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Abstract

In designing Markov Decision Processes (MDP), one must
define the world, its dynamics, a set of actions, and a re-
ward function. MDPs are often applied in situations where
there is a clear choice of reward functions and in these cases
significant care must be taken to construct a reward func-
tion that induces the desired behavior. In this paper, we con-
sider an analogous design problem: crafting a target distribu-
tion in Targeted Trajectory Distribution MDPs (TTD-MDPs).
TTD-MDPs produce probabilistic policies that minimize di-
vergence from a target distribution of trajectories from an un-
derlying MDP. They are an extension of MDPs that provide
variety of experience during repeated execution. Here, we
present a brief overview of TTD-MDPs with approaches for
constructing target distributions. Then we present a novel au-
thorial idiom for creating target distributions using prototype
trajectories. We evaluate these approaches on a drama man-
ager for an interactive game.

Introduction
Frequently in the design of AI systems, a human is faced
with the task of constructing rules, environments, or instruc-
tions that agents use as the basis for their reasoning pro-
cess. For example, consider the task of building an interac-
tive game with an AI subsystem. Modern games are rich,
complex systems requiring the subsystem to take on a vari-
ety of roles: tactical or strategic opponent, partner, support
character, and commentator. Each role must be specified ex-
actly, often by a designer unschooled in the art of AI. In the
larger class of interactive drama, the task is even more dif-
ficult. A designer must create an environment where a user
can explore and create her own story while at the same time
ensure a coherent and entertaining experience. Further, such
environments must support repeated play; that is, the user
should be able to experience the story again and again with-
out the story becoming too predictable. In practice, the effort
of authoring such an interactive game can be monumental,
often requiring years of development.

One recent technique for approaching this particular prob-
lem is to think of interactive drama as a Markov Decision
Process (MDP): plot events correspond to states; actions
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taken by a central coordinator or drama manager (DM) cor-
respond to MDP actions; player actions in the game world
are modeled as probabilistic transitions between states; and
an author-supplied evaluation function over stories is cast as
the reward function. Thus, the problem of building an inter-
active drama becomes, in part, a problem of defining each of
the components of the MDP, especially the reward function.

Here we consider the difficulties that arise when au-
thoring Targeted Trajectory Distribution Markov Decision
Processes (TTD-MDPs) (Roberts et al. 2006; Bhat et al.
2007). TTD-MDPs are a class of Markov Decision Pro-
cesses (MDPs) specifically designed for the agent coordi-
nation problem that arises in interactive drama and similar
domains. TTD-MDPs support variety of experience, allow-
ing for repeated play that appears unpredictable to the user,
but adheres to the game designer’s aesthetics. In previous
work, an earlier reinforcement learning approach that max-
imizes the author’s evaluation function has been shown to
target a small set of highly-rated stories that do not provide
the variety of experience we desire. As we shall see, in TTD-
MDPs, the problem of defining a reward function becomes
instead the problem of defining a distribution of trajectories
or possible stories.

In the next sections, we will present an overview of TTD-
MDPs and describe two idioms for authoring target distri-
butions. We will then present experiments in a real-world
test domain: a drama management MDP for the interactive
fiction Anchorhead.

TTD-MDPs
A traditional MDP is defined by a tuple (S,A, P,R), where
S is a set of states, A is a set of actions, P : S × A × S →
[0, 1] is a transition model, and R : S → R is a reward
function. The solution to an MDP is a policy π : S → A.
An optimal policy ensures that the agent receives maximal
long-term expected reward.

Likewise, a TTD-MDP is defined by a tuple (T ,A, P, p),
where A and P are defined as above, T is the set of finite-
length trajectories of MDP states, and p : T → [0, 1] is
a target distribution over complete trajectories. The target
distribution in a TTD-MDP conceptually replaces the reward
function in a traditional MDP. The solution to a TTD-MDP
is a policy π : T × A → [0, 1] providing a distribution
over actions for every trajectory. An optimal policy results
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Figure 1: Sample 3×3 gridworld with deterministic actions
Right and Up, along with the resulting trajectory tree.

in long-term behavior as close to the target distribution as
possible.

