
Spring 2009

Prof. Hyesoon Kim

• Optimize Algorithms for the GPU

– Reduce communications between the CPU

and GPU

• Increase occupancy

• Optimize Memory Access Coherence

• Take Advantage of On-Chip Shared
Memory

• Use Parallelism Efficiently

• Maximize independent parallelism

• Maximize arithmetic intensity (math/bandwidth)

• Sometimes it’s better to recompute than to cache

– GPU spends its transistors on ALUs, not memory

• Do more computation on the GPU to avoid costly • Do more computation on the GPU to avoid costly

data transfers

– Even low parallelism computations can sometimes be

faster than transferring back and forth to host

• Coalesced vs. Non-coalesced = order of

magnitude

– Global/Local device memory

• Optimize for spatial locality in cached texture

memorymemory

• In shared memory, avoid high-degree bank

conflicts

• Hundreds of times faster than global
memory

• Threads can cooperate via shared memory

• Use one / a few threads to load / compute • Use one / a few threads to load / compute
data shared by all threads

• Use it to avoid non-coalesced access

– Stage loads and stores in shared memory to

re-order noncoalesceable addressing

• Partition your computation to keep the
GPU multiprocessors equally busy

– Many threads, many thread blocks

• Keep resource usage low enough to
support multiple active thread blocks per
multiprocessor

– Registers, shared memory

• Highest latency instructions: 400-600 clock
cycles

• Likely to be performance bottleneck

• Optimizations can greatly increase • Optimizations can greatly increase
performance

– Coalescing: up to 10x speedup

• A coordinated read by a warp

• A contiguous region of global memory:
– 128 bytes - each thread reads a word: int, float, …

– 256 bytes - each thread reads a double-word: int2, float2, …

– 512 bytes – each thread reads a quad-word: int4, float4, …

• Additional restrictions:• Additional restrictions:
– Starting address for a region must be a multiple of region

size

– The kth thread in a warp must access the kth element in a
block being read

• Exception: not all threads must be participating
– Predicated access, divergence within a warp

Accesses are

asynchronous:

triggered by RAS and

CAS signals, which

can in theory occur atcan in theory occur at

arbitrary times (subject

to DRAM timing

constraints)

Double-Data Rate (DDR) DRAM

transfers data on both rising and

falling edge of the clock

Burst Length

Timing figures taken from “A Performance Comparison of Contemporary
DRAM Architectures” by Cuppu, Jacob, Davis and Mudge

Command frequency

does not change

• Coalesced Access is taking advantage of
burst mode in the GPU

t0 t1 t2 t3

. . .
128 132 136 140 144

All threads participate

t14 t15

. . .
184 188 192

. . .
128 132 136 140 144

. . .

t0 t1 t2 t3 t14 t15

X X

Some threads do not participate

184 188 192

t0 t1 t2 t3

. . .
128 132 136 140 144

Permuted Access by Threads

t14 t15

. . .
184 188 192

• Computing capability =1.2 (GTX280,
T10C). Those two cases are treated as
coalesced memory

. . .
128 132 136 140 144

. . .

t0 t1 t2 t3 t14 t15

Misaligned Starting Address (not a multiple of 64)

t13

184 188 192

• Experiment:
– Kernel: read a float, increment, write back

– 3M floats (12MB)

– Times averaged over 10K runs

• 12K blocks x 256 threads:• 12K blocks x 256 threads:
– 356µs – coalesced

– 357µs – coalesced, some threads don’t
participate

– 3,494µs – permuted/misaligned thread access

__global__ void accessFloat3(float3 *d_in, float3 d_out)
{

int index = blockIdx.x * blockDim.x + threadIdx.x;
float3 a = d_in[index];

a.x += 2;a.x += 2;
a.y += 2;
a.z += 2;
d_out[index] = a;

}

• float3 is 12 bytes

• Each thread ends up executing 3 reads

– sizeof(float3) ≠ 4, 8, or 12

– Half-warp reads three 64B non-contiguous regions

• Use a structure of arrays instead of AoS

• If SoA is not viable:

– Force structure alignment: __align(X), where X

= 4, 8, or 16

– Use SMEM to achieve coalescing

• Array of structures (AOS)

– {x1,y1, z1,w1} , {x2,y2, z2,w2} , {x3,y3, z3,w3}

, {x4,y4, z4,w4} ….

– Intuitive but less efficient

– What if we want to perform only x axis? – What if we want to perform only x axis?

