{0,0,1}
Hello World! I am a thread with BlockId: {1,0}, ThreadId:{0,1,1}
Hello World! I am a thread with BlockId: {1,0}, ThreadId:{0,0,2}
Hello World! I am a thread with BlockId: {1,0}, ThreadId:{0,1,2}
Hello World! I am a thread with BlockId: {1,0}, ThreadId:{0,0,3}
Hello World! I am a thread with BlockId: {1,0}, ThreadId:{0,1,3}

• Declspecs

– global, device,

shared, local,
constant

• Keywords

– threadIdx, blockIdx

__device__ float filter[N];

__global__ void convolve (float *image) {

__shared__ float region[M];

...

region[threadIdx] = image[i];

__syncthreads()
– threadIdx, blockIdx

• Intrinsics

– __syncthreads

• Runtime API

– Memory, symbol,

execution
management

• Function launch

__syncthreads()

...

image[j] = result;

}

// Allocate GPU memory

void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block

convolve<<<100, 10>>> (myimage);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• The GPU is viewed as a compute device that:
– Is a coprocessor to the CPU or host

– Has its own DRAM (device memory)

– Runs many threads in parallel

• Data-parallel portions of an application are executed on • Data-parallel portions of an application are executed on
the device as kernels which run in parallel on many
threads

• Differences between GPU and CPU threads
– GPU threads are extremely lightweight

• Very little creation overhead

– GPU needs 1000s of threads for full efficiency

• Multi-core CPU needs only a few

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• 367 GFLOPS peak performance (25-50 times

of current high-end microprocessors)

• Massively parallel, 128 cores, 90W

• Massively threaded, sustains 1000s of threads

per appper app

• 30-100 times speedup over high-end

microprocessors on scientific and media

applications: medical imaging, molecular

dynamics

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• CUDA is a programming system for utilizing the

G80 processor for compute

– CUDA follows the architecture very closely

• General purposed programming model

– User kicks off batches of threads on the GPU– User kicks off batches of threads on the GPU

– GPU = dedicated super-threaded, massively data

parallel processor

Matches architecture features

Specific parameters are not exposed

https://users.ece.utexas.edu/~merez/new/pmwiki.php/EE382VFa07/Schedule?action=download&upname=EE382V_Fa07_Lect13_G80Mem.pdf

• A kernel is executed as a grid
of thread blocks

• Threads and blocks have IDs
– So each thread can decide

what data to work on

– Block ID: 1D or 2D

– Thread ID: 1D, 2D, or 3D – Thread ID: 1D, 2D, or 3D

• Simplifies memory
addressing when processing
multidimensional data
– Image processing

– Solving PDEs on volumes

– …

Courtesy: NDVIA© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Each thread can:
– R/W per-thread registers

– R/W per-thread local memory

– R/W per-block shared memory

– R/W per-grid global memory

– Read only per-grid constant

(Device) Grid

Block (0, 0)

Shared Memory

Registers Registers

Block (1, 0)

Shared Memory

Registers Registers

– Read only per-grid constant

memory

– Read only per-grid texture memory

Constant

Memory

Texture

Memory

Global

Memory

Local

Memory

Thread (0, 0)

Local

Memory

Thread (1, 0)

Local

Memory

Thread (0, 0)

Local

Memory

Thread (1, 0)

Host

• The host can R/W

global, constant, and

texture memories

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Global memory
– Main means of

communicating R/W
Data between host and
device

– Contents visible to all

(Device) Grid

Block (0, 0)

Shared Memory

Registers Registers

Block (1, 0)

Shared Memory

Registers Registers

– Contents visible to all
threads

• Texture and Constant
Memories
– Constants initialized by

host

– Contents visible to all
threads

Constant

Memory

Texture

Memory

Global

Memory

Local

Memory

Thread (0, 0)

Local

Memory

Thread (1, 0)

Local

Memory

Thread (0, 0)

Local

Memory

Thread (1, 0)

Host

Courtesy: NDVIA© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

Thread

identified by threadIdx

Thread block

Multiple levels of parallelism
-Thread block

-Up to 512 threads per block
-Communicate through shared
memory

Thread block

Identified by blockIdx

Grid of Thread Blocks

memory
-Threads guaranteed to be resident
-threadIdx, blockIdx
-__syncthreads()

-Grid of thread blocks
-F <<< nblocks, nthreads >>> (a, b, c)