Trajectories represent total history traces of an online de-
cision making process. Consider Figure 1, a 3×3 gridworld
where there are two deterministic actions: move right (R)
and move up (U). All legal trajectories have initial state 1
and terminating state 9. The right side of the figure depicts
the corresponding trajectory tree. A trajectory tree is sim-
ply a graphical representation of the valid trajectories and
the prefix relationship that governs partial trajectories. Con-
sider the partial trajectory 1

R
−→ 2, for instance. It is a prefix

of two immediate subsequent partial trajectories (1 R
−→ 2

R
−→ 3

and 1
R
−→ 2

U
−→ 5) as well as three other partial trajectories

and three complete trajectories. A policy π would provide a
distribution over available actions for each internal node in
the tree.

Unfortunately, it is not always possible to find a stochas-
tic policy that exactly solves a TTD-MDP (e.g., in the case
where the transition probabilities lead to non-zero probabil-
ity mass on a state where we desire to never go). Thus,
we must consider approximations to the desired distribution
of trajectories. The following approach was first presented
in (Bhat et al. 2007). The approach involves finding a pol-
icy that minimizes the Kullback-Leibler divergence between
the desired distribution of trajectories p and the distribution
q that is realized through the combination of the policy and
the transition model:

DKL(p‖q) =
∑

τ

p(τ) log
p(τ)

q(τ)

=
∑

τ

p(τ) log p(τ) −
∑

τ

p(τ) log q(τ)

KL-divergence is not a distance, as it is asymmetric; how-
ever, it is well-understood with several important properties.
In particular, it is consistent, always non-negative and zero
only when p and q are equal. For TTD-MDPs, p is given,
and q is defined as follows:

q(τ) =
∏

t�τ

w(t) (1)

where w(t′) =
∑

a

P (t′|a, t) · π(t, a) (2)

Here, τ represents complete trajectories, t and t′ represent
(partial or complete) trajectories, and the symbol � is used
to denote the prefix relationship. The probability w(t′) rep-
resents the frequency with which t′ is targeted when the pro-
cess is at t. It combines information about the probabilistic

policy and world dynamics at t. Thus, the product of these
one-step transition frequencies, w(t′), yields the probability
of a complete trajectory, q(τ).

Our objective function for optimization now becomes:

max
π

∑

τ

p(τ) log q(τ) = max
π

∑

τ

p(τ) log
∏

t�τ

w(t)

= max
π

∑

τ

p(τ)
∑

t�τ

log w(t)

= max
π

∑

τ

∑

t�τ

p(τ) log w(t)

Note that a partial trajectory t contributes p(τ) log w(t) to
the sum for each complete trajectory τ for which it is a
prefix. We can define a function over complete trajecto-
ries summarizing the factor of log w(t) that t contributes,
m(t) =

∑
t�τ p(τ). Note that this definition implies the re-

cursive definition m(t) =
∑

t→t′ m(t′), i.e. the mass of a
trajectory t is the sum of the masses of its children t′ in the
trajectory tree. Our objective function is then:

max
π

∑

t

m(t) log w(t) (3)

Note that m(t) represents the total probability mass con-
tained in the subtree rooted at t.

Though the explanation is beyond the scope of this paper,
the objective function in Equation 3—encapsulating a search
over global policies π—can be reformulated in terms of a
series of independent local optimizations searching over lo-
cal policies πt—one for each internal node in the trajectory
tree. We achieve the globally KL-optimal solution regard-
less of the order in which we perform these local optimiza-
tions; thus, the TTD-MDP can be solved online. One can
start by processing the root of the trajectory tree, then pro-
cess the children of the root, and so on, to compute a policy
for each node in the tree. Better, if m(t) can be computed
efficiently, we can solve only the local optimizations that we
actually encounter, interleaving the local optimization steps
with taking actions in the world. The local policy πt pro-
duced by the local optimization tells us how to take the next
action, and the action places us at a new node in the trajec-
tory tree.

