
1/19/2009

1

Spring 2009 

Prof. Hyesoon Kim 

Thanks to Prof. Loh & Prof. Prvulovic

• Data Locality

– Temporal: if data item needed now,
it is likely to be needed again in near future

– Spatial: if data item needed now,
nearby data likely to be needed in near future

• Exploiting Locality: Caches

– Keep recently used data
in fast memory close to the processor

– Also bring nearby data there

Register File

Instruction Cache Data Cache

L2 Cache

L3 Cache

Main Memory

Disk

Row buffer

SRAM Cache

Bypass Network

Capacity +
Speed -

Speed +
Capacity -

ITLB DTLB



1/19/2009

2

• 60-100ns not uncommon

• Quick back-of-the-envelope calculation:

– 2GHz CPU

– � 0.5ns / cycle

– 100ns memory � 200 cycle memory latency!

• Solution: Caches

D-cache

L2 cache

Memory

• Fast (but small) memory close to processor

• When data referenced
– If in cache, use cache instead of memory

– If not in cache, bring into cache
(actually, bring entire block of data, too)

– Maybe have to kick something else out to do it!

• Important decisions
– Placement: where in the cache can a block go?

– Identification: how do we find a block in cache?

– Replacement: what to kick out to make room in cache?

– Write policy: What do we do about stores?

Key: Optimize the
average memory

access latency



1/19/2009

3

• Cache consists of block-sized lines

– Line size typically power of two

– Typically 16 to 128 bytes in size

• Example

– Suppose block size is 128 bytes

• Lowest seven bits determine offset within block

– Read data at address A=0x7fffa3f4

– Address begins to block with base address 

0x7fffa380

MSB LSB

Block size

• Placement
– Which memory blocks are allowed

into which cache lines

• Placement Policies
– Direct mapped (block can go to only one line)

– Fully Associative (block can go to any line)

– Set-associative (block can go to one of N 
lines)

• E.g., if N=4, the cache is 4-way set associative

• Other two policies are extremes of this
(E.g., if N=1 we get a direct-mapped cache) 

• When address referenced, need to

– Find whether its data is in the cache

– If it is, find where in the cache

– This is called a cache lookup

• Each cache line must have

– A valid bit (1 if line has data, 0 if line empty) 

• We also say the cache line is valid or invalid

– A tag to identify which block is in the line

(if line is valid)



1/19/2009

4

dexIndexTAG

Block offset

TAG TAG

==

HIT
YES

YES Data

Logic

• Need a free line to insert new block

– Which block should we kick out?

• Several strategies

– Random (randomly selected line)

– FIFO (line that has been in cache the longest)

– LRU (least recently used line)

– LRU Approximations (Pseudo LRU)

• Have LRU counter for each line in a set

• When line accessed

– Get old value X of its counter

– Set its counter to max value

– For every other line in the set

• If counter larger than X, decrement it

• When replacement needed

– Select line whose counter is 0



1/19/2009

5

• Do we allocate cache lines on a write?
– Write-allocate

• A write miss brings block into cache

– No-write-allocate
• A write miss leaves cache as it was

• Do we update memory on writes?
– Write-through

• Memory immediately updated on each write

– Write-back
• Memory updated when line replaced

PROC CACHE MEM

PROC CACHE MEM

Write-through

Write-back

replacement

• Need a Dirty bit for each line (stored in the 

Tag!)

– A dirty line has more recent data than memory

• Line starts as clean (not dirty)

• Line becomes dirty on first write to it

– Memory not updated yet, cache has the only 
up-to-date copy of data for a dirty line

• Replacing a dirty line

– Must write data back to memory (write-back)



1/19/2009

6

• Any information related to cache other than 

data is stored in the tag storage. 

• Not only tag bits, information for 

replacement, dirty bits (if we need), valid bit 

(in the future, cache coherence state 

information)

• Memory addresses A, A+1, A+2, A+3, A+4 

– Spatial locality or temporal locality?: 

– Spatial locality 

• Memory addresses A, B,C, A,B,C,A,B,C

– Spatial locality or temporal locality?

– Temporal locality

• Here is a series of address references given as word address: 

1,4,8,5,20,17,19,56,9,11,4,43,5,6,9,17. Assuming a direct-mapped 
cache with 16 one-word blocks that is initially empty, label each 

reference in the list as a hit or miss and show the final contents of the 

cache. 



