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Abstract
We show how to use graphics hardware for tackling optimization problems arising in the field of computational
geometry. We exemplarily discuss three problems, where combinatorial algorithms are inefficient or hard to im-
plement. Given a set S of n point in the plane, the first two problems are to determine the smallest homothetic
scaling of a star shaped polygon P enclosing S and to find the largest empty homothetic scaling of P completely
contained inside an arbitrary polygonal region. Pixel-exact solutions for both problems are computed in real-time.
The third problem is a facility location problem and more difficult to solve. Given the Voronoi diagram VoD�S� of
the n points, we try to position another point p in the plane, such that the resulting Voronoi region of p has maxi-
mal area. As far as we know there exists no traditional solution for this problem for which we present pixel-exact
solutions.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Geometric algorithms,
languages, and systems I.3.3 [Computer Graphics]: Display algorithms

1. Introduction

The Voronoi diagram, for short VoD, is a well known and
very versatile structure in computational geometry. It is used
as the basis for numerous algorithms.

Exploiting a geometric relationship between the VoD and
the lower envelope of the arrangement of cones Hoff et al.
17 presented a fast algorithm to render the VoD relying on
graphics hardware. This will be shortly reviewed in section
two. As proven by Hoff et al. only a few triangles are re-
quired to compute apixel-exactdistance mesh representing
the VoD. In our approach, we also demand apixel-exactas-
signment of the colors, i.e. Voronoi regions. Then, the num-
ber of required triangles increases sizably considering the
worst case, which is proven is section two.

As an alternative, we present an algorithm that makes use
of depth textures and thus circumvents the above mentioned
approximation problem. Additionally, we present a method
to speed up the computation such that the running time re-
mains almost constant, independent of the number of pro-

cessed point sites. In the final part of the second section, we
discuss some variations and applications of our approach.

In the third section, we present a pixel-based solution to a
facilities location problem, which still seems to remain a too
tough nut to crack for pure computational geometry. Given a
setS of n points in the plane and a boundary areaB, find the
position for a new sites � B such that its Voronoi region has
maximal area.

In section four we turn our focus to minmax facilities
problems. Given a setS of n points in the plane and a star-
shaped polygonP determine the smallest enclosing homo-
thetQ.

The third problem, we pay attention to, is the extremal
polygon containment problem. Our goal is to place the
biggest homothetQ inside an arbitrarily polygonal region
such that no point ofS is covered byQ.

A good introduction in geometric computations via graph-
ics hardware can be found in20.

All computations are executed on an Intel-PentiumTM
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2 Markus Denny / Solving Geometric Optimization Problems

800 MHz in combination with a GForceTM 3 graphics
adapter.

2. Lower envelope and Voronoi diagrams

2.1. Voronoi diagram

A Voronoi diagram of a set of sites is defined to be a partition
of the plane into regions. Each region corresponds to one of
the sites and is determined by the property that all points
within a region are closer to the corresponding site than to
any other site, with respect to some fixed distance function.

Nowadays, VoDs play an important role in many fields
besides computational geometry (cf.12). A proof of the ver-
satility and importance of Voronoi diagrams may also be
found in the large number of surveys and books dealing with
Voronoi diagrams ( e.g.2, 3, 22).

The relationship between the VoD ofn sites and the lower
envelope of the arrangement of a set ofn cones, first ob-
served by Edelsbrunner and Seidel (cf.10), emerges as par-
ticularly interesting for us (cf. figure1).

Let S � �s1� � � �� sn� ��3 denote the set of point sites in
three dimensional Euclidean space. Each of the sites lies in
the xy-plane atz� 0. LetC denote a right circular cone com-
pletely contained in the half-spacez � 0 with the apex ofC
positioned at�0�0�0�, i.e.C� ��x�y� z���3�z�

�
x2� y2�.

If we position such a cone on top of every point site, then the
orthogonal projection of the lower envelope of the arrange-
ment of the cones is exactly the partitioning of the plane into
Voronoi regions.

Figure 1:

Construction of a Voronoi diagram employing cones

This relationship is exploited by Hoff et al.17. They ap-
proximate each cone as a triangle fan. To extract the lower
envelope of the arrangement of the cones, the depth buffer
is enabled such that only the lowest fragments for each pixel
are allowed to pass.