Authoring TTD-MDPs
As with any AI technique, one must specify the compo-
nents of a TTD-MDP. We are inspired by interactive dramas,
and the mechanisms for specifying a good story, so we fo-
cus here on the problem of authoring target distributions in
TTD-MDPs. The number of valid trajectories is often large,
so one cannot simply enumerate all possible trajectories and
manually assign each one a probability weight. To be autho-
rially feasible, there must be a compact way of specifying
the distribution.

In the original formulation of drama management as an
optimization problem (prior to TTD-MDPs), authors of in-
teractive dramas were expected to provide an evaluation
function that encapsulated the quality of a complete story.
Insofar as that is a reasonable requirement, it is possible



to use such an evaluation function to induce a reasonable
distribution over stories. For instance, we may wish that
stories occur with a probability proportional to their evalua-
tion score: p(τ) ∝ R(τ).1 Unfortunately, such an approach
still does not eliminate a difficult hurdle: solving a TTD-
MDP efficiently and optimally requires m(t) to be computed
quickly. Below, we will describe two techniques that address
this difficulty.

Sampling
The first authorial idiom we consider constructs an estimate
for p(τ), from which we will compute m(t). When an au-
thor has defined an evaluation function, we can use it to con-
struct a distribution p(τ) as above; however, this approach is
infeasible for large trees. Instead, we can approximate p(τ)
by sampling a subset of trajectories Ts ⊂ T (via simulation
of gameplay, for instance) and then using p̃(τ) as a replace-
ment for p(τ), where p̃(τ) ∝ R(τ) for τ ∈ Ts and p̃(τ) = 0
otherwise. We construct m(t) from this estimate; there will
be an m(t) value for each node in the trajectory tree induced
by Ts. Because we control the size of Ts, we can adjust it to
fit our memory requirements.

There are several choices for generating samples. Follow-
ing previous work, we could first select uniformly from the
set of possible actions and then select uniformly from the set
of successor trajectories, to generate a complete trajectory.
An alternative is Markov Chain Monte Carlo (MCMC) sam-
pling, a rejection sampling technique used to draw i.i.d. sam-
ples from a distribution that is difficult to sample directly.
In our experiments, we use the Metropolis-Hastings algo-
rithm (Metropolis et al. 1953; Hastings 1970). The pseudo-
uniform sampling procedure described above is used as the
(unconditional) MCMC proposal distribution.

It is important to include the action in the sampling pro-
cess as it constrains the set of states that can be reached.
Consider actions a1 and a2, and partial trajectories t, t1
and t2, where t is parent of t1 and t2 in the trajectory
tree. If P (t1|a1, t) = 0.2 and P (t2|a1, t) = 0.8, then
both t1 and t2 are valid successor trajectories; however, if
P (t1|a2, t) = 0.0 and P (t2|a2, t) = 1.0, then care must
be taken because t1 can never actually occur with action a2.
Further, in some domains reward is based on both the se-
quence of states and the actions taken by the system. In
drama management, for example, the author seeks to avoid
the perception by the player that the drama manager is overly
manipulative, therefore penalizing instrusive actions.

The sampling approach has its drawbacks. Due to non-
determinism in P (t′|a, t) and the sheer size of the trajectory
space, it is quite likely that an unsampled part of the full
trajectory tree will be encountered during an episode. Pre-
sumably this is more likely in the low probability portions
of the tree, so one may have already been doing poorly to
have entered into that part of the space. Further, if the de-
viation occurs near the leaves of the trees, it may be possi-

1For ease of explanation, we have required m(t) to represent
the total probability mass located at the subtree rooted at t, but in
actuality only a relative measure (w.r.t. the siblings of t) is needed,
so in practice, normalization of the probabilities is unnecessary.

ble to perform online resampling to recover. In the drama
management domain, it appears that good stories often have
common prefixes (Nelson et al. 2006), so it may be that one
is most likely to deviate only after one has already ensured a
good story.

