Chapter 3

Section 2.5.1

~

In Chapters 3 and 4, we considered linear parametric models for regression and
classification in which the form of the mapping y(x.w) from input X to output y
is governed by a vector w of adaptive parameters. During the learning phase. a
set of training data is used either to obtain a point estimate of the parameter vector
or to determine a posterior distribution over this vector. The training data is then
discarded, and predictions for new inputs are based purely on the learned parameter
vector w. This approach is also used in nonlinear parametric models such as neural
networks.

However, there is a class of pattern recognition techniques, in which the training
data points, or a subset of them, are kept and used also during the prediction phase.
For instance, the Parzen probability density model comprised a linear combination
of ‘kernel’ functions each one centred on one of the training data points. Similarly,
in Section 2.5.2 we introduced a simple technique for classification called nearest
neighbours, which involved assigning to each new test vector the same label as the
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closest example from the training set. These are examples of memory-based methods
that involve storing the entire training set in order to make predictions for future data
points. They typically require a metric to be defined that measures the similarity of
any two vectors in input space, and are generally fast to “train’ but slow at making
predictions for test data points.

Many linear parametric models can be re-cast into an equivalent ‘dual represen-
tation’ in which the predictions are also based on linear combinations of a kernel

function evaluated at the training data points. As we shall see, for models which are

based on a fixed nonlinear feature space mapping ¢(x), the kernel function is given
by the relation
k(x.x) = o(x)T o (x). (6.1)

From this definition, we see that the kernel is a symmetric function of its arguments
so that k(x.x') = k(x'.x). The kernel concept was introduced into the field of pat-
tern recognition by Aizerman ez al. (1964) in the context of the method of potential
functions, so-called because of an analogy with electrostatics. Although neglected
for many years, it was re-introduced into machine learning in the context of large-
margin classifiers by Boser er al. (1992) giving rise to the technique of support
vector machines. Since then. there has been considerable interest in this topic, both
in terms of theory and applications. One of the most significant developments has
been the extension of kernels to handle symbolic objects, thereby greatly expanding
the range of problems that can be addressed.

The simplest example of a kernel function is obtained by considering the identity
mapping for the feature space in (6.1) so that ¢(x) = x. in which case k(x.x') =
xTx’. We shall refer to this as the linear kernel.

The concept of a kernel formulated as an inner product in a feature space allows
us to build interesting extensions of many well-known algorithms by making use of
the kernel trick. also known as kernel substitution. The general idea is that, if we have
an algorithm formulated in such a way that the input vector x enters only in the form
of scalar products. then we can replace that scalar product with some other choice of
kernel. For instance, the technique of kernel substitution can be applied to principal
component analysis in order to develop a nonlinear variant of PCA (Schélkopf er al..
1998). Other examples of kernel substitution include nearest-neighbour classifiers
and the kernel Fisher discriminant (Mika ef al.. 1999: Roth and Steinhage. 2000:
Baudat and Anouar, 2000).

There are numerous forms of kernel functions in common use, and we shall en-
counter several examples in this chapter. Many have the property of being a function
only of the difference between the arguments. so that E(x.x') = k(x —x), which
are known as starionary kernels because they are invariant to translations in input
space. A further specialization involves homogeneous kernels, also known as ra-
dial basis functions. which depend only on the magnitude of the distance (typically
Euclidean) between the arguments so that k(x. x") = k(|lx — x'[}).

For recent textbooks on kernel methods, see Schélkopf and Smola (2002), Her-
brich (2002), and Shawe-Taylor and Cristianini (2004).



Figure 6.3 lllustration of the Nadaraya-Waison kernel
regression model using isotropic Gaussian kernels, for the
sinusoidal data set. The original sine function is shown
by the green curve, the data points are shown in blue,
and each is the cenire of an isotropic Gaussian kernel.
The resulting regression function, given by the condi-
tional mean, is shown by the red line, along with the two-
standard-deviation region for the conditional distribution

p(tiz) shown by the red shading. The blue ellipse around

gach data point shows one standard deviation contour for
the corresponding kernel. These appearnoncircular-due
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to the different scales on the horizontal and vertical axes.
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In fact, this model defines not only a conditional expectation but also a full
conditional distribution given by
Z 7L X — Xp, U — fn )
plt.x)

/p(f X df Z/]L X Xm- _tm,) dt

from which other expectations can be evaluated.

As an illustration we consider the case of a single input variable & in which
f(x.t) is given by a zero-mean isotropic Gaussian over the variable z = (x, ) with
variance o>. The corresponding conditional distribution (6.48) is given by a Gaus-
sian mixture, and is shown, together with the conditional mean, for the sinusoidal
synthetic data set in Figure 6.3

An obvious extension of this model is to allow for more flexible forms of Gaus-
sian components, for instance having different variance parameters for the input and
target variables. More generally, we could model the joint distribution p(7, x) using
a Gaussian mixture model, trained using techniques discussed in Chapter 9 (Ghahra-
mani and Jordan, 1994), and then find the corresponding conditional distribution
p(t]x). In this latter case we no longer have a representation in terms of kernel func-
tions evaluated at the training set data points. Howev er. the number of components
in the mixture model can be smaller than the number of training set points, resulting
in a model that is faster to evaluate for test data points. We have thereby accepted an
increased computational cost during the txammo phase in order to have a model that
is faster at making predictions.

pltx) = (6.48)

Gaussian Processes

In Section 6.1, we introduced kernels by:applying the concept of duality to a non-
probabilistic model for regression. Here we extend the role of kernels to probabilis-




304

6. KERNEL METHODS

tic discriminative models, leading to the framework of Gaussian processes. We shall
thereby see how kernels arise naturally in a Bayesian setting.