2.2. The error due to the approximation

In order to get a pixel-exact approximation of the VoD Hoff
et al.17 approximate the base of the right circular cone with
a regular polygon such that the polygonal chain is inside an
annulus of the maximal radiusd (the diameter of the image)
andd�ε with ε� 1. Assuming a image size of 1024�1024
pixels, Hoff et al.17 conclude thatT � 85 triangles are suffi-
cient for apixel-exactcomputation of the Voronoi diagram.
T is determined by

T �
�

π
arccosd�ε

d

�
� (1)

This error approximation holds for thepixel-exactcomputa-
tion of the depth buffer values. Thus, it suffices the require-
ments of any further application relying on the pixel-exact
distance computation. It does not guarantee a correct assign-
ment of the color of the Voronoi regions. It might happen
that many pixels are assigned the wrong color although for
any of these pixels hold that the distance between it and its
corresponding nearest site is computed fairly accurate.

Figure 2:

Construction of a Voronoi diagram employing cones

The worst case is represented by two sites at minimal pos-
sible distance located in one of the corners. In our example
the two points are positioned at�1�0� and�0�1�, i.e. lower
left corner. The resulting maximum error occurs at the upper
right corner (cf. figure2). For an image size of 1024�1024
pixels the deviation of the computed bisector from the cor-
rect one in the upper right corner is more than 50 pixels.

The number of required triangles per cone can be bounded
from above as follows. As mentioned before, the worst case
is determined by two sitess and t at nearest possible dis-
tancea. The maximum deviation appears at the point of the
bisector which is further away from both, thus at the upper
right corner (cf. figure3). To derive an upper bound, we as-
sume that the approximation of the cone for the sites is al-
ways correct and the approximation of the cone fort is al-
ways as bad as possible. At the maximum heightr the base
of the coneCs for s is a circle with radiusr and the base
of the coneCt of t is a circle with radiusr� ε. Hence, the
real approximation is in between the annulus ofr andr� ε.

submitted to EUROGRAPHICS 2003.



Markus Denny / Solving Geometric Optimization Problems 3

Demanding an orthogonal deviation from the correct bisec-
tor of no more than 1 pixel, we get an upper bound on the
number of triangles per cone of more than 2500. To ease the
calculation, we assumes is at the origin of thexy plane at
height z � 0 andt is positioned at�a�0�0�. Then the cone
Cs andCt are given asCs � ��x�y� z� � �3�z �

�
x2� y2�

andCt � ��x�y� z���3�z� ρ
�
�x�a�2� y2�ρ� 1�, where

ρ � d��d � ε� represents the approximation error ofCt .
Again, d denotes the maximal radius (i.e. the diameter of
the image). To guarantee a pixel exact approximation, we
demand thatCs andCt intersect at position�a�2� 1�d� z�,
thus

ρ
�
��

a
2
�1��a�2�d2 �

�
�

a
2
�1�2�d2�

Resolving this equality and applying equation (1), we get an
upper bound on the number of required triangles.

s t
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bisector
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bisector
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Figure 3:

Worst case approximation error

2.3. Alternative algorithms using depth textures or pixel
shaders

As shown above, for a pixel exact computation we have to
spend about 30 times more triangles than expected. Appar-
ently, this will have a remarkable impact on the rendering
time. Fortunately, this can be circumvented using depth tex-
tures.

In a first step, we precompute adistancetextureD which
contains for each entrydxy the corresponding distance to the
origin, i.e. dxy �

�
x2� y2. For each point site, we render

a image wide rectangle textured withD. This guarantees the
most exact results maintaining a good rendering time. As the
construction of the texture is done only once, it can either be
computed by rendering a triangle fan consisting of a rather
huge number of triangles, or it can even be precomputed us-
ing the CPU’s power. This has the additional advantage, that
arbitrary distance functions can be realized not relying on
a conic representation. For instance, the power diagram (cf.
Laguerre-metric22 can also be realized using this approach.

If the underlying distance function for the computation of
the VoD is induced by a Minkowski normL��x�y� � ��x���
�y���1�� ��� 1�� as for instance the Euclidean normL2, then
we can make use of its symmetry and reduce the size of the
precomputed texture to a quarter.

