
Spring 2009

Prof. Hyesoon Kim

Thread
identified by threadIdx

Thread block

Multiple levels of parallelism
-Thread block

-Up to 512 threads per block
-Communicate through shared
memory

Thread block
Identified by blockIdx

Grid of Thread Blocks

memory
-Threads guaranteed to be resident
-threadIdx, blockIdx
-__syncthreads()

-Grid of thread blocks
-F <<< nblocks, nthreads >>> (a, b, c)

16 highly threaded SM’s, >128 FPU’s, 367 GFLOPS, 768
MB DRAM, 86.4 GB/S Mem BW, 4GB/S BW to CPU

Thread Execution Manager

Input Assembler

Host

Load/store

Global Memory

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

Thread Execution Manager

Input Assembler

Host

Load/store

Global Memory

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

TPC
Texture
Processor
Cluster

TPC TPC TPC TPC TPC TPC

Streaming Processor Array

…

TEX

SM

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1

Texture Processor Cluster Streaming Multiprocessor

SM

Shared Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• SPA: Streaming Processor Array
– Array of TPCs

• 8 TPCs in GeForce8800

– TPC: Texture Processor Cluster
• Cluster of 2 SMs+ 1 TEX
• TEX is a texture processing unit

– SM: Streaming Multiprocessor– SM: Streaming Multiprocessor
• Array of 8 SPs
• Multi-threaded processor core
• Fundamental processing unit for a thread block

– SP: Streaming Processor
• Scalar ALU for a single thread
• With 1K of registers

https://users.ece.utexas.edu/~merez/new/pmwiki.php/EE382VFa07/Schedule?action=download&upname=EE382V_Fa07_Lect12_G80Core.pdf

• Maximum number of threads per block: 512
• Maximum size of each dimension of a grid: 65,535
• Number of streaming multiprocessors (SM):

– GeForce 8800 GTX: 16 @ 675 MHz
– GeForce 8800 GTS: 12 @ 500 MHz
– GeForce 8800 GT: 14@ 600MHZ

• Device memory:
– GeForce 8800 GTX: 768 MB@86.4GB/sec– GeForce 8800 GTX: 768 MB@86.4GB/sec
– GeForce 8800 GTS: 640 /320MB@64GB/sec
– GeForce 8800 GT: 512MB@57.5GB/sec

• Shared memory per multiprocessor: 16KB divided in 16 banks
• Constant memory: 64 KB
• Warp size: 32 threads (16 Warps/Block)
• Maximum number of active blocks per multiprocessor: 8
• Maximum number of active threads per multiprocessor: 768 (24 warps)
• Limit on kernel size : 2 M instructions

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

Thread Execution Manager

Input Assembler

Host

1 Grid (kernel) at a time

1 thread per SP

(in warps of 32

Across the SM)

1 – 8 thread blocks per SM
(16 – 128 total concurrent blocks)

Load/store

Global Memory

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store

https://users.ece.utexas.edu/~merez/new/pmwiki.php/EE382VFa07/Schedule?action=download&upname=EE382V_Fa07_Lect13_G80Mem.pdf

• Registers in SP

– 1K total per SP

• Shared between thread

• Same per thread in a block

t0 t1 t2 … tm

Blocks

SP

MT IU

SP

MT IU

t0 t1 t2 … tm

Blocks

SM 1SM 0

• Same per thread in a block

• Shared memory in SM

– 16 KB total per SM

• Shared between blocks

• Global memory

– Managed by texture units

• Cache – read only

– Managed by LD/ST ROP unit

• Uncached – read/write

Texture L1

Shared
Memory

Shared
Memory

TF

L2

Memory

Courtesy:
John Nicols, NVIDIA

https://users.ece.utexas.edu/~merez/new/pmwiki.php/EE382VFa07/Schedule?action=download&upname=EE382V_Fa07_Lect13_G80Mem.pdf

• Programmer declares (Thread) Block:
– Block size 1 to 512 concurrent threads

– Block shape 1D, 2D, or 3D

– Block dimensions in threads

• All threads in a Block execute the
same thread program

CUDA Thread Block

Thread Id #:

0 1 2 3 … m

same thread program

• Threads have thread id numbers
within Block

• Threads share data and synchronize
while doing their share of the work

• Thread program uses thread id to
select work and address shared data

Thread program

Courtesy: John Nickolls,

NVIDIA© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Local Memory: per-thread
– Private per thread

– Auto variables, register spill

• Shared Memory: per-Block
– Shared by threads of the same

block

– Inter-thread communication

• Global Memory: per-application

Thread

Local Memory

Block

Shared
Memory • Global Memory: per-application

– Shared by all threads

– Inter-Grid communication

Grid 0

. . .