In Chapter 3. we considered linear regression models of the form y(x, w) =
wTl(x)in which w is a vector of parameters and ¢(x) is a vector of fixed nonlinear
basis functions that depend on the input vector x. We showed that a prior distribution
over w induced a corresponding prior distribution over functions y(x, w). Given a
training data set. we then evaluated the posterior distribution over w and thereby
obtained the corresponding posterior distribution over regression functions, which
in turn (with the addition of noise) implies a predictive distribution p(t|x) for new
input vectors X.

In the Gaussian process viewpoint, we dispense with the parametric model and
instead define a prior probability distribution over functions directly. At first sight. it
might seem difficult to work with a distribution over the uncountably infinite space of
functions. However, as we shall see, for a finite training set we only need to consider
the values of the function at the discrete set of input values X corresponding to the
training set and test set data points, and so in practice we can work in a finite space.

Models equivalent to Gaussian processes have been widely studied in many dif-
ferent fields. For instance, in the geostatistics literature Gaussian process regression
is known as kriging (Cressie, 1993). Similarly, ARMA (autoregressive moving aver-
age) models, Kalman filters, and radial basis function networks can all be viewed as
forms of Gaussian process models. Reviews of Gaussian processes from a machine
learning perspective can be found in MacKay (1998), Williams (1999). and MacKay
(2003), and a comparison of Gaussian process models with alternative approaches is
given in Rasmussen ( 1996). See also Rasmussen and Williams (2006) for a recent
textbook on Gaussian processes.

6.4.1 Linear regression revisited

In order to motivate the Gaussian process viewpoint, let us return to the linear
regression example and re-derive the predictive distribution by working in terms
of distributions over functions y(x.w). This will provide a specific example of a
Gaussian process.

Consider a model defined in terms of a linear combination of M fixed basis
functions given by the elements of the vector &(x) so that

N . e

y(x) = wt (%) (6.49)

where x is the input vector and w is the }/-dimensional weight vector. Now consider
a prior distribution over w given by arrfsotropic Gaussian of the form

p(w) = N(w]0.a™'T) (6.50)

governed by the hyperparameter a, which represents the precision (inverse variance)
of the distribution. For any given value of w, the definition (6.49) defines a partic-
ular function of x. The probability distribution over w defined by (6.50) therefore
induces a probabilit}?distribu_tion over functions y(x). In practice, we wish to eval-
uate this function 4t s"f)gc_«iﬁé values of x. for example at the training data points
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Xj.....Xx. We are therefore interested in the joint distribution of the function val-
ues y(x1), ..., y(x), which we denote by the vector Y with elements y, = y(xn)
forn = 1,....N. From (6.49), this vector is given by

y=&w (6.51)

where @ is the design matrix with elements @, = o5.(x,). We can find the proba-
bility distribution of y as follows. First of all we note that Y is a linear combination of
Gaussian distributed variables given by the elements of w and hence is itself Gaus-
sian. We therefore need only to find its mean and covariance. which are given from
(6.50) by

Ely] = @Ew|=0 (6.32)
covlyl = E[yy"] =@E[ww'|®" = %@@T =K (6.53)

where K is the Gram matrix with elements
Kpm = (X0, Xm) = %(ﬁ)(xn)T,@'(xm ) (6.54)

and k(x.x') is the kernel function.

This model provides us with a particular example of a Gaussian process. In gen-
eral, a Gaussian process is defined as a probability distribution over functions y(x)
such that the set of values of y(x) evaluated at an arbitrary set of points X;... .. XN
jointly have a Gaussian distribution. In cases where the input vector x is two di-
mensional, this may also be known as a Gaussian random field. More generally, a
stochastic process y(x) is specified by giving the joint probability distribution for
any finite set of values y(x;).....y(xy) in a consistent manner.

A key point about Gaussian stochastic processes is that the joint distribution
over N variables yi..... y~ is specified completely by the second-order statistics.
namely the mean and the covariance. In most applications, we will not have any
prior knowledge about the mean of y(x) and so by symmetry we take it to be zero.
This is equivalent to choosing the mean of the prior over weight values p(wl]a) to
be zero in the basis function viewpoint. The specification of the Gaussian process is
then completed by giving the covariance of y(x) evaluated at any two values of x,
which is given by the kernel function

2 [y ()Y (6m )] = F(p X ) (6.55)

For the specific case of a Gaussian process d&fined by the linear regression model
(6.49) with a weight prior (6.50). the kernel function is given by (6.54).

