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Abstract

We present an approach to activity discovery, the unsu-

pervised identification and modeling of human actions em-

bedded in a larger sensor stream. Activity discovery can
be seen as the inverse of the activity recognition problem.

Rather than learn models from hand-labeled sequences, we

attempt to discover motifs, sets of similar subsequences

within the raw sensor stream, without the benefit of labels or

manual segmentation. These motifs are statistically unlikely

and thus typically correspond to important or characteristic

actions within the activity.

The problem of activity discovery differs from typical mo-

tif discovery, such as locating protein binding sites, because

of the nature of time series data representing human activ-

ity. For example, in activity data, motifs will tend to be

sparsely distributed, vary in length, and may only exhibit

intra-motif similarity after appropriate time warping. In

this paper, we motivate the activity discovery problem and

present our approach for efficient discovery of meaningful

actions from sensor data representing human activity. We

empirically evaluate the approach on an exercise data set

captured by a wrist-mounted, three-axis inertial sensor. Our
algorithm successfully discovers motifs that correspond to

the real exercises with a recall rate of 96.3% and overall

accuracy of 86.7% over six exercises and 864 occurrences.

1 Introduction

Activity discovery describes the problem of identifying,
locating, and modeling meaningful actions embedded in
time series data representing different activities. We are
specifically interested in discovering meaningful actions in
human activity data captured by on-body sensors, though
similar time series representing the behavior of other crea-
tures (e.g., bees, ants, or robots) is also applicable. Re-
searchers analyzing activity data have typically investigated

activity recognition. They decide a priori which activity
components are important and either manually construct de-
tectors or label training data for use with machine learn-
ing methods that estimate model parameters appropriate for
recognition. Our goal is to invert this problem and to dis-

cover the important activity components through unsuper-
vised analysis of the captured data.

Our motivation for addressing the discovery problem is
three-fold: (1) in many situations, we may think that we
know the important actions associated with an activity, and
an unsupervised discovery system can either provide vali-
dation or suggest alternatives; (2) in cases where we do not
know the low-level components of an activity, such a sys-
tem can help identify them; and (3) we may not be able
to identify or describe actions that are easily detected by
the system’s sensors, whereas discovered actions are nec-
essarily identifiable within the given modality. Thus, the
possible goals of an activity discovery system include vali-
dating our knowledge assumptions, generating new knowl-
edge, and interpreting data from the perspective of new sen-
sor modalities.

The benefits of an automated discovery system are ex-
tensive. Traditional arguments for unsupervised learning,
such as reducing cost by precluding the need to manually
label data, aiding adaptation to non-stationary patterns, and
providing early exploratory tools, certainly apply [7]. In
addition, we envision a range of applications specific to
activity discovery. By learning typical patterns of behav-
ior automatically, perceptual systems become less cumber-
some to deploy and potentially more effective due to natu-
ral user and environment-specific adaptation. The ability to
discover typical activities could enhance health monitoring
systems by providing a characterization of typical healthy
behavior specific to the observed location and to the worn
sensors, which may be difficult for a human observer to
fully specify. In cooperative environments such as homes
and offices, an activity discovery system could also learn
important routines and behaviors, thus enabling it to pro-
vide the models necessary to detect contextual information



Figure 1. An illustration of the sparse motif
discovery problem in one dimension. Rect-
angles correspond to motif occurrences and
each color represents a different motif.

for intelligent interfaces such as memory aids [19] and exe-
cution monitors [6].

We approach the activity discovery problem as one of
sparse motif discovery in multivariate time series. In this
context, a motif is a collection of relatively short subse-
quences that exhibit high intra-motif similarity yet are dis-
tinguishable from other subsequences (see Figure 1). Motif
discovery, then, is the unsupervised identification, model-
ing, and localization of each motif and its occurrences in
the time series. Specifically, no knowledge of the number
of motifs, their shape (i.e., model parameters, prototypical
members, or representative examples), their locations in the
time series, or the number of occurrences of each motif is
available to the system. In the general case, which is typi-
cal for activity data, motifs will only be sparsely distributed.
This means that much of the time series data is not part of
any motif, which contrasts with densely distributed motifs
and has important consequences for the practical efficiency
of activity discovery algorithms. Furthermore, a realistic
activity discovery system must operate efficiently on multi-
variate data for the simple reason that researchers have yet
to find a single sensor or a derived feature that captures the
range of human actions in any but the most trivial activi-
ties. Finally, discovery in time series, rather than in non-
temporal sequences as in bioinformatics, introduces addi-
tional modeling complexities that must be considered by
the discovery algorithm. For example, the occurrences of
a single motif may have different lengths and may exhibit
intra-motif similarity only after appropriate time warping.