Global
Memory

. . .

Grid 1
Sequential
Grids

in Time

Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Frequency
– 575 MHz with ALUs running at 1.35 GHz

• ALU bandwidth (GFLOPs)
– (1.35 GHz) X (16 SM) X ((8 SP)X(2 MADD) + (2 SFU)) = ~388 GFLOPs

• Register BW
– (1.35 GHz) X (16 SM) X (8 SP) X (4 words) = 2.8 TB/s– (1.35 GHz) X (16 SM) X (8 SP) X (4 words) = 2.8 TB/s

• Shared Memory BW
– (575 MHz) X (16 SM) X (16 Banks) X (1 word) = 588 GB/s

• Device memory BW
– 1.8 GHz GDDR3 with 384 bit bus: 86.4 GB/s

• Host memory BW
– PCI-express: 1.5GB/s or 3GB/s with page locking

https://users.ece.utexas.edu/~merez/new/pmwiki.php/EE382VFa07/Schedule?action=download&upname=EE382V_Fa07_Lect14_G80Control.pdf

• Threads are assigned to SMs in Block
granularity

– Up to 8 Blocks to each SM as
resource allows

t0 t1 t2 … tm

Blocks

SP

MT IU

SP

MT IU

t0 t1 t2 … tm

Blocks

SM 1SM 0

resource allows

– SM in G80 can take up to 768 threads

• Could be 256 (threads/block) * 3
blocks

• Or 128 (threads/block) * 6 blocks, etc.

• Threads run concurrently

– SM assigns/maintains thread id #s

– SM manages/schedules thread
execution

Texture L1

Shared
Memory

Shared
Memory

TF

L2

Memory© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Each Thread Blocks is divided in 32-
thread Warps

– This is an implementation decision,
not part of the CUDA programming
model

• Warps are scheduling units in SM

…

t0 t1 t2 … t31

…

…

t0 t1 t2 … t31

…
Block 1 Warps Block 2 Warps

Streaming Multiprocessor• Warps are scheduling units in SM

• If 3 blocks are assigned to an SM and
each Block has 256 threads, how
many Warps are there in an SM?

– Each Block is divided into 256/32 = 8
Warps

– There are 8 * 3 = 24 Warps

– At any point in time, only one of the
24 Warps will be selected for
instruction fetch and execution.

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1

Streaming Multiprocessor

Shared Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• SM hardware implements zero-overhead
Warp scheduling
– Warps whose next instruction has its

operands ready for consumption are
eligible for execution

– Eligible Warps are selected for execution
on a prioritized scheduling policy

– All threads in a Warp execute the same

SM multithreaded
Warp scheduler

time – All threads in a Warp execute the same
instruction when selected

• 4 clock cycles needed to dispatch the
same instruction for all threads in a Warp
in G80
– If one global memory access is needed

for every 4 instructions

– A minimal of 13 Warps are needed to
fully tolerate 200-cycle memory latency

warp 8 instruction 11

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

...

time

warp 3 instruction 96© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Fetch one warp instruction/cycle

– from instruction L1 cache

– into any instruction buffer slot

• Issue one “ready-to-go” warp
instruction/cycle

– from any warp - instruction buffer slot

I$
L1

Multithreaded
Instruction Buffer

R C$ Shared– from any warp - instruction buffer slot

– operand scoreboarding used to prevent
hazards

• Issue selection based on round-robin/age
of warp

• SM broadcasts the same instruction to 32
Threads of a Warp

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• All register operands of all instructions in the Instruction
Buffer are scoreboarded
– Status becomes ready after the needed values are deposited

– prevents hazards

– cleared instructions are eligible for issue

• Decoupled Memory/Processor pipelines
– any thread can continue to issue instructions until

scoreboarding prevents issue

– allows Memory/Processor ops to proceed in shadow of
Memory/Processor ops

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• For Matrix Multiplication, should I use 8X8, 16X16 or
32X32 tiles?

– For 8X8, we have 64 threads per Block. Since each SM can take
up to 768 threads, it can take up to 12 Blocks. However, each SM
can only take up to 8 Blocks, only 512 threads will go into each
SM!

– For 16X16, we have 256 threads per Block. Since each SM can
take up to 768 threads, it can take up to 3 Blocks and achieve full
capacity unless other resource considerations overrule.