We can also define the kernel function directly, rather than indirectly through a
choice of basis function. Figure 6.4 shows samples of functions drawn from Gaus-
sian processes for two different choices of kernel function. The first of these is a
‘Gaussian’ kernel of the form (6.23), and the second is the exponential kernel given
by

= k(x, II) = exp (=0 |x — l‘I]) (6.56)
which corresponds to the Ornstein-Uhlenbeck process originally introduced by Uh-
lenbeck and Ornstein (1930) to.describé Brownian motion.
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Figure 6.4 Samples from Gaus-
sian processes for a ‘Gaussian’ ker-
nel (left) and an exponential kernel

(right).

LI

(9%}

6.4.2 Gaussian processes for regression
In order to apply Gaussian process models to the problem of regression, we need
to take account of the noise on the observed target values, which are given by

th = Yn T €n (657)

where y, = y(x,). and €, is a random noise variable whose value is chosen inde-
pendently for each observation n. Here we shall consider noise processes that have
a Gaussian distribution, so that

p(tn lyn ) = f\"r(tn kyn . ,'3_1,) (658)

where 3 is a hyperparameter representing the precision of the noise. Because the
noise is independent for each data point, the joint distribution of the target values

t= (t..... tx)T conditioned on the values of y = (y1.. ... y~x )T is given by an
isotropic Gaussian of the form
p(tly) = Ny, 37 Ix) (6.59)

where T denotes the NV x N unit matrix. From the definition of a Gaussian process.
the marginal distribution p(y) is given by a Gaussian whose mean is zero and whose
covariance is defined by a Gram matrix K so that
s R \,
ply) = N(yl0.K).
The kernel function that determines K is typically chosen to express the property
that, for points x, and X, that are similar, the corresponding values y(x,) and

(6.60)

y (%) will be more strongly correlated than for dissimilar points. Here the notion
of similarity will depend on the application.
In order to find the marginal distribution p(t). conditioned on the input values
ST xx. we need to integrate over Y. This can be done by making use of the
results from Section 2.3.3 for the lingar-Gaussian model. Using (2.115), we see that
the marginal distribution’ef t is given by . *-

P

‘)p(&) dy = \(10.C) (6.61)
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where the covariance matrix C has elements
N o
C(Xn- Xm ) = k(Xn Xm ) + 3 -Onm . (662)

This result reflects the fact that the two Gaussian sources of randomness. namely

that associated with y(x) and that associated with €. are independent and so their

covariances simply add.

One widely used kerniel function for Gaussian process regression is given by the
exponential of a quadratic form, with the addition of constant and linear terms to
give

6 5
k(Xn.Xm) = g exp {—“_)inn — Xm []‘} 4By + 93X;{X,n. (6.63)

Note that the term involving #3 corresponds to a parametric model that is a linear
function of the input variables. Samples from this prior are plotted for various values
of the parameters &g. . . ., .05 in Figure 6.5, and Figure 6.6 shows a set of points sam-
pled from the joint distribution (6.60) along with the corresponding values defined
by (6.61).

So far. we have used the Gaussian process viewpoint to build a model of the
joint distribution over sets of data points. Our goal in regression. however. is to
make predictions of the target variables for new inputs. given a set of training data.
Let us suppose that Ty = (¢1..... ta) T, corresponding to input values X;. .. .. XN
comprise the observed training set. and our goal is to predict the target variable ¢ y .1
for a new input vector xy.;. This requires that we evaluate the predictive distri-
bution p(tx .|ty ). Note that this distribution is conditioned also on the variables
Xiveoos .xx and x .. However. to keep the notation simple we will not show these
condltlomng variables explicitly.

To find the conditional distribution p(¢y.1]t). we begin by writing down the
joint distribution p(tx.1). where tx.; denotes the vector (t1, ..., ta.tne1)t. We
then apply the results from Section 2.3.1 to obtain the required conditional distribu-
tion, as illustrated in Figure 6.7.

From (6.61), the joint distribution over ;.. ... tx.1 will be given by

pltyvsr) = N(ty 10, Gra1) (6.64)

where Cy.q is an (N + 1) x (N + 1) covariance matrix with elements given by
(6.62). Because this joint distribution is Gaussian, we can apply the results from
Section 2.3.1 to find the conditional Gaussian distribution. To do this, we partition
the covariance matrix as follows -

Crnir = < %- 1; ) (6.63)

where C is the N x N .govariance matu”"thh elements given by (6 62)forn,m =
1.....! . N, the \/ectm k has element A(xn X\_l) forn =1,..., N, and the scalar
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Figure 8.5 Samples from a Gaussian process prior defined by the covariance function (6.63). The title above
each plot denotes (8o, 61.62.03).

c=hk(XNi1.XN+1) T 31, Using the results (2.81) and (2.82), we see that the con-

ditional distribution p(ty.1|t) is a Gaussian distribution with mean and covariance
given by

m{xye1) = kTCHt (6.66)
o (xye1) = c—k'Ci'k (6.67)

These are the key results that define Gaussian process regression. Because the vector
k is a function of the test point input value X1, we see that the predictive distribu-
tion is a Gaussian whose mean and variance both depend on Xx.1. An example of
Gaussian process regression is shown in Figure 6.8.