Prototypes
The second authorial idiom we consider computes m(t) di-
rectly (which induces a target distribution p(τ) that is never
represented explicitly) and is based on (i) a set of prototypi-
cal “good” trajectories and (ii) a distance metric over trajec-
tories. Combining the distance metric with the prototypes
can induce a probability distribution over all possible trajec-
tories. One such method is to construct a Gaussian mixture
model (GMM) over the set of prototypes:

m(t) =

N∑

i=1

w(µi) · N (t;µi, σi) (4)

where
N (t;µ, σ) =

1

σ
√

2π
e−d(t,µ)2/2σ2

, (5)

µi is a prototype and the centroid of a Gaussian distribu-
tion with variance σ2

i , w(µi) is the prior weight given to
each centroid, and d is some distance measure on trajecto-
ries. There are a number of choices one could make for a
distance metric. We explore three classes.

The first is Levenshtein distance or edit distance (Lev-
enshtein 1966). The edit distance is a computationally ef-
ficient generalization of the Hamming distance (Hamming
1950) that is defined over strings of unequal length and han-
dles insertions, deletions, and substitutions. Consider three
trajectories: t1 = 1

R
−→ 2

U
−→ 5, t2 = 1

U
−→ 4

U
−→ 5, and

t3 = 1
U
−→ 2

U
−→ 5. The edit distance between t1 and t2 is

dE(t1, t2) = 2 because they differ in the first action and
second state. By contrast, dE(t1, t3) = 1.

There are several variations of edit distance. Let l(t) be
the length of a trajectory t and ρ(t, n) be the prefix of t
with length n; if l(t) < n, we define ρ(t, n) = t. Using
ρ(t, n), we can begin to construct measures of distance that
are better suited to different domains. For example, in the
drama management domain, deviations from desirable tra-
jectories near the root of the trajectory tree are potentially
more costly than deviations later. Thus, we may wish to
consider a scaled edit distance between trajectories t and µ:
dSE(t, µ) = 1 + |l(t) − l(µ)| · dE(t, ρ(µ, l(t))).

A second class of distance measures involves variations
of the longest common subsequence. A subsequence of a
trajectory is another trajectory formed by deleting some of
the elements of the original trajectory without disturbing the
relative position of the states (and actions). The longest
common subsequence between two trajectories is the longest
subsequence that appears in both strings.

A third class of distance measures uses the evaluation
function directly when it is available. Typically, such func-
tions are implemented as a linear combination of features
about the story: R(t) =

∑
k wk · fk(t) (we refer the inter-

ested reader to (Weyhrauch 1997; Nelson & Mateas 2005)



for details). Here, distance from a prototype is simply de-
fined as dF (t, µ) = |R(t) − R(µ)|, which we shall call the
feature distance. We could also construct a vector represen-
tation of these features ~R(t) = [w1 · f1(t), w2 · f2(t), . . .]
and use those vectors in a multivariate GMM. The weights
on the features have an effect similar to changing the covari-
ance matrix of the GMM, providing an interesting prospect
for authorial control.

One problem with this approach is that story features are
not necessarily well defined over partial stories. We over-
come this by defining a blended feature distance function:

dBF (t, µ) =min

[
1,

l(t)

l(µ)

]
· dF (t, ρ(µ, l(t))) (6)

+max

[
0,

(
1 − l(t)

l(µ)

)]
· d eE(t, ρ(µ, l(t))) (7)

where dF is a function based on the features and d eE is some
form of the edit distance. Equation 6 represents increas-
ing contributions of the drama management features as the
length of trajectory t approaches that of µ. Similarly, Equa-
tion 7 represents decreasing contributions from the edit dis-
tance as the length of the trajectories become similar.