2.4. Speed up

On closer examination one finds out that in most cases there
are ineffective fragments generated. Letp denote the num-
ber of pixels of the image under consideration. The render-
ing of each cone (or depth textured rectangle) generates a
fragment for each pixel, thusp � n fragments are created al-
thoughp fragments are sufficient. Our idea to accelerate the
computation, reduces the overhead of needlessly generated
fragments. To ease the discussion, we define the width of
a Voronoi region with respect to a bounded area to be the
maximal distance from its site to any point belonging to that
region. Furthermore, thewidth of a Voronoi diagramis the
maximum of all widths over all regions.

If we knew the widthw of a Voronoi diagram in advance,
then we could restrict the height of the cones appropriately.
As a consequence the number of required triangles and even
more important the number of generated fragments entering
the raster pipeline decreases.

Dividing the image using a quad-tree structure gives us
a fast approximation for the width of the Voronoi diagram.
It divides the image into four equal sized squares. On each
level of the quad-tree, each of the four squares is again di-
vided into four squares, resulting in a tree structure with a
branching factor of four.

For each level of the initially empty tree and for each site,
we mark the node representing the area in which the site
resides as being visited.

Our intention is to derive an upper and a lower bound for
the width of the Voronoi diagram. In order to derive such
bounds, we are interested in the highest levelt, for which at
least one node is not marked. For the sake of simplicity, we
denote the corresponding edge length bye.

Consider a piece of area a node in levelt is accountable
for. The corresponding edge lengthe gives a lower bound
for the width of the Voronoi diagram. The level one above
level t is the lowest level for which all nodes are marked.
That is each nodeknowsa site which is inside the area cor-
responding to that node. Hence if we choose the width to be
the length of the diagonal (i.e.e2

	
2), we can ensure that

the entire image will be covered. That is our upper bound. In
case that all leaf nodes are marked, the upper bound reduces
toe

	
2 (i.e. the length of the diagonal of the area correspond-

ing to a leaf node).

The quad-tree is filled as follows. For each site we traverse
the tree bottom-up and mark every node on the path to the
root of the tree until we reach the first node already marked.
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4 Markus Denny / Solving Geometric Optimization Problems

For each layer, the nodes are stored in an array such that
the address of the node can easily be computed applying a
bitwise shift operation on the x and y coordinate of the site
under consideration.

In the worst case any node of the tree as well as any site is
visited at most once. For a image size of 1024�1024 we use
a quad-tree of height six. On an Intel-PentiumTM 800 MHz
the processing of 10000 sites requires less than 4 millisec-
onds which is definitely worth the trouble.

To prove the effect of the speedup, we summarize some
test series in figure4. For all series, the sites are chosen uni-
formly at random from�0� � � ��1023�2.

The red curve represents the time consumed by the algo-
rithm due to Hoff et al.17. Since the height of the cones re-
mains unadapted, the number of generated fragments, and
thus the running time of the algorithm, increases linearly
with the number of sites.

In contrast to that, the running time remains quasi unaf-
fected of the number of sites, if the height of the cones is
adjusted.
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Figure 4:

Rendering time with and without the quad-tree

2.5. Variations

Although we cannot go into detail in this paper, it is worth
mentioning that beside VoDs based on Minkowski norms,
also VoDs based on an arbitrary distance function can be ren-
dered with the help of depth textures. We can also make use
of our approach to compute higher order VoDs using shadow
buffering to simulate a second depth buffer. The special case
of the furthest point VoD can be rendered by just changing
the point of view for the rendered scene. Furthermore, there
are straight forward implementations allowing to change the
shape of the sites to line or circle segments. Additionally,
weighted VoDs can be rendered using just a single depth tex-
ture if we have access to the pixel shading functionality. De-
ploying geometrical properties, these implementations are
possible without any impact on the speed and accuracy.

A more detail description of these variation can be found
in 8.

3. Settle point computation

3.1. Yet another fast food in town

Assume you are the store manager of a fast food chain.
You decide to capture the market in a town you are not yet
present. Most naturally, the trading area should be as big as
possible. To find the optimal place, you construct a Voronoi
diagram of the presently existing stores of your business ri-
vals. The new store is best located at the point, that will have
the biggest region, when inserted into the existing diagram
as a new site. More precisely, the problem is stated as fol-
lows:

Given a setS of n sites within a bounding regionB. Find
the position for a new sites such that in the Voronoi diagram
for the setS
�s� the Voronoi regionRs of s maximizes the
area over all sitess � B�S.