• CUDA – API

• The API is an extension to the ANSI C

programming language

Low learning curve

• The hardware is designed to enable lightweight

runtime and driver

High performance

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• NOT part of CUDA

• It will be frequently used in

many code examples

– 2 D matrix

– single precision float elements

– width * height elements

typedef struct {
int width;
int height;
int pitch;– width * height elements

– pitch is meaningful when the
matrix is actually a sub-matrix of
another matrix

– data elements allocated and
attached to elements

int pitch;
float* elements;

} Matrix;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• cudaMalloc()

– Allocates object in the

device Global MemoryGlobal Memory

– Requires two parameters

• Address of a pointer to the
allocated object

(Device) Grid

Block (0, 0)

Shared Memory

Register

s

Register

s

Block (1, 0)

Shared Memory

Register

s

Register

s

allocated object

• Size of allocated object

• cudaFree()

– Frees object from device

Global Memory

• Pointer to freed object
Constant

Memory

Texture

Memory

Global

Memory

Local

Memor

y

Thread (0,

0)

Local

Memor

y

Thread (1,

0)

Local

Memor

y

Thread (0,

0)

Local

Memor

y

Thread (1,

0)

Host

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Code example:

– Allocate a 64 * 64 single precision float array

– Attach the allocated storage to Md.elements

– “d” is often used to indicate a device data

structurestructure

BLOCK_SIZE = 64;

Matrix Md

int size = BLOCK_SIZE * BLOCK_SIZE * sizeof(float);

cudaMalloc((void**)&Md.elements, size);
cudaFree(Md.elements);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• cudaMemcpy()

– memory data transfer

– Requires four parameters

• Pointer to source

• Pointer to destination

• Number of bytes copied

• Type of transfer

(Device) Grid

Block (0, 0)

Shared Memory

Register

s

Register

s

Block (1, 0)

Shared Memory

Register

s

Register

s

• Type of transfer

– Host to Host

– Host to Device

– Device to Host

– Device to Device

• Asynchronous in CUDA 1.0
Constant

Memory

Texture

Memory

Global

Memory

Local

Memor

y

Thread (0,

0)

Local

Memor

y

Thread (1,

0)

Local

Memor

y

Thread (0,

0)

Local

Memor

y

Thread (1,

0)

Host

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Code example:

– Transfer a 64 * 64 single precision float array

– M is in host memory and Md is in device memory

– cudaMemcpyHostToDevice and

cudaMemcpyDeviceToHost are symbolic constantscudaMemcpyDeviceToHost are symbolic constants

cudaMemcpy(Md.elements, M.elements, size,

cudaMemcpyHostToDevice);

cudaMemcpy(M.elements, Md.elements, size,
cudaMemcpyDeviceToHost);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

Executed
on the:

Only callable
from the:

__device__ float DeviceFunc() device device

__global__ void KernelFunc() device host

__host__ float HostFunc() host host

• __global__ defines a kernel function

– Must return void

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• __device__ functions cannot have their

address taken

• For functions executed on the device:

– No recursion– No recursion

– No static variable declarations inside the

function

– No variable number of arguments

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

Thread

identified by threadIdx

Thread block

Multiple levels of parallelism
-Thread block

-Up to 512 threads per block
-Communicate through shared
memory

Thread block

Identified by blockIdx

Grid of Thread Blocks

memory
-Threads guaranteed to be resident
-threadIdx, blockIdx
-__syncthreads()

-Grid of thread blocks
-F <<< nblocks, nthreads >>> (a, b, c)

• A kernel function must be called with an

execution configuration:

__global__ void KernelFunc(...);

dim3 DimGrid(100, 50); // 5000 thread blocks

dim3 DimBlock(4, 8, 8); // 256 threads per dim3 DimBlock(4, 8, 8); // 256 threads per

block

size_t SharedMemBytes = 64; // 64 bytes of shared

memory

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes

>>>(...);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Let’s assume N=16, blockDim=4 � 4 blocks

+

blockIdx.x = 0

blockDim.x = 4

threadIdx.x = 0,1,2,3

Idx= 0,1,2,3

blockIdx.x = 1

blockDim.x = 4

threadIdx.x = 0,1,2,3

Idx= 4,5,6,7

blockIdx.x = 2

blockDim.x = 4

threadIdx.x = 0,1,2,3

Idx= 8,9,10,11

blockIdx.x = 3

blockDim.x = 4

threadIdx.x = 0,1,2,3

Idx= 12,13,14,15

+ + + +

void add matrix

(float *a, float* b, float *c, int N) {

int index;

for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j) {

__global__ add_matrix

(float *a, float *b, float *c, int N) {

int i = blockIdx.x * blockDim.x + threadIdx.x;