The contribution of our work is to introduce and motivate
activity discovery as an important method for learning about
human activity from on-body sensor data and to present an
approach that efficiently discovers actions in sparse, multi-
variate sensor streams. In the remainder of this paper, we
situate our work relative to existing research, provide a de-
tailed overview of our algorithm, and present empirical re-
sults that validate the approach. Finally, we outline several

improvements to our algorithm that we are currently inves-
tigating and discuss our plans for extending the approach.

2 Related Work

Much research has been done in the field of activity
recognition. One focus has been on detecting gestures and
relatively low-level activities such as running, walking, sit-
ting, shaking hands, vacuuming, etc. For example, West-
eyn et al. used hidden Markov models (HMMs) to recognize
mimicked autistic self-stimulatory behaviors using three
on-body accelerometers [22]. Bao and Intille compared
several classification methods and on-body sensor positions
to recognize 20 different activities collected under “semi-
naturalistic” conditions [2]. Other researchers have focused
on recognizing American Sign Language (ASL) [17, 21, 3].
Huynh and Schiele analyzed sensor readings from a multi-
modal, on-body sensor package in order to empirically eval-
uate different features and window lengths [10]. They found
that discriminative features vary across activities but that
FFT coefficients aggregated in exponential bands may be
generally applicable. Lester et al. continued along this path
and used boosted decision stumps to automatically select
features and then used HMMs to capture temporal regu-
larities [13]. Space constraints preclude a more complete
review, but see Bao and Intille’s review for additional refer-
ences in this area [2].

Previous work in motif discovery more closely relates
to our research. In bioinformatics, for example, systems
such as MEME were developed to discover motifs in DNA
and protein sequences [1]. Many other specialized systems
have been developed since then, though few are applica-
ble to time series analysis since they were designed to work
with categorical sequences (see [11] for a brief review). Re-
cently, Jensen et al. generalized motif discovery over both
categorical and continuous data and across arbitrary similar-
ity metrics [11]. This represents a major improvement, but
their approach has two significant issues. First, it requires
a pairwise comparison between all subsequences of a given
length. This operation is quadratic in the length of the time
series, making it unable to scale to even medium-length data
sets. Second, although they do support variable length mo-
tif occurrences, this is only achieved via a post-process. In
sequence data this is probably not a major problem, but in
time series, two very similar subsequences may appear quite
different if only fixed-length segments are compared (e.g.,

consider comparing ABCD and AABBCCDD with a window
length of four).

Within the data mining community, an efficient, prob-
abilistic algorithm for motif discovery using locality-
sensitive hashing was developed [4]. This approach only
discovers fixed-length motifs in univariate data however. It
gains its efficiency by first searching for similar pairs of
subsequences using a discrete representation of the origi-



Figure 2. Algorithm Overview

nal, real-valued data. Local quantization is performed by
symbolic aggregate approximation (SAX) [14], and then the
most similar pair is used as a seed to find the remaining mo-
tif occurrences. Although this approach can be exended to
operate on multivarite time series [12], the assumption that
motifs have a fixed length along with the requirement that
the user specify a threshold for intra-motif similarity, makes
it difficult to use for activity discovery.

Tanaka and Uehara generalized the approach of
Chiu et al. to work with multivariate time series and to al-
low variable length motifs [18]. Their solution, however, is
simply to apply a univariate algorithm to the first principal
component of the time series. Unfortunately, the first prin-
cipal component will often not retain enough information
about the original multivariate sequence to allow differen-
tiation between different actions. Their use of a minimum
description length (MDL) criterion to select variable-length
motifs, however, appears to be quite powerful, and a similar
technique is used in our approach (see Section 3.1).

