

CS4803DGC Design Game Consoles

Spring 2009 Prof. Hyesoon Kim

Amdahl's Law (1)

Question

Profile data (before parallelizing application)
 func(A): 20% → non parallelizable section
 func(B): 80% → parallelizable section

Maximum speedup using 8-core processor? Maximum speedup using 128-core GPU?

Answer

Amdahl's Law (2)

Heterogeneous Architecture

- Fast core: Sequential portion
- simple cores: parallel portion

DRAM MEMORY CONTROLLERS

Georgia Tech Computing

REVIEW: Hardware Structures

REVIEW: DRAM Chip Organization

Duty of Memory Controllers

- Memory requesting scheduling
 - Ordering memory requests
 - FCFS, FRFCFS etc.
- Send commands
 Read, write, CS
- DRAM refresh counter control

128M x 8-bit DRAM Chip

A 64-bit Wide DIMM

http://www.ece.cmu.edu/~ece741/

A 64-bit Wide DIMM

Advantages:

- Acts like a highcapacity DRAM chip with a wide interface
- Flexibility: memory controller does not need to deal with individual chips

Disadvantag es:

Granularity: Accesses cannot be smaller than the interface width

Tech

Multiple DIMMs

DRAM Channels

- 2 Independent Channels: 2 Memory Controllers (Above)
- 2 Dependent/Lockstep Channels: 1 Memory Controller with wide interface (Not Shown above)

http://www.ece.cmu.edu/~ece741/

Computer Architecture Research

- Architecture
 - Core design
 - Performance evaluations
 - Simulation
- Architecture + VLSI/circuit
- Compiler + architecture
- O/S + architecture

Processor Design

Georgia Tech College of Computing

More Detail

- Instruction supply
 - Branch predictors
 - Instruction prefetch, ooo fetch
- Data supply
 - Data prefetch
 - Speculative execution
 - Cache compression, replacement policy, increase bandwidth
 - Memory scheduler/controller, performance, fairness

More Detail

- Core design
 - Increase ILP: scheduling, register renaming, cluster, load store queue design, memory disambiguation, data-flow graph
 - Increase MLP: speculative execution, runahead execution,
 - Increase TLP: SMT, transactional memory

Georgia

- High performance, energy efficiency
- Interconnect
 - Memory, cache connections

Georgia

College of

Tech Computing

More Detail

- New technologies
 - 3D technology
 - Bio/nano
 - Quantum computing
 - New memory technology (PCM)
- Reliability
- Performance debugging
 - Deterministic exeuction
- Security
- Programmability

Requirements for GC

- Time constrain
- Lots of Data
- Heavy use of graphics
- Both Integer/floating point operations are important
- Floating point \rightarrow low precision
- Stream applications
- Embedded systems
- Various I/O devices
- No comparability issues (no reason to support legacy code)

Georgia

Comput

- All the platform is stable:
- Platform optimizations

Xbox 360 System Block Diagram

Figure 2. Xbox 360 system block diagram.

Georgia College of Tech Computing

Georgia

College of

Xbox 360 Architecture

- 3 CPU cores
 - -4-way SIMD vector units
 - -8-way 1MB L2 cache (3.2 GHz)
- 48 unified shaders
- 3D graphics units
- 512-Mbyte DRAM main memory
- FSB (Front-side bus): 5.4 Gbps/pin/s
- 10.8 Gbyte/s read and write

Xbox 360 CPU Block Diagram

Xbox 360 Memory Architecture

- embedded DRAM(eDRAM): frame buffers,
- 10MB
- Daughter chip: AZ: all alpha and Depth testing.

College of

Computing

rgia

Tech

Xbox 360 Graphics Processors

Figure 18.16. Block diagram of the Xbox 360 graphics processor.

Cell

Cell Architecture is … 64b Power Architecture™+ MFC

PPE Major Units

PPE Pipeline

SPE Major Units

SPE Pipeline

GeForce 8800 GTX

GeForce-8 Series HW Overview

Programmable Pipeline Comparison

Larrabee Architecture

Georgia

College of

Tech // Computing

- 4-way SMT in order processor with cache coherence
- Extended X86 ISA
- Fixed functions: texture filtering

ARM7 TDMI

- 32/16-bit RISC
- 32-bit ARM instruction set
- 16-bit Thumb instruction set
- 3-stage pipeline
- Very small die size and low power
- Unified bus interface (32-bit data bus carries both instruction, data)

ARM9

- 5-stage pipeline
- I-cache and D-cache
- Floating point support with the optional VFP9-S coprocessor
- Enhanced 16 x 32-bit multiplier capable of single cycle MAC operations
- The ARM946E-S
 processor supports
 ARM's real-time trace
 technology

Conclusion

- Game architecture is a leading architecture
- Yesterday's scientific workload → today's Game workload → tomorrow's daily user workload

Final Report

• Guideline is posted.

Georgia

Final Exam Guidline

- Buzzword, sample exam will be posted during the weekend.
- Office hours on Tuesday 3:30-5:30
- Performance evaluation
- Comprehensive
 - Review mid-term exams

• Final exam starts at 8:30!!