The only restriction on the kernel function is that the covariance matrix given by
(6.62) must be positive definite. If A; is an eigenvalue of K, then the corresponding
eigenvalue of C will be A; + 371, It is therefore sufficient that the kernel matrix
k(x,.Xm) be positive semidefinite for any pair of points X, and X, s0 that \; = 0.
because any eigenvalue )\; that is zero will still give rise to a positive eigenvalue
for C because 3 > 0. This is the same restriction on the kernel function discussed
earlier, and so we can again exploit all of the techniques in Section 6.2 to construct
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lilustration of the sampling of data .
points {¢, } from a Gaussian process.
The blue curve shows a sample func- o]
tion from the Gaussian process prior
over functions, and the red points
show the values of y, obtained by
evaluating the function at a set of in-
put values {z.}. The correspond-
ing values of {t.}, shown in green, -
are obtained by adding independent
Gaussian noise to each of the {yn }.

~1 0 x 1

suitable kernels.
Note that the mean (6.66) of the predictive distribution can be written, as a func-
tion of X1, in the form

N

m(xXye1) = z ank(xn. Xxve1) (6.68)

n=1

where a,, is the n*" component of C;,-lt. Thus, if the kernel function k(x,.Xm)
depends only on the distance ||, — X[/, then we obtain an expansion in radial
basis functions.

The results (6.66) and (6.67) define the predictive distribution for Gaussian pro-
cess regression with an arbitrary kernel function k(X Xnm ). In the particular case in
which the kernel function &(x, x') is defined in terms of a finite set of basis functions,
we can derive the results obtained previously in Section 3.3.2 for linear regression
starting from the Gaussian process viewpoint.

For such models, we can therefore obtain the predictive distribution either by
taking a parameter space viewpoint and using the linear regression result or by taking
a function space viewpoint and using the Gaussian process result.

The central computational operation in using Gaussian processes will involve
the inversion of a matrix of size N x N, for which standard methods require O(NB)
computations. By contrast, in the basis function model we have to invert a matrix
S of size M x M, which has O(M3) computational complexity. Note that for
both viewpoints, the matrix inversion must be performed once for the given training
set. For each new test point, both methods require a vector-matrix multiply. which
has cost O(NN?) in the Gaussian process case and O(M?) for the linear basis func-
tion model. If the number M of basis functions is smaller than the number N of
data points, it will be computationally more efficient to work in the basis function
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Figure 6.7

Exercise 0.23

Figure 6.8

lllustration of the mechanism of
Gaussian process regression for [2
the case of one fraining point and
one test point, in which the red el-
lipses show contours of the joint dis-
tribution p(t1.t2). Here ¢y is the
training data point, and condition- /
ing on the value of ¢, correspond- m(xz)d
[/
//
[
\\

ing to the vertical blue line, we ob-
tain p(t2t:) shown as a function of
ts by the green curve. /

[ t

-1 0 1

framework. However, an advantage of a Gaussian processes viewpoint is that we
can consider covariance functions that can only be expressed in terms of an infinite
number of basis functions.

For large training data sets, however, the direct application of Gaussian process
methods can become infeasible, and so a range of approximation schemes have been
developed that have better scaling with training set size than the exact approach
(Gibbs, 1997: Tresp, 2001: Smola and Bartlett. 2001: Williams and Seeger. 2001:
Csat6 and Opper, 2002: Seeger et al., 2003). Practical issues in the application of
Gaussian processes are discussed in Bishop and Nabney (2008).

We have introduced Gaussian process regression for the case of a single tar-
get variable. The extension of this formalism to multiple target variables. known
as co-kriging (Cressie, 1993), is straightforward. Various other extensions of Gaus-

llustration of Gaussian process re-
gression applied to the sinusoidal
data set in Figure A.6 in which the
three right-most data points have
been omitted. The green curve
shows the sinusoidal function from
which the data points, shown in
blue, are obtained by sampling and
addition of Gaussian noise. The
red line shows the mean of the
Gaussian process predictive distri-
bution, and the shaded region cor-
responds to plus and minus two
standard deviations. Notice how . . , . . .
the uncertainty increases in the re- 0 0.2 0.4 0.6 0.8 1
gion to the right of the data points.
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sian process regression have also been considered, for purposes such as modelling
the distribution over low-dimensional manifolds for unsupervised learning (Bishop
et al., 1998a) and the solution of stochastic differential equations (Graepel, 2003).

6.4.3 Learning the hyperparameters

The predictions of a Gaussian process model will depend, in part, on the choice
of covariance function. In practice, rather than fixing the covariance function, we
may prefer to use a parametric family of functions and then infer the parameter
values from the data. These parameters govern such things as the length scale of the
correlations and the precision of the noise and correspond to the hyperparameters in
a standard parametric model.

Techniques for learning the hyperparameters are based on the evaluation of the
likelihood function p(t|@) where 6 denotes the hyperparameters of the Gaussian pro-
cess model. The simplest approach is to make a point estimate of 8 by maximizing
the log likelihood function. Because 6 represents a set of hyperparameters for the
regression problem. this can be viewed as analogous to the type 2 maximum like-
lihood procedure for linear regression models. Maximization of the log likelihood
can be done using efficient gradient-based optimization algorithms such as conjugate
eradients (Fletcher, 1987; Nocedal and Wright, 1999: Bishop and Nabney. 2008).