The PERUSE algorithm discovers motifs directly in mul-
tivariate time series and allows non-linear time warping and
variable-length motifs [15]. Impressively, it was able to
learn many of the repeated words when applied to speech
data and was also able to learn “episodes” from robot sen-
sor data. The algorithm was developed for data with a dense
motif structure, an assumption that holds for both the speech
and robot sensor series. However, although the algorithm
is applicable to sparse data, it scales quite poorly due to
the need to exhaustively search for exemplars. In practice,
sampling methods can speed up the exemplar search, but

this benefit decreases as the sparsity increases, eventually
returning to an effectively linear search.

Although less closely related than the aforementioned
motif discovery algorithms, much research in the computer
vision and multi-modal pattern recognition communities fo-
cuses on data with dense structure in what can broadly be
called scene detection. A particularly nice example is the
work of Xie et al. in which the parameters of a hierarchical
hidden Markov model (HHMM) are estimated in an unsu-
pervised manner to learn different segments of soccer and
baseball games [23]. The games are analyzed based on
both video and audio features, and the hierarchical model
naturally accounts for both low-level and high-level struc-
ture. In earlier work, Clarkson and Pentland explicitly used
a two-layer HMM to model ambulatory audio and video
data captured using on-body sensors [5]. Low-level tran-
sitions between the states of each HMM captured local in-
formation, while transitions between HMMs captured scene
boundaries.

3 Algorithmic Details

Our approach to activity discovery is based on the for-
mulation set forth by Oates [15], which frames the problem
as a parallel estimation of hidden location probabilities and
motif model parameters. The hidden variables, zS,t, specify
the likelihood of a motif occurrence ending at a particular
time, t, in a sequence, S. Expectation-maximization (EM)
is used to iterate between calculating the expected value of
the zS,t given the current model parameters and then esti-
mating the optimal model parameters given the current oc-



currence location probabilities.

A key issue of any iterative algorithm, including EM, is
initialization. Since no information about the motif occur-
rence locations is known a priori, initializing zS,t is not pos-
sible. Instead, the PERUSE algorithm initializes the model
parameters for the current motif from an exemplar. Since
no true exemplars (i.e., actual occurrences of the motif) are
given, the algorithm uses a fixed-length sliding window to
try all possible exemplars and then selects the one that leads
to the highest overall occurrence probability as a real motif
(see [15] for additional details).

Although this is an intuitive, principled formulation, two
problems do exist. First, the initial model must be learned
from a single example. Although PERUSE mediates this
issue somewhat by only searching for a small number of
occurrences based on this model (and then re-estimating the
model parameters based on these additional examples), no
initial information about the allowable variance in either the
observations or temporal warping can be learned from the
single exemplar. In addition, if the motifs are sparse, a huge
amount of time could be wasted searching for motifs based
on false exemplars. Although these should eventually be
discarded in favor of real motifs, the time is still lost.

To address these issues, our approach to activity discov-
ery seeks to combine the efficiency benefits of searching
quantized time series (as in Chiu et al.’s work [4]) with the
powerful modeling abilities of probabilistic temporal mod-
els in a continuous domain (as in PERUSE). The algorithm
proceeds in three main phases (see Figure 2 for a diagram-
matic overview). In the first phase, it generates a set of seed
motifs by greedily selecting the best motif, removing its oc-
currences, and then iterating until the next best motif fails
to meet an information-theoretic criterion described in de-
tail below. The seed motifs are then refined using informa-
tion from the continuous time series, and, finally, a HMM is
trained for each seed motif and corresponding occurrences
are detected via a modified Viterbi alignment procedure.

3.1 Seed Motif Identification

In the initial phase of the approach, the multivariate data
is quantized by fitting a mixture of Gaussian distributions
to the frames of the time series. Thus, if the original data
set consists of eight series with 1,000 frames each, then the
mixture model would be fit to a data set of 8,000 points.
Each mixture component is assigned a unique symbol, and
each frame of the time series is mapped to the symbol corre-
sponding to the closest mixture component. In the example
above, this would lead to eight strings of length 1,000.

A generalized suffix tree is then built from the quantized
sequences. A suffix tree is a linear space tree structure in
which every path from root to leaf is a valid suffix (see Fig-
ure 3) [9]. As an example, if the string ABCD is used as

Figure 3. A suffix tree for the string ABABC.
Node annotations show the index of the suf-
fix in the original string, while edge anno-
tations show the substring either explicitly
(left) or as an index range (right).

input, then the suffix tree will hold the strings ABCD, BCD,
CD, and D. Importantly, every subsequence of the original
string is the prefix of a suffix, and so every subsequence is
stored in the suffix tree starting at the root node.