To ease the further description we call this point thesettle
point of a Voronoi diagram.

Previous work

Cheong et al.6 describe a related problem. Consider the fol-
lowing game, in which a first player chooses ann-point setA
inside a squareQ. Thereafter, a second player places another
n-point setB insideQ. The payoff for the second player is
the fraction of the area ofQ occupied by the regions ofB in
the Voronoi diagram ofA
B. Cheong et al6 give a strategy
for the second player that always guarantees him a payoff of
at least12 �α for a constantα � 0. Although this work re-
sembles our problem, the point bearing the largest area is not
determined. For a very special case, Dehne et al7 describe
a method to maximize a Voronoi region. But up to now, we
are not aware of any previous solution delivering the settle
point.

Properties

The problem appears to be rather challenging as the position
of the settle point can be quite arbitrary. In general, it coin-
cides neither with an edge of the Voronoi diagram nor with
an edge of the furthest point Voronoi diagram.

Figure 5 illustrates such a case, based on a Voronoi di-
agram of set of eight points. To ease perception, the eight
sites are colored in green. Further, the slim lines represent
the edges of the Voronoi diagram, and the fat lines repre-
sent those of the furthest Voronoi diagram. The settle point
is marked by a red circle. For any other point, it holds that
its brightness represents its potential area.

Pixel based adaptation

The easiest method to accomplish our task is to insert all pos-
sible points, one at a time, in the existing Voronoi diagram,
compute the size of the area of the just constructed region,
and delete the point again. Obviously, this is by far too in-
efficient and time consuming. After a point is inserted, the
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Figure 5:

Voronoi, and furthest point Voronoi diagram with
superposed settle point computation

entire image must be read back into main memory to count
the number of newly colored pixels.

Instead, we do the following. Letp be the pixel under
consideration. We investigate for which potential new sites
the pixel p would contribute to their regions (cf. figure6).
For that reason, we draw a circle aroundp. The radius of the
circle equals the distance betweenp and its nearest sitesp.
If a pixel qin inside the circle is chosen to be the new site,
thenp will belong to its region, since the distance betweenp
andqin is less than the distance betweenp andsp. Similarly,
p will never belong to the region of a pixelqout , outside the
circle.

p
sp

qin

r

qout

Figure 6:

Contribution area ofp

Given a set of point sitesS � �s1� � � �� sn�, we render the
VoD(S) as a first step. After examining the depth buffer each
pixel knows about the distance to its nearest site. Based
on this knowledge, we do the following for each pixelp:
We draw a circle aroundp of radiusr, wherer equals the
distance betweenp and its nearest site.p contributes 1 to
the potential area of any pixel inside the circle (e.g.qin).

We count these events abusing the color and stencil buffers.
(The stencil buffer is part of the pixels individual memory
used for per-fragment testing. It is commonly applied to re-
alize masking regions.) Whenever a circle overlaps a pixel
its stencil buffer is incremented by 1. The fragment is al-
lowed to pass the stencil test, not until an overflow in the
stencil buffer occurs. This has the effect, that one of the four
color buffers value increases by 1, provided that blending
is appropriately enabled. This is why we initialize the color
buffer with zero and the stencil buffer with 1. We select the
blending factors to be all one. Furthermore, we use thetest
of equality with zeroas stencil compare function and refer-
ence value. All stencil actions are set toincrement with wrap
aroundthe stencil buffer by 1. In addition to that, the circles
are at first colored with red equals 1 (i.e. 0x01) and green,
blue and alpha equal zero.

As mentioned before, whenever a circle overlaps a pixel,
its stencil buffer increments. Every 256 times the stencil
buffer wraps around, and due to the blending settings, the
red color buffer increments by 1 (only the first wrap around
happens after 255 hits since the stencil buffer is initialized
to 1). Accordingly, we can count 256� 256�1 hits in the
red buffer. After that, we rotate the color values of the circles
to sum up the hits successively in the remaining three color
buffers. In doing so, we can count 4�256�256�1�3�
256� 261375 events before we have to read back the image
and reset the color and stencil buffers to continue counting.
Finally, we add up all intermediate images together with the
last image in the main memory to get the final image. Any
pixel with the greatest value is the requested candidate. With
new pixel shading hardware, there are 32 bit per channel
color buffers, such that 4� 232 � 256 events can be counted
without a readback.