• Structure of array (SOA)

– {x1,x2,x3,x4}, …,{y1,y2,y3,y4}, …{z1,z2,z3,z4},

… {w1,w2,w3,w4}…

• Experiment:
– Kernel: read a float, increment, write back

– 3M floats (12MB)

– Times averaged over 10K runs

• 12K blocks x 256 threads:
– 356µs – coalesced

– 357µs – coalesced, some threads don’t participate

– 3,494µs – permuted/misaligned thread access

• 4K blocks x 256 threads:
– 3,302µs – float3 uncoalesced

– 359µs – float3 coalesced through shared memory

• Coalescing greatly improves throughput

• Critical to small or memory-bound kernels

• Reading structures of size other than 4, 8, or 16

bytes will break coalescing:

– Prefer Structures of Arrays over AoS– Prefer Structures of Arrays over AoS

– If SoA is not viable, read/write through SMEM

• Future proof code: coalesce over whole warps

• Additional resources:

– Aligned Types CUDA SDK Sample

• Thread instructions executed sequentially,
executing other warps is the only way to hide
latencies and keep the hardware busy

• Occupancy = Number of warps running
concurrently on a multiprocessor divided by
maximum number of warps that can run maximum number of warps that can run
concurrently

• Minimize occupancy requirements by minimizing
latency

• Maximize occupancy by optimizing threads per
multiprocessor

• Increasing occupancy does not necessarily

increase performance

– BUT…

• Low-occupancy multiprocessors cannot

adequately hide latency on memory-bound

kernels

– (It all comes down to arithmetic intensity and available

parallelism)

• # of blocks / # of multiprocessors > 1
– So all multiprocessors have at least one block to execute

• Per-block resources at most half of total available
– Shared memory and registers

– Multiple blocks can run concurrently in a multiprocessor

– If multiple blocks coexist that aren’t all waiting at a
__syncthreads(), machine can stay busy__syncthreads(), machine can stay busy

• # of blocks / # of multiprocessors > 2
– So multiple blocks run concurrently in a multiprocessor

• # of blocks > 100 to scale to future devices
– Blocks stream through machine in pipeline fashion

– 1000 blocks per grid will scale across multiple generations

• Part of the SDK

• Image Convolution with CUDA

– White Documents from Nvidia website

23 12 25 36 10

73 26 99 56 2

65 11 5 26 76

83 67 52 32 17

34 84 46 99 32

Input

34 84 46 99 32

1 0 1

0 1 0

1 0 1

Kernel

23 12 25 36 10

73 26 99 56 2

65 11 5 26 76

83 67 52 32 17

34 84 46 99 32

(26 * 1) +

(99 * 0) +

(56 * 1) +

(11 * 0) +

(5 * 1) +

1 0 1

0 1 0

1 0 1

34 84 46 99 32

26 99 56

11 5 26

67 52 32

23 12 25 36 10

73 26 99 56 2

65 11 18 26 76

83 67 52 32 17

34 84 46 99 32

*

(5 * 1) +

(26 * 0)+

(67 * 1) +

(52 * 0) +

(32 * 1)

23 12 25 36 10

73 26 99 56 2

65 11 5 26 76

83 67 52 32 17

34 84 46 99 32

(0 * 1) +

(0 * 0) +

(0 * 1) +

(0 * 0) +

(23 * 1) +

1 0 1

0 1 0

1 0 1

34 84 46 99 32

0 0 0

0 23 12

0 73 26

23 12 25 36 10

73 26 99 56 2

65 11 49 26 76

83 67 52 32 17

34 84 46 99 32

*

(23 * 1) +

(12 * 0)+

(0 * 1) +

(73 * 0) +

(26 * 1)

• A naïve convolution
algorithm. A block of
pixels from the image is
loaded into an array in
shared memory. To
process and compute an
output pixel (red), a region
of the input image
(orange) is multiplied (orange) is multiplied
element-wise with the
filter kernel (purple) and
then the results are
summed. The resulting
output pixel is then written
back into the image.

Each thread
block must load
into shared
memory the
pixels to be pixels to be
filtered and the
apron pixels.

• When the kernel size is relatively too big
compared to image size

• Use threads to load multiple image blocks

Idle threads

• Memory Coalescing: If all threads within a
warp (32 threads) simultaneously read
consecutive words then single large read of
the 32 values can be performed at
optimum speed. If 32 random addresses optimum speed. If 32 random addresses
are read, then only a fraction of the total
DRAM bandwidth can be achieved, and
performance will be much lower.

• Unrolling the kernel

• #pragma unroll

• By default, the compiler unrolls small loops
with a known trip count. The #pragma unroll

directive however can be used to control

unrolling of any given loop. unrolling of any given loop.