The log likelihood function for a Gaussian process regression model is easily
evaluated using the standard form for a multivariate Gaussian distribution, giving

; N
Inp(te) = _% In|Cx| — %tTC}lt - 5 In(2m). (6.69)

For nonlinear optimization, we also need the gradient of the log likelihood func-
tion with respect to the parameter vector . We shall assume that evaluation of the
derivatives of C is straightforward, as would be the case for the covariance func-
tions considered in this chapter. Making use of the result (C.21) for the derivative of
C;—l, together with the result (C.22) for the derivative of In |C x|, we obtain

d R S T oo W U
—%hlp(tia) = —§T1 <C‘\- —0_9—1—> + §t Cy

OCxw
06,

Cy't. (6.70)

Because In p(t]0) will in general be a nonconvex function, it can have multiple max-
ima.

It is straightforward to introduce a prior over 8 and to maximize the log poste-
rior using gradient-based methods. In a fully Bayesian treatment, we need to evaluate
marginals over 8 weighted by the product of the prior p(8) and the likelihood func-
tion p(t|@). In general, however, exact marginalization will be intractable, and we
must resort to approximations.

The Gaussian process regression model gives a predictive distribution whose
mean and variance are functions of the input vector x. However. we have assumed
that the contribution to the predictive variance arising from the additive noise. gov-
erned by the parameter 3, is a constant. For some problems, known as heteroscedas-
ric. the noise variance itself will also depend on x. To model this, we can extend the
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Figure 6.9 Samples from the ARD
prior for Gaussian processes, in

which the kernel function is given by
(6.71). The left plot corresponds to
m = 12 = 1, and the right plot cor-
responds to nu = 1, n2 = 0.01L.

Gaussian process framework by introducing a second Gaussian process to represent
the dependence of 3 on the input x (Goldberg et al.. 1998). Because 7 is a variance,
and hence nonnegative, we use the Gaussian process t0 model In J(x).

6.4.4 Automatic relevance determination

In the previous section, we saw how maximum likelihood could be used to de-
termine a value for the correlation length-scale parameter in a Gaussian process.
This technique can usefully be extended by incorporating a separate parameter for
each input variable (Rasmussen and Williams, 2006). The result, as we shall see, is
that the optimization of these parameters by maximum likelihood allows the relative
importance of different inputs to be inferred from the data. This represents an exam-
ple in the Gaussian process context of automatic relevance determination, or ARD.
which was originally formulated in the framework of neural networks (MacKay,
1994: Neal, 1996). The mechanism by which appropriate inputs are preferred is
discussed in Section 7.2.2.

Consider a Gaussian process with a two-dimensional input space X = (1. 22).
having a kernel function of the form

1< s ,
E(x.x') = 6fgexp ~—5Z]7i(l’i~1‘i)“ ) (6.71)

T i=1

Samples from the resulting prior over functions y(x) are shown for two different
settings of the precision parameters 7; in Figure 6.9. We see that, as a particu-
lar parameter 7; becomes small, the function becomes relatively insensitive to the
corresponding input variable ;. By adapting these parameters to a data set using
maximum likelihood, it becomes possible to detect input variables that have little
effect on the predictive distribution, because the corresponding values of r; will be
small. This can be useful in practice because it allows such inputs to be discarded.
ARD is illustrated using a simple synthetic data set having three inputs 21, 2 and z'3
(Nabney, 2002) in Figure 6.10. The target variable ¢, is generated by sampling 100
values of x; from a Gaussian. evaluating the function sin(27x, ), and then adding
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[Hustration of automatic rele- .
vance determination in a Gaus- 10
sian process for a synthetic prob-

lem having three inputs z1, x»,

and z3, for which the curves

show the corresponding values of 10
the hyperparameters . (red), n;

(green), and n; (blue) as a func-
tion of the number of iterations

when optimizing the marginal 10!
likelihood. Details are given in
the text. Note the logarithmic
scale on the vertical axis.
10 : : : -
0 20 40 60 §0 100

Gaussian noise. Values of 1, are given by copying the corresponding values of x;
and adding noise. and values of x5 are sampled from an independent Gaussian dis-
tribution. Thus x4 is a good predictor of ¢, x5 is a more noisy predictor of £, and 23
has only chance correlations with ¢. The marginal likelihood for a Gaussian process
with ARD parameters 1. 72, 173 is optimized using the scaled conjugate gradients
algorithm. We see from Figure 6.10 that 77; converges to a relatively large value, 7>
converges to a much smaller value, and 773 becomes very small indicating that x5 is
irrelevant for predicting t.

The ARD framework is easily incorporated into the exponential-quadratic kernel
(6.63) to give the following form of kernel function, which has been found useful for
applications of Gaussian processes to a range of regression problems

D D

1 . , :

'Zf'(xn- Xm) = 90 exp _; § 77i(l'ni - Imi)2 + 92 -+ 93 § Tnilmi (672)
i=1

T =1
where D is the dimensionality of the input space.

6.4.5 Gaussian processes for classification

In a probabilistic approach to classification, our goal is to model the posterior
probabilities of the target variable for a new input vector, given a set of training
data. These probabilities must lie in the interval (0. 1). whereas a Gaussian process
model makes predictions that lie on the entire real axis. However, we can easily
adapt Gaussian processes to classification problems by transforming the output of
the Gaussian process using an appropriate nonlinear activation function.