Using prototypes provides a number of distinct advan-
tages over sampling-based approaches. In comparison to au-
thoring a reward function for an MDP, hand selecting a small
number of prototypes may be significantly easier. Further,
the prototype approach—especially using GMMs—allows
efficient computation of m(t) for partial trajectories. Even
better, this approach provides a smooth distribution such that
no trajectory has zero mass. Thus, it is not possible to fall
out of the sampled space.

On the other hand, the problem of authoring has become
the problem of choosing an appropriate distance function.
When an evaluation function is available we can use it to
capture subtleties in the values of states; however, when such
functions are difficult to construct, it is not clear how well
methods like edit distances can do. Finally, prototypes must
come from somewhere. They may be provided by the au-
thor, but they could also be generated by a sampling process
similar to the ones described above.2

Results
We report on experiments designed to illustrate the over-
all performance characteristics of the two authorial idioms
discussed above as well as show how some of the varia-
tions perform. As TTD-MDPs were originally developed
for drama management, we evaluate the approaches on the
two drama management TTD-MDPs described by Roberts et
al. (2006), namely, Anchorhead and Alphabet City. Because
existing work has already indicated the potential for sam-
pling approaches to be effective, we choose to simply high-
light the relationship between MCMC and uniform sampling
(rather than provide a detailed study of sampling perfor-
mance), and we instead focus the bulk of our attention on

2There are subtleties. In the uniform sampling case, the evalua-
tion function provides the prior probability of each centroid. In the
case of MCMC, the set of prototypes are already chosen according
to the correct probability so the priors should be uniform.
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on Alphabet City.
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Figure 3: A comparison of uniform and MCMC sampling
with and without SAS+ recovery on Anchorhead.

experiments in the prototype-distance idiom. In those cases
where we evaluate the prototype-based approaches, we ig-
nore hand-authored models to avoid skewing the results too
much by our particular choice of prototypes.

Comparison of Sampling Approaches
In Figures 2 & 3, we present results on both the Anchorhead
and Alphabet City domains in the form of a story quality
histogram. Such histograms have been used for qualitative
analysis of drama management systems in earlier work. In
these figures, we examine three different techniques: uni-
form sampling, MCMC sampling, and sampling with SAS+
recovery (Roberts et al. 2006). The key nodm refers to
stories for which no drama management was applied and is
used as a baseline for assessing the effect of applying drama
management. Of interest in these plots is the relative shape
of the histogram curves. Qualitatively, the goal of the drama
manager is to shift the distribution “right and up” (increasing
the quality of stories) while preserving its “width” (ensuring
the variety of stories).

First, we discuss the results presented in Figure 2. The
three curves in this figure correspond to the nodm baseline
as well as uniform and MCMC sampling with 1,000,000
samples (and a burn-in of 1,000 in the case of MCMC).
The nodm baseline is relatively higher toward the bottom
end of the evaluation scale and lower toward the top end of
the scale than the other two curves. This nodm baseline is
obtained by simulating gameplay without any DM actions
taken, so this result is consistent with our expectations. On



the other hand, we found that MCMC performed slightly
worse than uniform sampling, as evidenced by the MCMC
quality curve being mostly between nodm and uniform (i.e.
below nodm but above uniform at the bottom of the scale
and above nodm but below uniform at the top end). Uniform
sampling performing better than MCMC will be common to
most of the experimental results presented in this paper. We
believe this relative performance gap occurs as a result of
MCMC sampling tending to “hang around” good parts of
the space whereas uniform explores more thoroughly.