Ukkonen devised an algorithm to build a suffix tree in
linear time [20], and his work was later extended to include
linear time construction of generalized suffix trees which
store multiple strings within a single tree [9]. Generalized
suffix trees and the linear time construction algorithm pro-
vide a method to efficiently represent all of the quantized
data and then rapidly search for common subsequences.

In order to rank the potential motifs and determine
when to stop searching, each motif is scored according to
an information-theoretic criterion similar to that used by
Tanaka and Uehara. The criterion computes the change in
description length of the original data sequence if the mo-
tif were encoded separately and every occurrence were re-
placed with a new symbol. This criterion serves to balance
the number of occurrences of a particular motif with the
complexity of each occurrence, which is necessary for two
reasons. First, the motifs found should be maximal, which
means that they should be as long as possible while main-
taining intra-motif similarity. Second, neither very long,
complex, but rare occurrences nor short, simple, frequent
motifs are particularly useful in general.

The MDL criterion balances occurrence frequency with
motif complexity and represents the number of bits needed
to encode the motif plus the number of bits needed to mark
each occurrence. The forumula for the criterion is:

M · log2(qm) + nm · log2(qs + 1)

where M is the total number of frames in all occurrences,
qm is the number of unique symbols in the motif, nm is the
number of occurrences, and qs is the total number of unique
symbols in the quantized data.



Figure 4. Dendrogram showing a motif that
should be split

The motif with the largest score (corresponding to the
largest reduction in total description length) is selected as
the next best and is added to the list of seed motifs. If this
score is below a user-specified threshold, however, seed mo-
tif discovery terminates.

3.2 Seed Motif Refinement

Once the full set of seed motifs is identified, they are re-
fined to account for errors introduced by the quantization
and by the user-specified query length. Four different kinds
of refinement are performed: splitting, merging, affix detec-
tion, and temporal extension.

The split refinement step accounts for motifs that appear
similar in the quantized data, but are clearly different in the
continuous domain. For each motif, the occurrences are
analyzed using agglomerative clustering with the farthest-
neighbor rule for comparing clusters. The resulting merge
tree is then tested to see if it supports splitting the set into
two new clusters. The test is performed by comparing the
last merge (from two down to one cluster) to the second to
last merge. If the corresponding distances are sufficiently
large, then the two clusters are very different, and so a split
is performed (see Figures 4 & 5).

After all seed motifs have been tested for splitting, the re-
sulting set undergoes merge refinement. This step addresses
a common problem with quantized data that occurs when
data exists very close to a quantization boundary. In this
case, two values that are similar in the continuous domain
may be assigned different symbols. As a simple 1D exam-
ple, consider the values 0.99 and 1.01 split by a quantization
boundary at 1.0. Like splitting, merging proceeds via ag-
glomerative clustering, but now the clustering is performed
over the seed motifs rather than within their occurrences. If
two seed motifs are determined to be very similar, then they
are merged.

Next, affix detection looks for pairs of seed motifs in

Figure 5. A dendrogram showing a motif that
should not be split. Note how the final merge
accounts for a relatively small amount of the
total distance.

which the occurrences of one motif always closely follow
the occurrences of another. This can happen if the user-
specified query length is short relative to the actual motif. In
such cases, a single motif may be identified multiple times,
each time corresponding to a different portion of the full
motif (prefix, middle, suffix, etc.). Affix detection seeks to
detect this situation and fix it by combining the motifs.

The final refinement step deals with temporal exten-
sion. Extension is a common method for adapting the motif
length to fit the data after part of the motif has been detected.
A similar method is used in both PERUSE and the general-
ized discovery algorithm of Jensen et al. For each seed mo-
tif, the parameters of a left-right HMM are estimated from
the motif occurrences and the set of variances in the obser-
vation distributions are extracted. The variance of the frame
that precedes each occurrence is then compared to the mean
of this set, and if it is comparable (or smaller), then the mo-
tif is extended to include the preceding frame. An identical
procedure attempts to extend the motif forward in time, and
in both cases, temporal extension continues until the vari-
ance of the next frame is too large to maintain intra-motif
similarity.