Consider first the two-class problem with a target variable t € {0, 1}. If we de-
fine a Gaussian process over a function a(x) and then transform the function using
a logistic sigmoid y = o(a), given by (4.59), then we will obtain a non-Gaussian
stochastic process over functions y(x) where y € (0,1). This is illustrated for the
case of a one-dimensional input space in Figure 6.11 in which the probability distri-
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Figure 6.11 The left plot shows a sample from a Gaussian process prior over functions a(x), and the right plot
shows the result of transforming this sample using a logistic sigmoid function.

bution over the target variable ¢ is then given by the Bernoulli distribution

pltla) = o(a)’ (1 — ala))*~t. (6.73)
As usual, we denote the training set inputs by Xi....,xx with corresponding
observed target variables t = (¢..... tx)T. We also consider a single test point

Xy -1 with target value ¢x.;. Our goal is to determine the predictive distribution
pltx.1|t). where we have left the conditioning on the input variables implicit. To do
this we introduce a Gaussian process prior over the vector ay.;, which has compo-
nents a(xi)..... a(Xx=1). This in turn defines a non-Gaussian process over t i,
and by conditioning on the training data t »- we obtain the required predictive distri-
bution. The Gaussian process prior for ay..; takes the form

plansi) = -’f\/’(a;\"~1 10.Cxuy). (6.74)

Unlike the regression case, the covariance matrix no longer includes a noise term
because we assume that all of the training data points are correctly labelled. How-
ever, for numerical reasons it is convenient to introduce a noise-like term governed
by a parameter v that ensures that the covariance matrix is positive definite. Thus
the covariance matrix C ., has elements given by

Ci(xn Xm ) = A'(Xn s Xm ) -+ 1/011”2 (675)

where k(x,, %,,) is any positive semidefinite kernel function of the kind considered
in Section 6.2, and the value of v is typically fixed in advance. We shall assume that
the Kernel function k(x.x’) is governed by a vector @ of parameters, and we shall
later discuss how 6 may be learned from the training data.

For two-class problems, it is sufficient to predict pltxey = 1]ty) because the
value of p(tx.; = Ofty) is then given by 1 — p(txer = 1ty). The required
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predictive distribution is given by
plixay = 1ty) = /p(t.\q = llaxoi)plavaijty) daxsy (6.76)

where p(tye; = lans1) = olan.1).

This integral is analytically intractable, and so may be approximated using sam-
pling methods (Neal, 1997). Alternatively, we can consider techniques based on
an analytical approximation. In Section 4.5.2, we derived the approximate formula
(4.153) for the convolution of a logistic sigmoid with a Gaussian distribution. We
can use this result to evaluate the integral in (6.76) provided we have a Gaussian
approximation to the posterior distribution p(ax 1|ty ). The usual justification for a
Gaussian approximation to a posterior distribution is that the true posterior will tend
to a Gaussian as the number of data points increases as a consequence of the central
limit theorem. In the case of Gaussian processes. the number of variables grows with
the number of data points. and so this argument does not apply directly. However, if
we consider increasing the number of data points falling in a fixed region of x space,
then the corresponding uncertainty in the function a(x) will decrease, again leading
asymptotically to a Gaussian (Williams and Barber, 1998).

Three different approaches to obtaining a Gaussian approximation have been
considered. One technique is based on variarional inference (Gibbs and MacKay,
2000) and makes use of the local variational bound (10.144) on the logistic sigmoid.
This allows the product of sigmoid functions to be approximated by a product of
Gaussians thereby allowing the marginalization over ay to be performed analyti-
cally. The approach also yields a lower bound on the likelihood function p(t18).
The variational framework for Gaussian process classification can also be extended
to multiclass (X > 2) problems by using a Gaussian approximation to the softmax
function (Gibbs, 1997).

A second approach uses expectation propagation (Opper and Winther, 2000b:
Minka, 2001b; Seeger, 2003). Because the true posterior distribution is unimodal, as
we shall see shortly. the expectation propagation approach can give good results.

6.4.6 Laplace approximation

The third approach to Gaussian process classification is based on the Laplace
approximation, which we now consider in detail. In order to evaluate the predictive
distribution (6.76), we seek a Gaussian approximation to the posterior distribution
over a3, which, using Bayes’ theorem, is given by

playalty) = /IJ(CIN—L ay|ty)day
= ) playci.an)pylayci. ax R
1

i

[ plax-lasipaypityley) day

/p(d_y.,l lay)playity)dayx 6.77)

fl
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where we have used p(ty|ax.i.ay) = p(ty]ay). The conditional distribution
plax«1lay) is obtained by invoking the results (6.66) and (6.67) for Gaussian pro-
cess regression, to give

plaxsilay) = N(ava k'Cllay.c — kT C{k). (6.78)

We can therefore evaluate the integral in (6.77) by finding a Laplace approximation
for the posterior distribution p(axy|ty). and then using the standard result for the
convolution of two Gaussian distributions.