– For 32X32, we have 1024 threads per Block. Not even one can fit
into an SM!© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Each SM has its own warp scheduler

• Schedules warps OoO based on hazards and
resources

• Warps can be issued in any order within and
across blocksacross blocks

• Within a warp, all threads always have the same
position

– Current implementation has warps of 32 threads

– Can change with no notice from NVIDIA

https://users.ece.utexas.edu/~merez/new/pmwiki.php/EE382VFa07/Schedule?action=download&upname=EE382V_Fa07_Lect13_G80Mem.pdf

• What happens if there is a conditional statement
within a thread?

• No problem if all threads in a warp follow same
path

• Divergence: threads in a warp follow different
paths

• Divergence: threads in a warp follow different
paths
– HW will ensure correct behavior by (partially)

serializing execution

– Compiler can add predication to eliminate divergence

• Try to avoid divergence
– If (TID > 2) {…} �If(TID/ warp_size> 2) {…}

https://users.ece.utexas.edu/~merez/new/pmwiki.php/EE382VFa07/Schedule?action=download&upname=EE382V_Fa07_Lect13_G80Mem.pdf

• Recap:
– 32 threads in a warm are executed in SIMD (share one

instruction sequencer)
– Threads within a warp can be disabled (masked)

• For example, handling bank conflicts

– Threads contain arbitrary code including conditional
branchesbranches

• How do we handle different conditions in different
threads?
– No problem if the threads are in different warps
– Control divergence

– Predication

https://users.ece.utexas.edu/~merez/new/pmwiki.php/EE382VFa07/Schedule?action=download&upname=EE382V_Fa07_Lect14_G80Control.pdf

• Each thread can:
– R/W per-thread registers

– R/W per-thread local memory

– R/W per-block shared memory

– R/W per-grid global memory

(Device) Grid

Block (0, 0)

Shared Memory

Registers Registers

Block (1, 0)

Shared Memory

Registers Registers

– Read only per-grid constant
memory

– Read only per-grid texture
memory

Constant

Memory

Texture

Memory

Global

Memory

Local

Memory

Thread (0, 0)

Local

Memory

Thread (1, 0)

Local

Memory

Thread (0, 0)

Local

Memory

Thread (1, 0)

Host
• The host can R/W

global, constant,
and texture
memories© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Threads in a Block share data &
results

– In Memory and Shared Memory

t0 t1 t2 … tm

Blocks

SP

MT IU

SP

MT IU

t0 t1 t2 … tm

Blocks

SM 1SM 0

– In Memory and Shared Memory

– Synchronize at barrier instruction

• Per-Block Shared Memory Allocation

– Keeps data close to processor

– Minimize trips to global Memory

– SM Shared Memory dynamically
allocated to Blocks, one of the limiting
resources

Texture L1

Shared
Memory

Shared
Memory

TF

L2

Memory

Courtesy:
John Nicols, NVIDIA

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Register File (RF)

– 32 KB

– Provides 4 operands/clock

• TEX pipe can also read/write RF

– 2 SMs share 1 TEX

I$
L1

Multithreaded
Instruction Buffer

R C$ Shared– 2 SMs share 1 TEX

• Load/Store pipe can also
read/write RF

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• There are 8192 registers
in each SM in G80
– This is an implementation

decision, not part of CUDA

– Registers are dynamically
partitioned across all Blocks

4 blocks 3 blocks

assigned to the SM

– Once assigned to a Block,
the register is NOT
accessible by threads in
other Blocks

– Each thread in the same
Block only access registers
assigned to itself

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• If each Block has 16X16 threads and each thread uses
10 registers, how many thread can run on each SM?
– Each Block requires 10*256 = 2560 registers

– 8192 = 3 * 2560 + change

– So, three blocks can run on an SM as far as registers are
concerned

• How about if each thread increases the use of registers • How about if each thread increases the use of registers
by 1?
– Each Block now requires 11*256 = 2816 registers

– 8192 < 2816 *3

– Only two Blocks can run on an SM, 1/3 reduction of
parallelism!!!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Dynamic partitioning gives more flexibility to
compilers/programmers

– One can run a smaller number of threads that require
many registers each or a large number of threads that
require few registers each

• This allows for finer grain threading than traditional CPU
threading models.

– The compiler can tradeoff between instruction-level
parallelism and thread level parallelism

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Immediate address constants

• Indexed address constants

• Constants stored in DRAM, and cached on
chip

– L1 per SM

I$
L1

Multithreaded
Instruction Buffer

R C$ Shared– L1 per SM

• A constant value can be broadcast to all
threads in a Warp
– Extremely efficient way of accessing a value

that is common for all threads in a Block!