3.3 Motif Modeling and Occurrence De-
tection

The final phase of the algorithm takes the refined seed
motifs, builds a probabilistic model for each set, and uses
the models to find all of the occurrences in the original
time series. We use left-right HMMs as models due to
their history of good performance for speech and gesture
recognition and because a simple modification of the Viterbi
alignment algorithm provides an efficient motif detection
method.

The goal of this phase is to iteratively find the sub-



Figure 6. Modified Viterbi alignment

sequence with the maximum probability given each of
the motif models. Unfortunately, there are O(T 2) subse-
quences, where T is the length of the longest time series,
which makes scoring each subsequence impractical even
for medium-length data sets. We can adapt the Viterbi
alignment algorithm, however, to compute all of the needed
probabilities with a single pass over the data rather than with
a single pass over each subsequence.

Viterbi alignment builds a trellis that stores the maxi-
mum probability of being in each hidden state of the model
for each frame, assuming that we start in the first frame and
follow the optimal hidden state path:

δt(i) = max
q1,q2,··· ,qt−1

p(qt = Si|O1 · · ·Ot)

where qt = Si is the probability of being in state Si at time
t and Ot is the observation at time t (see [16] for a review
of the Viterbi algorithm and relevant notation). In such a
trellis, the top row stores the probability of being in the first
state at each time step, while the bottom row stores the prob-
ability of being in the last state. Each column represents one
frame of data. Typically, only the first column is initialized
and then a dynamic programming algorithm is used to fill
in the rest of the trellis.

In our approach, however, the first column is initialized
in the standard way, but we also initialize the top row as if
the model started in the current frame: p(qt = S1|Ot) =
b1(Ot) rather than p(qt = S1|O1 · · ·Ot) = δt−1(1) · a11 ·
b1(Ot) (see Figure 6), where aij is the transition probability
from state i to state j. The rest of the trellis is then computed
using the standard method.

This modification changes the semantics of the nodes in
the trellis. Now, each node stores the maximum probability
of being in a hidden state without presuming a fixed start-
ing time. Instead, the dynamic programming ensures that
the probability is maximal given any previous starting time,
and the exact time can be easily calculated using standard
state sequence backtracking. This means that we can lo-
cate the best subsequence in linear time by simply scanning
the bottom row for a maximum and then tracing backward
through the trellis to find the optimal start time.

Note that this modification only works because we use a
constrained HMM topology. Specifically, the modification
requires that all start states be true sources so that even the

Figure 7. Motifs discovered in the exercise
data (only accelerometer readings shown).

self-transition of a start state are zero (i.e., if Sj is a start
state, then ∀i : aij = 0). There are no other restrictions
imposed by the optimization, and this requirement is easily
met by a left-right model without loss in representational
power.

We can enumerate the motif occurrences in descending
order of likelihood using the above procedure. All that re-
mains is to determine when the next best occurrence is in-
valid. A simple approach would be to require the user to
specify a minimum likelihood for valid matches. This is in-
feasible, however, because the absolute likelihood depends
greatly on the motif (e.g., variance in the observations and
duration), thus requiring too much a priori knowledge. This
approach would also likely require the user to specify a dif-
ferent threshold for each motif, an impossible task since the
number of motifs is not generally known before the discov-
ery process begins.

To circumvent these problems, we designed the criterion
based on the likelihood of the occurrence relative to the dis-
tribution of likelihoods over the seed occurrences. Specifi-
cally, each occurrence is scored according to

score(") = (1 + e
−(!−µ)

σ )−1

where " is the likelihood of the occurrence, and µ and σ are
the mean and standard deviation of the likelihoods of the
seed occurrences used to train the model. Since the scoring
function is a sigmoid normalized by the standard deviation
of the seed likelihoods, a single stopping threshold is appli-
cable to all of the motifs.

4 Experimental Results

In order to empirically validate our approach to activity
discovery, we captured data from a mock exercise routine



Figure 8. Raw accelerometer (top) and gyroscope data (bottom) representing 600 frames (48 sec-
onds) of data from one of the exercise sequences.

composed of six different dumbbell exercises. An XSens
MT9 inertial motion sensor was attached to the subject’s
wrist by fitting it into a pouch sewn to the back of a thin
glove. We sampled the MT9 at 100Hz and recorded three-
axis accelerometer and gyroscope readings. In total, we
captured approximately 27.5 minutes of data over 32 se-
quences. For the experiment, we down-sampled the data
to 12.5Hz leading to 20,711 frames. The data contains
six different exercises and 864 total repetitions (144 occur-
rences of each exercise). Each frame is composed of the
raw accelerometer and gyroscope readings leading to a six-
dimensional feature vector. The data was quantized using a
mixture of ten 6D Gaussians. Figure 8 shows the raw data
for one of the sequences.