Int j = blockIdx.y * blockDim.y + threadIdx.y;

int index = i + j*N;

CPU Program GPU Program

for (int j = 0; j < N; ++j) {

index = i + j*N;

c[index] = a[index] + b[index];

}

}

int main () {

add matrix (a, b, c, N);

}

int index = i + j*N;

if (i < N && j < N)

c[index] = a[index]+b[index];

}

Int main() {

dim3 dimBlock(blocksize, blocksize) ;

dim3 dimGrid (N/dimBlock.x, N/dimBlock.y);

add_matrix<<<dimGrid, dimBlock>>>(a, b, c, N);

}

• A straightforward matrix multiplication example

that illustrates the basic features of memory and

thread management in CUDA programs

– Leave shared memory usage until later

– Local, register usage– Local, register usage

– Thread ID usage

– Memory data transfer API between host and device

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• NOT part of CUDA

• It will be frequently used in

many code examples

– 2 D matrix

– single precision float elements

– width * height elements

typedef struct {
int width;
int height;
int pitch;– width * height elements

– pitch is meaningful when the
matrix is actually a sub-matrix of
another matrix

– data elements allocated and
attached to elements

int pitch;
float* elements;

} Matrix;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• P = M * N of size WIDTH x WIDTH

• Without tiling:

– One thread handles one element of

P

– M and N are loaded WIDTH times

N

W
ID

T
H

– M and N are loaded WIDTH times

from global memory

M P

W
ID

T
H

WIDTH WIDTH© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

// Allocate the device memory where we will copy M to

Matrix Md;

Md.width = WIDTH;

Md.height = WIDTH;

Md.pitch = WIDTH;

int size = WIDTH * WIDTH * sizeof(float);

cudaMalloc((void**)&Md.elements, size);

// Copy M from the host to the device

cudaMemcpy(Md.elements, M.elements, size,
cudaMemcpyHostToDevice);

// Read M from the device to the host into P

cudaMemcpy(P.elements, Md.elements, size,
cudaMemcpyDeviceToHost);

...

// Free device memory

cudaFree(Md.elements);© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

// Matrix multiplication on the (CPU) host in double precision
// for simplicity, we will assume that all dimensions are equal

void MatrixMulOnHost(const Matrix M, const Matrix N, Matrix P)
{

for (int i = 0; i < M.height; ++i)
for (int j = 0; j < N.width; ++j) {for (int j = 0; j < N.width; ++j) {

double sum = 0;
for (int k = 0; k < M.width; ++k) {

double a = M.elements[i * M.width + k];
double b = N.elements[k * N.width + j];
sum += a * b;

}
P.elements[i * N.width + j] = sum;

}
}© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• One Block of threads compute
matrix P

– Each thread computes one
element of P

• Each thread

– Loads a row of matrix M

– Loads a column of matrix N

Grid 1

Block 1

2

4

2

6

Thread

(2, 2)

N

– Loads a column of matrix N

– Perform one multiply and
addition for each pair of M and
N elements

– Compute to off-chip memory
access ratio close to 1:1 (not
very high)

• Size of matrix limited by the
number of threads allowed in a
thread block

3 2 5 4 48

BLOCK_SIZE

M P© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

int main(void) {
// Allocate and initialize the matrices

Matrix M = AllocateMatrix(WIDTH, WIDTH, 1);
Matrix N = AllocateMatrix(WIDTH, WIDTH, 1);
Matrix P = AllocateMatrix(WIDTH, WIDTH, 0);

// M * N on the device// M * N on the device
MatrixMulOnDevice(M, N, P);

// Free matrices
FreeMatrix(M);
FreeMatrix(N);
FreeMatrix(P);

return 0;
}© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

// Matrix multiplication on the device
void MatrixMulOnDevice(const Matrix M, const Matrix N, Matrix P)
{

// Load M and N to the device
Matrix Md = AllocateDeviceMatrix(M);
CopyToDeviceMatrix(Md, M);CopyToDeviceMatrix(Md, M);
Matrix Nd = AllocateDeviceMatrix(N);
CopyToDeviceMatrix(Nd, N);