In Figure 3, the results of experiments on Anchorhead
similar to those performed on Alphabet City are presented.
First, we point out that the nodm case slightly beats the
performance of uniform and MCMC sampled TTD policies.
This is in contrast to the results obtained on Alphabet City.
There is, however, a simple explanation for this difference
in performance. Although not presented in detail, the set
of actions available to the DM in both story worlds have
slightly different characteristics. Most notable is the use
of a temp denies action in Anchorhead, where the DM
can take an action to temporarily deny a plot point from oc-
curring in the game. At some point later in the game, the
DM must reenable that plot point with another action. This
would not be a problem for the DM if we could guaran-
tee that the policy is completely specified for every partial
story; however, because we construct the policy based on a
sampled trajectory tree, there are frequently deviations from
that tree before the reenable action can be taken by the DM.

For example, the Alphabet City story world has an aver-
age story length of roughly 9 plot points whereas the average
story length in Anchorhead is approaching 30. In both cases,
the average depth of deviation (i.e. number of plot events
that occur during an episode before an unsampled part of the
trajectory space is encountered) is approximately five. Thus,
the Anchorhead domain is at a disadvantage for the follow-
ing reason: when a plot event is temporarily denied by the
first few DM actions, if it is not reenabled before deviation
from the tree occurs, then it cannot occur in the story.

To more fully characterize the effect of falling off the tree,
we additionally show the result of using Weyhrauch’s SAS+
online sampling search (Weyhrauch 1997). There are two in-
teresting things to notice. First, the addition of SAS+ signif-
icantly improves the story qualities, compared to the nodm
baseline and the TTD policies without a recovery strategy.3
Second, the curves are nearly identical, indicating that the
deterministic search of SAS+ is able to realize its goals with
high probability. This structure in the quality histogram (a
steep, impulse-like curve) indicates potential issues for re-
playability.

Comparison of Prototype-Distance Models
To examine the performance of various prototype-distance
models, we conducted a number of experiments to test some
of the many free parameters of the system. In particular,
we looked at different distance metrics, different Gaussian
widths and different numbers of prototypes. Due to space

3Earlier work has shown that SAS+ alone does not perform well
on Anchorhead (Nelson et al. 2006).
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generated by MCMC sampling with various standard devia-
tions.

constraints, we opt to present a selection of the results,
which are intended to be representative of the other exper-
iments we conducted as well as to provide insight into the
characteristics of the approach.

Because we are most interested in understanding how the
models react to changes in parameters (e.g. changes in how
the author specifies the TTD-MDP), we will focus the bulk
of our analysis in this section on the drama-management-
specific distances (feature distance and blended feature dis-
tance) described before. Although not presented here, we
have identified similar characteristics in other test domains
where the more generic variants of Levenshtein distance and
longest common subsequence are more applicable.

In Figure 4 we plot quality histograms for three different
prototype models on the Anchorhead domain. The models
were constructed with 100 MCMC sampled prototypes after
a 1,000 step burn-in and used the feature distance measure.
We tested three different standard deviations: 0.25, 1.0,
and 2.0. The results we obtained were somewhat counter-
intuitive. Specifically, we found that as the width of the
Gaussians increased, the width of the resulting quality his-
togram decreased. We believe the reason for this is related
to the idea of a “plateau” in optimization problems. Specif-
ically, with narrow mixture components in the GMM, it is
likely that the space between them will have relatively stable
and low probability mass; however, as the width increases,
one would find that the tails of the Gaussians tend to overlap,
forming a nice neighborhood of trajectories that are com-
mon to a number of centroids. Thus, during an episode with
small-width Gaussians, if the nondeterminism in the envi-
ronment causes the current episode to enter the flat space
between centroids, the result is likely to end up resembling
a random walk through the space. Thus, the quality his-
togram for experiments with small standard deviation tend
to have more mass at the tails. Larger standard deviations
do not seem to suffer from this effect.

Next, we consider the effect that the number of proto-
types has on the resulting quality distribution. In Figure 5,
we present two prototype models. The prototype models
used for this plot were constructed using 100 prototypes af-
ter 1,000 sample burn-in and used the blended feature dis-
tance measure.