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Textures are 2D arrays of values stored in
global DRAM

• Textures are cached in L1 and L2

• Read-only access • Read-only access

• Caches are optimized for 2D access:

– Threads in a warp that follow 2D locality will
achieve better memory performance

https://users.ece.utexas.edu/~merez/new/pmwiki.php/EE382VFa07/Schedule?action=download&upname=EE382V_Fa07_Lect13_G80Mem.pdf

• Designed to map textures onto 3D polygons

• Specialty hardware pipelines for:
– Fast data sampling from 1D, 2D, 3D arrays

– Swizzling of 2D, 3D data for optimal access

– Bilinear filtering in zero cycles

– Image compositing & blending operations

• Arrays indexed by u,v,w coordinates – easy to
program

• Extremely well suited for multigrid & finite
difference methods

• Each SM has 16 KB of Shared Memory

– 16 banks of 32bit words

• CUDA uses Shared Memory as shared
storage visible to all threads in a thread
block

– read and write access

I$
L1

Multithreaded
Instruction Buffer

R C$ Shared– read and write access

• Not used explicitly for pixel shader programs
– we dislike pixels talking to each other ☺

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Parallel Thread eXecution (PTX)
– Virtual Machine and ISA
– Programming model
– Execution resources and state
– An intermediate language

• ISA – Instruction Set Architecture

C/C++
Compiler

C/C++

Application ASM-level
Library

Programmer

PTX Code PTX Code • ISA – Instruction Set Architecture
– Variable declarations
– Instructions and operands

• Translator is an optimizing
compiler
– Translates PTX to Target code
– Program install time

• Driver implements VM runtime
– Coupled with Translator

PTX to Target

Translator

C G80 … GPU

Target code

PTX Code PTX Code

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• CTA = (block in CUDA programming
domain) : Cooperative Thread Array

• Special registers

– ctaid: each CTA has a unique CTA id

– ntcaid: 1D, 2D, 3D?

– gridid: each grid has a unique temporal grid id

– %tid, %ntid, %ctaid, %nctaid, and %grid

float4 me = gx[gtid];
me.x += me.y * me.z;CUDA

ld.global.v4.f32 {$f1,$f3,$f5,$f7}, [$r9+0];
174 me.x += me.y * me.z;
mad.f32 $f1, $f5, $f3, $f1;

PTX

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• CUDA • PTX

sub.f32 $f18, $f1, $f15;
sub.f32 $f19, $f3, $f16;
sub.f32 $f20, $f5, $f17;
mul.f32 $f21, $f18, $f18;
mul.f32 $f22, $f19, $f19;

__device__ void interaction(
float4 b0, float4 b1, float3 *accel)

{
r.x = b1.x - b0.x;
r.y = b1.y - b0.y;
r.z = b1.z - b0.z; mul.f32 $f22, $f19, $f19;

mul.f32 $f23, $f20, $f20;
add.f32 $f24, $f21, $f22;
add.f32 $f25, $f23, $f24;
rsqrt.f32 $f26, $f25;
mad.f32 $f13, $f18, $f26, $f13;
mov.f32 $f14, $f13;
mad.f32 $f11, $f19, $f26, $f11;
mov.f32 $f12, $f11;
mad.f32 $f9, $f20, $f26, $f9;
mov.f32 $f10, $f9;

r.z = b1.z - b0.z;
float distSqr = r.x * r.x + r.y * r.y + r.z * r.z;
float s = 1.0f/sqrt(distSqr);
accel->x += r.x * s;
accel->y += r.y * s;
accel->z += r.z * s;

}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUCNo register Spills/Fills in PTX level

• Cuda

– sx is shared

– mx, accel are local

• PTX

mov.s32 $r12, 0;
$Lt_0_26:

setp.eq.u32 $p1, $r12, $r5;
@$p1 bra $Lt_0_27;
mul.lo.u32 $r13, $r12, 16;

cvt.s32.u16 $r5, %ctaid.x

mul.lo.u32 $r13, $r12, 16;
add.u32 $r14, $r13, $r1;
ld.shared.f32 $f15, [$r14+0];
ld.shared.f32 $f16, [$r14+4];
ld.shared.f32 $f17, [$r14+8];

[func body from previous slide inlined here]

$Lt_0_27:
add.s32 $r12, $r12, 1;
mov.s32 $r15, 128;
setp.ne.s32 $p2, $r12, $r15;
@$p2 bra $Lt_0_26;

for (i = 0; i < K; i++) {

if (i != threadIdx.x) {

interaction(

sx[i], mx, &accel

);

}

}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