// Allocate P on the device
Matrix Pd = AllocateDeviceMatrix(P);
CopyToDeviceMatrix(Pd, P); // Clear memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

// Setup the execution configuration
dim3 dimBlock(WIDTH, WIDTH);
dim3 dimGrid(1, 1);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd);MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd);

// Read P from the device
CopyFromDeviceMatrix(P, Pd);

// Free device matrices
FreeDeviceMatrix(Md);
FreeDeviceMatrix(Nd);
FreeDeviceMatrix(Pd);

}© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

// Matrix multiplication kernel – thread specification

__global__ void MatrixMulKernel(Matrix M, Matrix N, Matrix P)

{

// 2D Thread ID

int tx = threadIdx.x;

int ty = threadIdx.y;

// Pvalue is used to store the element of the matrix

// that is computed by the thread

float Pvalue = 0;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

N

W
ID

T
H

for (int k = 0; k < M.width; ++k)
{

float Melement = M.elements[ty * M.pitch + k];
float Nelement = Nd.elements[k * N.pitch + tx];
Pvalue += Melement * Nelement;

}

M P

W
ID

T
H

WIDTH WIDTH

}
// Write the matrix to device memory;
// each thread writes one element
P.elements[ty * P.pitch + tx] = Pvalue;

} ty

tx

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

// Allocate a device matrix of same size as M.
Matrix AllocateDeviceMatrix(const Matrix M)
{

Matrix Mdevice = M;
int size = M.width * M.height * sizeof(float);
cudaMalloc((void**)&Mdevice.elements, size);
return Mdevice;

}}

// Free a device matrix.
void FreeDeviceMatrix(Matrix M) {

cudaFree(M.elements);
}

void FreeMatrix(Matrix M) {
free(M.elements);

}© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

// Copy a host matrix to a device matrix.
void CopyToDeviceMatrix(Matrix Mdevice, const Matrix Mhost)
{

int size = Mhost.width * Mhost.height * sizeof(float);
cudaMemcpy(Mdevice.elements, Mhost.elements, size,

cudaMemcpyHostToDevice);
}}

// Copy a device matrix to a host matrix.
void CopyFromDeviceMatrix(Matrix Mhost, const Matrix Mdevice)
{

int size = Mdevice.width * Mdevice.height * sizeof(float);
cudaMemcpy(Mhost.elements, Mdevice.elements, size,

cudaMemcpyDeviceToHost);
}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Register – dedicated HW - single cycle

• Shared Memory – dedicated HW - single cycle

• Local Memory – DRAM, no cache - *slow*

• Global Memory – DRAM, no cache - *slow*

• Constant Memory – DRAM, cached, 1…10s…100s of • Constant Memory – DRAM, cached, 1…10s…100s of

cycles, depending on cache locality

• Texture Memory – DRAM, cached, 1…10s…100s of

cycles, depending on cache locality

• Instruction Memory (invisible) – DRAM, cached

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• All threads access global memory
for their input matrix elements

– Two memory accesses (8 bytes)

per floating point multiply-add

– 4B/s of memory

bandwidth/FLOPS

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Shared Memory

– 86.4 GB/s limits the code at

21.6 GFLOPS

• The actual code should run at
about 15 GFLOPS

• Need to drastically cut down
memory accesses to get closer to
the peak 346.5 GFLOPS

Device memory

Shared Memory

Instruction
Unit

Processor 1

Registers

…Processor 2

Registers

Processor M

Registers

Constant

Cache

Texture

Cache

Global, constant, texture memories© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Each input element is read by WIDTH threads.

• If we load each element into Shared Memory and have
several threads use the local version, we can drastically
reduce the memory bandwidth

– Load all the matrix ?
– Tiled algorithms– Tiled algorithms

• Pattern
– Copy data from global to shared memory

– Synchronization

– Computation (iteration)

– Synchronization

– Copy data from shared to global memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

Consider A,B,C to be N by N matrices of b by b subblocks where b=n / N is called

the block size

for i = 1 to N

for j = 1 to N

{read block C(i,j) into shared memory}

for k = 1 to N

{read block A(i,k) into shared memory}

{read block B(k,j) into shared memory}{read block B(k,j) into shared memory}

C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}

{write block C(i,j) back to global memory}

= + *

C(i,j) C(i,j) A(i,k)