In case of the availability of pixel shading functionality,
we ease the process of counting. We use a depth texture as-
signing each pixel a 4 byte memory cell, which can be used
for counting.

A variation for successful stores

Let us recall the example of the store manager from the be-
ginning of the section. Assume you are already involved in
the city, thus some of the stores are already your stores. Then
we can easily restrict the search for the new settle point ex-
cluding your current trading area. The pixels belonging to
your area are just unregarded, i.e. no new site can profit from
them.

3.2. Speed up

The idea to speed up the algorithm is based on the observa-
tion that the computation made for some sets of pixels re-
peats exactly for other sets. To gain a better insight, we trace
the computation for a horizontal row of pixelsp1� � � �� pδ all
belonging to the sitesp. Pixel pi is at distancei away from
sp.
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6 Markus Denny / Solving Geometric Optimization Problems

A circle with radiusi is drawn around eachpi with the
effect that thearea countersof pixels inside the circle are
changed. Assume we construct a stampT combining all the
affected pixels inside any of the drawn circle.T is a rectangle
sufficiently large to enclose any of the circles.

sp

sq

p1� ��� � pδ

δ

T

q1� ��� �qδ

Figure 7:

Contribution area ofp

This stamp can now be used in the course of the computa-
tion. For any row of pixelsq1� � � ��qδ belonging to a sitesq,
we omit the rendering of the single circles. Instead, we useT
to stamp the area around the pixels appropriately, all at once.

This could be exploited in the following way. We precom-
pute the circles for various configurations of pixels. Instead
of restricting ourselves just to pixel rows, we make sample
triangular groups (located around a virtual site) and compute
the effect of these pixel triangles on the surrounding area.

Armed with a large set of precomputed patches, we can
now reduce the number of pixels we have to process in the
ordinary way. After the Voronoi diagram of the initialn sites
is computed, we do the following for each site.

Find the biggest pixel triangle out of our precomputed
samples, which fits inside the sites region, such that the vir-
tual site’s position maps onto the real sites position. There-
after, any pixel inside the triangle is marked as processed
(see figure8). For the rest of the pixels we proceed as be-
fore. We draw circles of appropriate radius around these. At
the end of the ordinary algorithm we just add the correspond-
ing patches to the image in order to get the complete result.

In our implementation, the number of pixels which remain
to process is reduced by 60 percent on average.

Exploiting this idea yields another additionally accelerat-
ing effect, we can benefit from. Since fewer pixels have to
be processed, buffer overflows occur less frequently. Thus
we can reduce the number of times, the buffers have to be
read back in order to prevent a buffer overflow.

Running time anomaly

Interestingly, there is an apparent anomaly concerning the
running time. The greater the input set of sites, the quicker

Figure 8:

Voronoi diagram with blank patches of precomputed areas

the settle point can be computed. This is because the area and
width of the Voronoi regions decrease as more sites share
the same bounded area. Circles from points far away from
their corresponding site cover a lot more fragments than the
points nearer to the site, thus fewer fragments need to be
updated with a larger input set. The rendering time varies
between half a minute for set of about 1000 sites and up to
five minutes for set of three sites.

4. Minmax facilities problem

4.1. Smallest Enclosing Homothet

Imagine the alliance of several communities sharing the wish
for a common radio station. To keep down costs, they agree
in building just one radio transmitter station capable to cover
all communities. If we think of the communities as points in
the plane, the goal is to determine the point that minimizes
the distance to its farthest community. As we will see, the
center of the smallest enclosing circle is the desired place.
Furthermore, the radius of the circle is a lower bound on the
transmitting power which has to be deployed to cover all the
communities.

The minimal enclosing circle, for short MEC- problem as
introduced above is a special case of the smallest enclosing
homothet problem (see figure9).

Given a setS of n points in the plane and a simple star-
shaped polygonP with �0�0� � P. Determine the smallest
homothetH of P such that all points ofS are contained inside
H.