The prior p(ay) is given by a zero-mean Gaussian process with covariance ma-
trix Cy, and the data term (assuming independence of the data points) is given by

N N
plivlay) = [T ola)™(1 ~o(a) " = [ e "o(-a). (679
n=1

n=1

We then obtain the Laplace approximation by Taylor expanding the logarithm of
plax|ty), which up to an additive normalization constant is given by the quantity

Ulay) = lnplay)+lnpltylay)
1 N

N |
= —-;a}C}la_\- - In(27) — 5n ICx| +thay

"\'.
- Z In(1 + €% ) + const. (6.80)

n=1

First we need to find the mode of the posterior distribution, and this requires that we
evaluate the gradient of ¥(ay ), which is given by

Vi(ay) =ty —or - Ciay (6.81)

where oy is a vector with elements o(a,). We cannot simply find the mode by
setting this gradient to zero, because o n depends nonlinearly on ay, and so we
resort to an iterative scheme based on the Newton-Raphson method, which gives rise
to an iterative reweighted least squares (IRLS) algorithm. This requires the second
derivatives of ¥(ay ). which we also require for the Laplace approximation anyway,
and which are given by

VVU(ay) = -Wy - C}’ (6.82)

where W  is a diagonal matrix with elements o(a, )(1 — ¢(a,)). and we have used
the result (4.88) for the derivative of the logistic sigmoid function. Note that these
diagonal elements lie in the range (0.1/4), and hence Wy is a positive definite
matrix. Because C (and hence its inverse) is positive definite by construction, and
because the sum of two positive definite matrices is also positive definite, we see
that the Hessian matrix A = —VV¥(ay ) is positive definite and so the posterior

distribution p(ax |ty ) is log convex and therefore has a single mode that is the global
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maximum. The posterior distribution is not Gaussian, however, because the Hessian
is a function of ax.
Using the Newton-Raphson formula (4.92), the iterative update equation for ay
is given by
aly = Cy(I+ WxCy) 7! {ty —on + Wyan}. (6.83)
These equations are iterated until they converge to the mode which we denote by
ay. Atthe mode, the gradient V¥ ay ) will vanish, and hence a}; will satisfy

ay =Cn(ty —oxn). (6.84)

Once we have found the mode a3, of the posterior, we can evaluate the Hessian
matrix given by
H=-VVi(ay)=Wy+Cy (6.85)
where the elements of W y are evaluated using a%,. This defines our Gaussian ap-
proximation to the posterior distribution plan|ty) given by

glay) = Nlaxlay. H™). (6.86)

We can now combine this with (6.78) and hence evaluate the integral (6.77). Because
this corresponds to a linear-Gaussian model, we can use the general result (2.115) to
give

Elaxalty] = k' (ty —ox) (6.87)
varlanoifty] = c— kT (Wi +Cx) 'k (6.88)

Now that we have a Gaussian distribution for p(ax+1|tx), we can approximate
the integral (6.76) using the result (4.153). As with the Bayesian logistic regression
model of Section 4.5, if we are only interested in the decision boundary correspond-
ing 10 p(tx+1/ty) = 0.5, then we need only consider the mean and we can ignore
the effect of the variance.

We also need to determine the parameters 6 of the covariance function. One
approach is to maximize the likelihood function given by p(tv|@) for which we need
expressions for the log likelihood and its gradient. If desired, suitable regularization
terms can also be added, leading to a penalized maximum likelihood solution. The
likelihood function is defined by

p(t_y]g) = /p(t(,\?\a;\r)p(a',\rlO) da_,\*. (6.89)

This integral is analytically intractable, so again we make use of the Laplace approx-
imation. Using the result (4.135), we obtain the following approximation for the log
of the likelihood function

=

Inp(ty|0) = U(ay) — %111 Wy + CH| + = In(27) (6.90)

o
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where U(a%) = Inp(ay|0) + Inp(tylay). Wealso need to evaluate the gradient
of In p(tx|6) with respect to the parameter vector 6. Note that changes in 6 will
cause changes in a¥%, leading to additional terms in the gradient. Thus, when we
differentiate (6.90) with respect to @, we obtain two sets of terms, the first arising
from the dependence of the covariance matrix Cx on @, and the rest arising from
dependence of ay; on 6.
The terms arising from the explicit dependence on € can be found by using
(6.80) together with the results (C.21) and (C.22). and are given by
dlnp(iy(0) — laxjj‘c—_l 9CxN c-laz
89J- 2 AN 001 NER
OCx
00,

1 .
—5Tr (I+CyWx) "Wy (6.91)

To compute the terms arising from the dependence of a%, on 6, we note that
the Laplace approximation has been constructed such that ¥(a) has zero gradient
at ay = ay. and so ¥(ay) gives no contribution to the gradient as a result of its
dependence on a}. This leaves the following contribution to the derivative with
respect to a component ¢; of 6

N -
1w 0ln|Wy + C{ da;,
SED D R

s n 00_]
1o da,
T - — 5 - % PR 1 .
= =23 [I+CxWy) 'Cx],, on(l - o)1 =203) 55 (692)
" n=1 J
where o7, = of(a}), and again we have used the result (C.22) together with the

definition of W x. We can evaluate the derivative of a}, with respect to 6/; by differ-
entiating the relation (6.84) with respect to §; to give

ada’ 9Cx . _dat

—L = 2 iy —on) — CAWxy—=—". (6.93

20, 29, (v —oxN) NWy 29, 3)
Rearranging then gives

da: _ _,0CxN ) )