B(k,j)

www.sdsc.edu/~allans/cs260/lectures/matmul.ppt

= + *C(1,1) C(1,1)

A(1,1) B(1,1)

www.sdsc.edu/~allans/cs260/lectures/matmul.ppt

= + *C(1,1) C(1,1)

A(1,2) B(2,1)

www.sdsc.edu/~allans/cs260/lectures/matmul.ppt

= + *C(1,1) C(1,1)

A(1,3) B(3,1)

www.sdsc.edu/~allans/cs260/lectures/matmul.ppt

= + *C(1,2) C(1,2)

A(1,1)
B(1,2)

www.sdsc.edu/~allans/cs260/lectures/matmul.ppt

= + *C(1,2) C(1,2)

A(1,2) B(2,2)

www.sdsc.edu/~allans/cs260/lectures/matmul.ppt

= + *C(1,2) C(1,2)

A(1,3) B(3,2)

www.sdsc.edu/~allans/cs260/lectures/matmul.ppt

• One block computes one square sub-

matrix Psub of size BLOCK_SIZE

• One thread computes one element of

Psub

• Assume that the dimensions of M and

N are multiples of BLOCK_SIZE and

N

bx

tx
01 bsize-12

0 1 2

B
L

O
C

K
_

S
IZ

E
B

L
O

C
K

_
S

IZ
E

W
ID

T
H

N are multiples of BLOCK_SIZE and

square shape

M P

Psub

BLOCK_SIZE

WIDTHWIDTH

BLOCK_SIZEBLOCK_SIZE

by
ty

2
1
0

bsize-1

2

1

0

B
L

O
C

K
_

S
IZ

E
B

L
O

C
K

_
S

IZ
E

W
ID

T
H

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Each SMP has 16KB shared memory
– Each Thread Block uses 2 *256*4B = 2KB of shared

memory. [2: two matrix, 256 = 16*16, 4B (floating
point)]

– Can potentially have up to 8 Thread Blocks actively
executing

– Initial load: – Initial load:
• For BLOCK_SIZE = 16, this allows up to 8*512 = 4,096

pending loads (8 blocks, 2 loads * 256)
• In practice, there will probably be up to half of this due to

scheduling to make use of SPs.

– The next BLOCK_SIZE 32 would lead to 2*32*32*4B=
8KB shared memory usage per Thread Block, allowing
only up to two Thread Blocks active at the same time

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

// Setup the execution configuration

dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);

dim3 dimGrid(N.width / dimBlock.x,

M.height / dimBlock.y);

For very large N and M dimensions, one

will need to add another level of blocking and

execute the second-level blocks sequentially.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

// Block index

int bx = blockIdx.x;

int by = blockIdx.y;
// Thread index

int tx = threadIdx.x;

int ty = threadIdx.y;

// Pvalue stores the element of the block sub-matrix

// that is computed by the thread

float Pvalue = 0;

// Loop over all the sub-matrices of M and N

// required to compute the block sub-matrix

for (int m = 0; m < M.width/BLOCK_SIZE; ++m) {

code from the next few slides };

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

// Get a pointer to the current sub-matrix Msub of M

Matrix Msub = GetSubMatrix(M, m, by);

// Get a pointer to the current sub-matrix Nsub of N

Matrix Nsub = GetSubMatrix(N, bx, m);

__shared__ float Ms[BLOCK_SIZE][BLOCK_SIZE];

__shared__ float Ns[BLOCK_SIZE][BLOCK_SIZE];

// each thread loads one element of the sub-matrix

Ms[ty][tx] = GetMatrixElement(Msub, tx, ty);

// each thread loads one element of the sub-matrix

Ns[ty][tx] = GetMatrixElement(Nsub, tx, ty);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

// Synchronize to make sure the sub-matrices are loaded

// before starting the computation

__syncthreads();

// each thread computes one element of the block sub-matrix

for (int k = 0; k < BLOCK_SIZE; ++k)

Pvalue += Ms[ty][k] * Ns[k][tx];

// Synchronize to make sure that the preceding

// computation is done before loading two new

// sub-matrices of M and N in the next iteration

__syncthreads();© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

// Get a pointer to the block sub-matrix of P

Matrix Psub = GetSubMatrix(P, bx, by);

// Write the block sub-matrix to device memory;

// each thread writes one element

SetMatrixElement(Psub, tx, ty, Pvalue);SetMatrixElement(Psub, tx, ty, Pvalue);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC
Macro functions will be provided.