Our algorithm correctly determines that there are six mo-
tifs and successfully locates 832 of the 864 of the occur-
rences (96.3% recall). It also locates 51 false occurrences
(insertion errors) in addition to missing 32 real occurrences
(deletion errors). There are no substitution errors, probably
due to the high variation between the different exercises.
This leads to an overall accuracy of 86.7% and precision
of 88.4%. Figure 7 shows the accelerometer readings for
several occurrences of each discovered motif.

Clearly, this is an evaluation of motif discovery in an ar-
tificial setting in that strong assumptions about the “correct”
motifs are made. Such assumptions are unavoidable, how-
ever, if an objective and detailed measure of performance is
desired. In real applications, the discovered motifs would
be evaluated in other ways depending on the goals of the
user. For instance, if the motifs represent an intermediate
representation between the low-level sensor readings and
some higher-level activity model, then the performance of a
higher-level classifier based on the discovered motifs woudl
be a better indication of their value.

Alternatively, the purpose of the discovery system could
be to help the user form a better understanding of a domain

as perceived by a new sensor. In this case, subjective eval-
uation based on the semantic interpretability of the motifs
is reasonable. This determination could be made by visu-
alizing the occurrences of each motif in the context of the
original sensor or by inspecting the readings of a different
sensor, like a time-synchronized video or audio recording,
that is more natural for the user to interpret.

5 Future Work

In light of the encouraging results on the exercise data
set, we are currently validating our approach by evaluating
it on additional data sets taken from other domains and with
different sensors. One such domain is American Sign Lan-
guage for which we have a data set consisting of 500 sen-
tences composed from a 40 word vocabulary captured by a
head-mounted video camera. Here, the time series are made
up of 16-dimensional feature vectors describing the blobs
corresponding to the signer’s left and right hand. Other data
sets include English speech, Kung Fu forms captured by
on-body accelerometers, and another ASL data set captured
with a glove that measures finger posture.

Another major concern with our current system involves
the various user-specified parameters including the seed
motif stopping threshold, merge, split, and temporal exten-
sion criteria, and initial query length. Although we have
made a great effort to ensure that the parameters are as
stable and as independent of the particular data as possi-
ble (e.g., with regard to sampling rate, model complexity,
occurrence density, etc.), we still need to demonstrate this
empirically and evaluate the stability of the parameters.

We are also interested in learning high-level structure
over the discovered actions and in devising a way of in-
corporating such knowledge to improve the motif discovery
results. This could serve as a way to inject user knowledge
to help guide the system or to improve the existing unsuper-



vised system by inducing activity structure and then incor-
porating high- to low-level feedback.

Finally, we would like to develop an interactive discov-
ery system based on our approach. Ideally, the system
would detect potential errors or ambiguities and present the
user with a graphical display in which they could easily pro-
vide guiding information. For example, the system could
present sample images or video corresponding to several
borderline seed motifs and the user could click on those
that do not belong. Alternatively, it may be easy for the
user to manually specify which seed motifs need to be split
or merged once presented with example occurrences, thus
avoiding a lengthy calculation and error-prone threshold.
Although much work is needed to detect appropriate inter-
action points, select useful examples, and incorporate the
user’s feedback, we are encouraged by the recent success
of other interactive machine learning research [8] and think
that similar benefits are possible within activity and general
motif discovery.

6 Conclusions

We have presented an approach for activity discovery
that allows for variable-length motifs, supports dynamic
time warping, and which is efficient even when the motifs
are sparsely distributed. Our approach has been evaluated
on a real data set containing over 27 minutes of sensor read-
ings from an on-body accelerometer and gyroscope. It is
able to correctly identify the number of motifs and to lo-
cate 96.3% of the occurrences with an overall accuracy of
86.7%. Based on these results, we are currently validating
our approach with data from other domains and with differ-
ent sensor modalities. Finally, we are interested in applying
our technique to data sets in which the “correct” motifs are
unknown and then using input from domain experts to in-
terpret and verify the discovered patterns.
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