(T WACy) P ="y —oN). 6.94)

20, ( ~Cx) a0, (v —on) (

Combining (6.91), (6.92), and (6.94), we can evaluate the gradient of the log
likelihood function, which can be used with standard nonlinear optimization algo-
rithms in order to determine a value for 6.
We can illustrate the application of the Laplace approximation for Gaussian pro-
Appendix A cesses using the synthetic two-class data set shown in Figure 6.12. Extension of the
Laplace approximation to Gaussian processes involving K > 2 classes. using the
softmax activation function, is straightforward (Williams and Barber. 1998).
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-2

Figure 6.12

0 2 -2 0 2

lllustration of the use of a Gaussian process for classification, showing the data on the left together
with the optimal decision boundary from the true distribution in green, and the decision boundary from the
Gaussian process classifier in black. On the right is the predicted posterior probability for the biue and red
classes together with the Gaussian process decision boundary.

6.4.7 Connection to neural networks

We have seen that the range of functions which can be represented by a neural
network is governed by the number M of hidden units. and that, for sufficiently
large M, a two-layer network can approximate any given function with arbitrary
accuracy. In the framework of maximum likelihood, the number of hidden units
needs to be limited (to a level dependent on the size of the training set) in order
to avoid over-fitting. However, from a Bayesian perspective it makes little sense to
limit the number of parameters in the network according to the size of the training
set.

In a Bayesian neural network. the prior distribution over the parameter vector
w. in conjunction with the network function f(x.w). produces a prior distribution
over functions from y(x) where y is the vector of network outputs. Neal (1996)
has shown that, for a broad class of prior distributions over w. the distribution of
functions generated by a neural network will tend to a Gaussian process in the limit
A — oc. It should be noted, however, that in this limit the output variables of the
neural network become independent. One of the great merits of neural networks is
that the outputs share the hidden units and so they can ‘borrow statistical strength’
from each other, that is, the weights associated with each hidden unit are influenced
by all of the output variables not just by one of them. This property is therefore lost
in the Gaussian process limit.

We have seen that a Gaussian process is determined by its covariance (kernel)
function. Williams (1998) has given explicit forms for the covariance in the case of
two specific choices for the hidden unit activation function (probit and Gaussian).
These kernel functions k(x.x’) are nonstationary. i.e. they cannot be expressed as
a function of the difference x — X', as a consequence of the Gaussian weight prior
being centred on zero which breaks translation invariance in weight space.
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By working directly with the covariance function we have implicitly marginal-
ized over the distribution of weights. If the weight prior is governed by hyperpa-
rameters, then their values will determine the length scales of the distribution over
functions, as can be understood by studying the examples in Figure 5.11 for the case
of a finite number of hidden units. Note that we cannot marginalize out the hyperpa-
rameters analytically, and must instead resort to techniques of the kind discussed in
Section 6.4.

Exercises

6.1

8.2

6.3

6.4

6.6

6.8

6.9
6.10

(x*) Consider the dual formulation of the least squares linear regression
problem given in Section 6.1. Show that the solution for the components a,, of
the vector a can be expressed as a linear combination of the elements of the vector
@(x,). Denoting these coefficients by the vector w, show that the dual of the dual
formulation is given by the original representation in terms of the parameter vector
w.

(x*) In this exercise, we develop a dual formulation of the perceptron learning
algorithm. Using the perceptron learning rule (4.55), show that the learned weight
vector w can be written as a linear combination of the vectors tn@(x,) where t,, €
{—1.-+1}. Denote the coefficients of this linear combination by a, and derive a
formulation of the perceptron learning algorithm, and the predictive function for the

perceptron, in terms of the a,. Show that the feature vector o(x) enters only in the
form of the kernel function k(x.x') = ¢(x)To(x').

(x)  The nearest-neighbour classifier (Section 2.5.2) assigns a new input vector x
to the same class as that of the nearest input vector x,, from the training set, where
in the simplest case, the distance is defined by the Euclidean metric [x — xn[°. By
expressing this rule in terms of scalar products and then making use of kernel sub-
stitution, formulate the nearest-neighbour classifier for a general nonlinear kernel.

(*) In Appendix C, we give an example of a matrix that has positive elements but
that has a negative eigenvalue and hence that is not positive definite. Find an example
of the converse property, namely a 2 x 2 matrix with positive eigenvalues yet that
has at least one negative element,

Verify the results (6.13) and (6.14) for constructing valid kernels.
(x) Verify the results (6.15) and (6.16) for constructing valid kernels.
Verify the results (6.17) and (6.18) for constructing valid kernels.
(x) Verify the results (6.19) and (6.20) for constructing valid kernels.
(x) Verify the results (6.21) and (6.22) for constructing valid kernels.

() Show that an excellent choice of kernel for learning a function f(x) is given
by k(x,x’) = f(x)f(x’) by showing that a linear learning machine based on this
kernel will always find a solution proportional to f(x).