• void __syncthreads();

• Synchronizes all threads in a block

• Once all threads have reached this point, execution resumes
normally

• Used to avoid RAW/WAR/WAW hazards when accessing shared or • Used to avoid RAW/WAR/WAW hazards when accessing shared or
global memory

• Allowed in conditional constructs only if the conditional is uniform
across the entire thread block

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC
if (tid>16) {__syncthreads(); code1 …}

else { code1; }

• Some Useful Information on Tools

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Any source file containing CUDA language
extensions must be compiled with nvcc

• nvcc is a compiler driver
– Works by invoking all the necessary tools and

compilers like cudacc, g++, cl, ...compilers like cudacc, g++, cl, ...

• nvcc can output:
– Either C code

• That must then be compiled with the rest of the application
using another tool

– Or object code directly

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• An executable compiled in device emulation
mode (nvcc -deviceemu) runs completely on
the host using the CUDA runtime
– No need of any device and CUDA driver (??)

– Each device thread is emulated with a host thread

• When running in device emulation mode, one
can:
– Use host native debug support (breakpoints, inspection, etc.)

– Access any device-specific data from host code and vice-versa

– Call any host function from device code (e.g. printf) and
vice-versa

– Detect deadlock situations caused by improper usage of
__syncthreads© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Emulated device threads execute sequentially, so
simultaneous accesses of the same memory location by
multiple threads could produce different results.

• Dereferencing device pointers on the host or host
pointers on the device can produce correct results in
device emulation mode, but will generate an error in
device execution modedevice execution mode

• Results of floating-point computations will slightly differ
because of:
– Different compiler outputs, instruction sets

– Use of extended precision for intermediate results

• There are various options to force strict single precision on the host

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Blocks may coordinate but not synchronize

– Shared queue pointer:OK

– Shared block: Bad…

• Thread blocks can run in any order

– Concurrently or sequentially

– Facilitates scaling of the same code across many devices – Facilitates scaling of the same code across many devices

SC08 CUDA tutorial

• Any executable with CUDA code requires
two dynamic libraries:

– The CUDA runtime library (cudart)

– The CUDA core library (cuda)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Some Additional API Features

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• dim3 gridDim;

– Dimensions of the grid in blocks (gridDim.z unused)

• dim3 blockDim;

– Dimensions of the block in threads– Dimensions of the block in threads

• dim3 blockIdx;

– Block index within the grid

• dim3 threadIdx;

– Thread index within the block

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Provides:

– Built-in vector types

– A subset of the C runtime library supported in

both host and device codes

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• [u]char[1..4], [u]short[1..4],

[u]int[1..4], [u]long[1..4],

float[1..4]

– Structures accessed with x, y, z, w fields:– Structures accessed with x, y, z, w fields:

uint4 param;

int y = param.y;

• dim3

– Based on uint3

– Used to specify dimensions

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• pow, sqrt, cbrt, hypot

• exp, exp2, expm1

• log, log2, log10, log1p

• sin, cos, tan, asin, acos, atan, atan2

• sinh, cosh, tanh, asinh, acosh, atanh• sinh, cosh, tanh, asinh, acosh, atanh

• ceil, floor, trunc, round

• Etc.

– When executed on the host, a given function uses

the C runtime implementation if available

– These functions are only supported for scalar types,

not vector types© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Provides functions to deal with:

– Device management (including multi-device systems)

– Memory management

– Error handling

• Initializes the first time a runtime function is called• Initializes the first time a runtime function is called

• A host thread can invoke device code on only one device

– Multiple host threads required to run on multiple devices

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Device memory allocation

– cudaMalloc(), cudaFree()

• Memory copy from host to device, device to

host, device to device

– cudaMemcpy(), cudaMemcpy2D(), – cudaMemcpy(), cudaMemcpy2D(),

cudaMemcpyToSymbol(),
cudaMemcpyFromSymbol()

• Memory addressing
– cudaGetSymbolAddress()

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Some mathematical functions (e.g. sin(x))

have a less accurate, but faster device-only
version (e.g. __sin(x))

– __pow

– __log, __log2, __log10– __log, __log2, __log10

– __exp

– __sin, __cos, __tan

• SFU

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