We found that the rejection step of the MCMC sam-
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pling procedure often leads to clusters of samples, especially
when fewer samples are used as prototypes. For example,
consider Figure 5. The quality of the MCMC-sampled pro-
totype model is substantially lower than that of the uniform
sampled model. Now consider Figure 6, where the same
100-sample uniform model is compared to a 1,000-sample
MCMC model as well as a 2,000-sample MCMC model.
The quality of the 1,000-sample MCMC model is roughly
equivalent to that of the 100-sample uniform model—an or-
der of magnitude increase in the number of prototypes is re-
quired for the performance of MCMC sampling prototypes
to match that of uniform sampled prototypes. Further, no-
tice how the additional increase in performance obtained by
doubling the number of prototypes to 2,000 is noticeable,
but not particularly pronounced.

Concluding Thoughts
In this paper, we have discussed the power and performance
of two authorial idioms for target distributions in TTD-
MDPs. Our discussion and analysis is firmly entrenched in
the domain of interactive narrative. Our focus on interactive
narrative is motivated by the unique challenges it provides
to designers of AI technologies as well as the challenges
provided to the author. We have shown the effectiveness of
these authorial idioms through an empirical analysis of two
interactive narrative domains previously studied in the litera-
ture. Specifically, we have shown that our novel approach to
MCMC sampling of trajectory trees performs approximately

as well as the previous uniform sampling approach. In ad-
dition, we have shown that the novel prototype-distance ap-
proach and the distance metrics we define, when constructed
using a set of sampled prototypes, show promise for contin-
ued development.

Acknowledgments
This research was performed while on appointment as a U.S.
Department of Homeland Security (DHS) Fellow under the
DHS Scholarship and Fellowship Program, a program ad-
ministered by the Oak Ridge Institute for Science and Ed-
ucation (ORISE) for DHS through an interagency agree-
ment with the U.S Department of Energy (DOE). ORISE is
managed by Oak Ridge Associated Universities under DOE
contract number DE-AC05-06OR23100. All opinions ex-
pressed in this paper are the author’s and do not necessarily
reflect the policies and views of DHS, DOE, or ORISE. We
also acknowledge the support of DARPA under contract No.
HR0011-06-1-0021.

References
Bhat, S.; Roberts, D. L.; Nelson, M. J.; Isbell, C. L.; and
Mateas, M. 2007. A globally optimal online algorithm
for TTD-MDPs. In Proceedings of the Sixth International
Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS07).
Hamming, R. W. 1950. Error-detecting and error-
correcting codes. Bell System Technical Journal
29(2):147–160.
Hastings, W. 1970. Monte Carlo sampling methods us-
ing Markov chains and their applications. Biometrika
57(1):97–109.
Levenshtein, V. I. 1966. Binary codes capable of correcting
deletions, insertions and reversals. Soviet Physics Doklady
10(8):707–710.
Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.;
Teller, A. H.; and Teller, E. 1953. Equations of state calcu-
lations by fast computing machines. Journal of Chemical
Physics 21(6):1087–1092.
Nelson, M. J., and Mateas, M. 2005. Search-based drama
management in the interactive fiction Anchorhead. In Pro-
ceedings of the First Annual Conference on Artificial Intel-
ligence and Interactive Digital Entertainment (AIIDE-05).
Nelson, M. J.; Roberts, D. L.; Isbell, C. L.; and Mateas, M.
2006. Reinforcement learning for declarative optimization-
based drama management. In Proceedings of the Fifth In-
ternational Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS-06).
Roberts, D. L.; Nelson, M. J.; Isbell, C. L.; Mateas, M.;
and Littman, M. L. 2006. Targetting specific distributions
of trajecotries in MDPs. In Proceedings of the Twenty-First
National Conference on Artificial Intelligence (AAAI-06).
Weyhrauch, P. 1997. Guiding Interactive Drama. Ph.D.
Dissertation, School of Computer Science, Carnegie Mel-
lon University, Pittsburgh, PA. Technical Report CMU-CS-
97-109.


