
Spring 2009

Prof. Hyesoon Kim

• OpenCL (open computing Language): a framework for writing
programs that execute across heterogeneous platforms considering
CPUs, GPUs, and other processors.

• Initiated by Apple Inc. Now AMD, Intel, NVIDIA, etc.

• AMD gave up CTM (close to Metal) and decided to support OpenCL

• Nvidia will full support openCL1.0

Participating companies. Participating companies.

CPUs
Multiple cores driving

performance increase

GPUs
Increasing general purpose

data-parallel computing

improving numerical precisionEmerging
Intersection

Multi-processor
programming Graphics APIs and

Shading Languages

OpenCL
Heterogeneous
Computing

• Supports both data- and task-based parallel

programming models (CPU: task, GPU: data)

• Utilizes a subset of ISO C99 with extensions for

parallelism

• Defines consistent numerical requirements based • Defines consistent numerical requirements based

on IEEE 754

• Defines a configuration profile for handheld and

embedded devices

• Efficiently interoperates with OpenGL, OpenGL

ES and other graphics APIs

• Software developers write parallel
programs that will run on many devices

• Hardware developers target openCL

• Enables OpenCL on mobile and embedded • Enables OpenCL on mobile and embedded
silicon

• Platform Model

• Memory Model

• Execution Model

• Programming Model• Programming Model

One Host+ one ore more compute devices

-Each compute device is composed of one or more

compute units

-Each compute unit is further divided into one or more

processing units

• OpenCL Program:

– Kernels

• Basic unit of executable code – similar to C function

• Data-parallel or task-parallel

– Host Program– Host Program

• Collection of compute kernels and internal

functions

• Analogous to a dynamic library

• Kernel Execution

– The host program invokes a kernel over an index

space called an NDRange

• NDRange = “N-Dimensional Range”

• NDRange can be a 1, 2, or 3-dimensional space

– A single kernel instance at a point in the index space is – A single kernel instance at a point in the index space is

called a work-item

• Work-items have unique global IDs from the index space

• CUDA thread Ids

– Work-items are further grouped into work-groups

• Work-groups have a unique work-group ID

• Work-items have a unique local ID within a work-group

• CUDA Block IDs

Total number of work-items = Gx x Gy

Size of each work-group = Sx x Sy

• Contexts are used to contain and manage the state of the “world”

• Kernels are executed in contexts defined and manipulated by the host

– Devices

– Kernels - OpenCL functions

– Program objects - kernel source and executable

– Memory objects

• Command-queue - coordinates execution of kernels• Command-queue - coordinates execution of kernels

– Kernel execution commands

– Memory commands - transfer or mapping of memory object data

– Synchronization commands - constrains the order of commands

• Applications queue compute kernel execution instances

– Queued in-order

– Executed in-order or out-of-order

– Events are used to implement appropriate synchronization of execution instances

• Shared memory

– Relaxed consistency

– (similar to CUDA)

• Global memory

– Global memory in CUDA

• Constant memory • Constant memory

– Constant memory in CUDA

• Local memory (local memory

to work group)

– Shared memory in CUDA

• Private memory (private to a

work item)

– local memory in CUDA

• a relaxed consistency memory model

– Across workitems (threads) no consistency

– Within a work-item (thread) load/store

consistency

– Consistency of memory shared between – Consistency of memory shared between

commands are enforced through

synchronization

• Define N-Dimensional computation domain
– Each independent element of execution in an N-Dimensional

domain is called a work-item

– N-Dimensional domain defines the total number of work-items
that execute in parallel = global work size

• Work-items can be grouped together — work-• Work-items can be grouped together — work-

group
– Work-items in group can communicate with each other

– Can synchronize execution among work-items in group to
coordinate memory access

• Execute multiple work-groups in parallel
– Mapping of global work size to work-group can be implicit or

explicit

• Data-parallel execution model must be

implemented by all OpenCL compute devices

• Users express parallelism by

– using vector data types implemented by the

device,device,

– enqueuing multiple tasks, and/or

– enqueing native kernels developed using a

programming model orthogonal to OpenCL.

• Work-items in a single-work group

– Similar to _synchthreads ();

• Synchronization points between
commands and command-queues

– Similar to multiple kernels in CUDA but more

generalized.

– Command-queue barrier.

– Waiting on an event.

• OpenCL Platform layer: The platform layer

allows the host program to discover openCL

devices and their capabilities and to create

contexts.

• OpenCL Runtime: The runtime allows the host • OpenCL Runtime: The runtime allows the host

program to manipulate contexts once they have

been created.

• OpenCL Compiler: The OpenCL compiler

creates program executables that contain

OpenCL kernels

• Platform layer allows applications to query for

platform specific features

• Querying platform info (i.e., OpenCL profile)

• Querying devices
– clGetDeviceIDs()

• Find out what compute devices are on the system• Find out what compute devices are on the system

• Device types include CPUs, GPUs, or Accelerators

– clGetDeviceInfo()

– Queries the capabilities of the discovered compute devices such as:

• Number of compute cores

• NDRange limits

• Maximum work-group size

• Sizes of the different memory spaces (constant, local, global)

• Maximum memory object size

• Creating contexts

– Contexts are used by the OpenCL runtime to manage

objects and execute kernels on one or more devices

– Contexts are associated to one or more devices

– Multiple contexts could be associated to the same

device

– clCreateContext() and clCreateContextFromType()

returns a handle to the created contexts

• Command-queues store a set of operations to

perform

• Command-queues are associated to a context

• Multiple command-queues can be created to

handle independent commands that don’t require handle independent commands that don’t require

synchronization

• Execution of the command-queue is guaranteed

to be completed at sync points

• Buffer objects

– One-dimensional collection of objects (like C arrays)

– Valid elements include scalar and vector types as well as user
defined structures

– Buffer objects can be accessed via pointers in the kernel

• Image objects• Image objects

– Two- or three-dimensional texture, frame-buffer, or images

– Must be addressed through built-in functions

• Sampler objects

– Describes how to sample an image in the kernel

– Addressing modes

– Filtering modes

• Derived from ISO C99
– A few restrictions: recursion, function pointers, functions in C99 standard

headers ...

– Preprocessing directives defined by C99 are supported

• Built-in Data Types
– Scalar and vector data types, Pointers

– Data-type conversion functions: convert_type<_sat><_roundingmode>

– Image types: image2d_t, image3d_t and sampler_t

• Built-in Functions — Required
– work-item functions, math.h, read and write image

– Relational, geometric functions, synchronization functions

• Built-in Functions — Optional
– double precision, atomics to global and local memory

– selection of rounding mode, writes to image3d_t surface

• Pointers to functions are not allowed

• Pointers to pointers allowed within a kernel, but not as an

argument

• Bit-fields are not supported

• Variable length arrays and structures are not supported

• Recursion is not supported

• Writes to a pointer of types less than 32-bit are not

supported

• Double types are not supported, but reserved

– (Newer CUDA support this)

• 3D Image writes are not supported

• Some restrictions are addressed through extensions

OpenCL CUDA

Execution Model Work-groups/work-items Block/Thread

Memory model Global/constant/local/priv

ate

Global/constant/shared/lo

cal

+ Texture + Texture

Memory consistency Weak consistency Weak consistency

Synchronization Synchronization using a

work-group barrier

(between work-items)

Using synch_threads

Between threads

http://www.geeks3d.com/?p=2582

http://www.geeks3d.com/?p=2582