1/19/2009

7

• A computer has an 8KB write-through cache. Each cache block is 64 

bits, the cache is 4-way set associative and uses the true LRU 
replacement policy. Assume a 24-bit address space and byte-

addressable memory. How big (in bits) is the tag store

• 8KB/(8Bytes*4) = 2^(8)  sets in the cache

MSB LSB

Block size (3 bits)

Index bits(8 bits)

Tag bits(13 bits)

(13+2(LRU bits)+1(valid bit))*4 * 256 = 16Kbits 

24-3-8 = 13

• Multiple Concurrent

Bank 0 Bank 1 Bank 2 Bank 3

Chip Enable

Word Address

MSB

0 1 2 3

4 5

LSB

Works as like multiple ports 

• Miss rate

– Fraction of memory accesses that miss in 
cache

– Hit rate = 1 – miss rate

• Average memory access time

AMAT = hit time + miss rate * miss penalty

• Memory stall cycles
CPUtime = CycleTime x (CyclesExec + CyclesMemoryStall)

CyclesMemoryStall = CacheMisses x (MissLatencyTotal – MissLatencyOverlapped)



1/19/2009

8

• AMAT = hit time + miss rate * miss penalty

– Reduce miss penalty

– Reduce miss rate

– Reduce hit time

• CyclesMemoryStall = CacheMisses x 

(MissLatencyTotal – MissLatencyOverlapped)

– Increase overlapped miss latency

– Increase memory level parallelism

• The “3 Cs”

– Compulsory: have to have these

• Miss the first time each block is accessed

– Capacity: due to limited cache capacity

• Would not have them if cache size was infinite

– Conflict: due to limited associativity

• Would not have them if cache was fully associative



1/19/2009

9

• DRAM = Dynamic RAM

• SRAM: 6T per bit

– built with normal high-speed CMOS 
technology

• DRAM: 1T per bit

– built with special DRAM process optimized for 
density

b b

SRAM

wordline

b

DRAM

wordline

R
o

w
 D

e
c
o

d
e

r

Sense Amps

Column Decoder

Memory
Cell Array

Row Buffer

Row
Address

Column
Address

Data Bus



1/19/2009

10

• Differences with SRAM
• reads are destructive: contents are erased after 

reading

– row buffer
• read lots of bits all at once, and then parcel them 

out based on different column addresses
– similar to reading a full cache line, but only accessing one 

word at a time

• “Fast-Page Mode” FPM DRAM organizes the 
DRAM row to contain bits for a complete page

– row address held constant, and then fast read from 
different locations from the same page

R
o

w
 D

e
c
o

d
e

r

Sense Amps

Column Decoder

Memory
Cell Array

Row Buffer

0x1FE

0x000

Data Bus

0x0010x002

Accesses 
need not be 

sequential

1

Vdd

Wordline Enabled

Sense Amp Enabled

bitline
voltage

Vdd

storage
cell voltage

sense amp

0

After read of 0 or 1, cell contains
something close to 1/2



1/19/2009

11

1-3 cycles 1st level cache

2nd level cache 10 – 20 cycles 

memory
200 – 600 cycles 

Software prefetcher

Hardware prefetcher

• Predict future misses and get data into 
cache
– If access does happen, we have a hit now

(or a partial miss, if data is on the way)

– If access does not happen, cache pollution
(replaced other data with junk we don’t need)

• To avoid pollution, prefetch buffers
– Pollution a big problem for small caches

– Have a small separate buffer for prefetches

– How big?

• Use 2nd level cache as a prefetch buffer. 

• Two flavors: register prefetch and cache prefetch

• Each flavor can be faulting or non-faulting

– If address bad, does it create exceptions?

• Faulting register prefetch is binding

– It is a normal load, address must be OK, uses register

• Not faulting cache prefetch is non-binding

– If address bad, becomes a NOP

– Does not affect register state

– Has more overhead (load still there),
ISA change (prefetch instruction),
complicates cache (prefetches and loads different)



1/19/2009

12

• Stream

• Stride

• Markov

• Content based prefetcher

• Observer cache miss stream address

• Detect stream or stride behavior 

– L2 cache miss creates stream

– L1 or L2 miss trains stream 

L2 cache miss  (create stream)

L1 or L2 miss (Train stream) 

cache block address

Prefetcher Distance: How Far 

Prefetcher Degree: How many requests 