This problem can also be stated as a minmax facility lo-
cation problem. Given the setS and the star-shaped polygon
P  �0�0�, we search for a translation vector� � �2 mini-
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Figure 9:

PolygonP (in light blue) and the smallest enclosing
homothetic scaling

mizing the maximal scaling factorλ � �� such that each
sitesi � ���λP�.

A straight forward application of our more general ap-
proach addresses quality assurance systems. Think of the
predetermined polygon as a reference value for a machine-
made component. Then the scaling factor computed for a
set of sample data points scanned from an actual component
gives us the deviation factor as a measure for the quality of
the production process.

4.1.1. Previous work

For that special case of the afore mentioned MEC–problem
(the polygon H takes the shape of a circle) the prune-
and-search techniques for linear programming developed by
Nimrod Megiddo in 1983 can be adapted to solve this prob-
lem in linear time21. In 1991, a further enhancement for the
computation of the minimum enclosing circle was presented
by Welzl (27). He came up with a fast randomized method,
which could also be used to compute smallest enclosing
ellipsoids. Later on, this method was further improved by
Gärtner and Schönherr (cf.16).

A related problem is considered by Schwarz et al.24, who
presented a linear time algorithm for finding a minimal area
parallelogram enclosing a convex polygon in 1994. About
twenty years earlier, Freeman and Shapira faced the prob-
lem of computing the minimum area rectangle15. In 1985
Aggarwal, Chang and Yap1 provided anO�n logn logk� al-
gorithm computing the minimum areak-gon circumscribing
a convexn-gon. They exploited a lemma stated by DePano
in 9, who on his part proposed solutions for the minimal en-
closing equiangular polygon or regulark–gon.

Although these problems are related to the one stated here,

there are two major differences. First, we compute the mini-
mal enclosing homothetic scaling, thus rotation of the poly-
gon is not allowed. Second, our constraint on the shape of
the polygon is less demanding. It does not have to be convex
but just star-shaped.

4.1.2. Pixel-based approach

In a primary step, we develop an algorithm to solve the
MEC–problem, which is then extended to solve the more
general problem.

Given a setS of n point sites in the plane, it is a well
known fact, that the requested circumscribing circleC is de-
termined either by the diameter of the set, thus by two sites,
or by three of the point sites. In the first case, the centerc
of C lies on an edge of fVoD(S), the furthest point Voronoi
diagram ofS, and in the second case, it lies at a vertex of the
fVoD(S).

In our pixel-based approach to compute the fVoD(S), we
render circle–based cones from above, i.e. compute the up-
per envelope of these cones. In doing so, we allow only the
highest fragments to pass to the frame buffer and make an
update of the depth buffer. Eventually, the depth buffer re-
sembles the fVoD(S).

Fixing an arbitrary pixel, let us ask for the smallest cir-
cumscribing circle located at the pixel’s position. Then the
radius of the circle corresponds to its depth buffer value in
the fVoD(S). Thus the pixel with the lowest depth buffer
value gives us the centerc of the requested circle, and the
radius equals that of the depth buffer value. Moreover, letpc

be the pixel with the lowest depth buffer valueh. Then ren-
dering a cone upside down at positionpc and heighth will
draw the desired circle (provided a cutting plane atz � 0).

Stepping towards star–shaped polygons

Let P be the given star–shaped polygon, andmP be a point of
the kernel ofP, i.e. an interior point such that all the bound-
ary points ofP are visible frommP.

In principle, the procedure remains the same. We compute
the upper envelope of an arrangement of cones. Each cone is
a translation of a cone the base of which corresponds to the
polygonP. However, we have to take care about the shape
of the cone we put at every site in order to compute the up-
per envelope. A problem arises if the given polygonP is not
centralized symmetrically about the kernel point.

To gain some insight into the problem, examine the fol-
lowing example. LetP be a star–shaped polygon such that
the kernel point is at�0�0�. P is assumed to be not central-
ized symmetric. Lets be point site andP positioned ats. If
we consider the set of all translations ofP, that contains on
their boundary, then the corresponding set of kernel points
form the boundary of thẽP � �P. This corresponds to the
concept of the Minkowski difference betweens andP.
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8 Markus Denny / Solving Geometric Optimization Problems

In the two dimensional case,P̃ can also be gained as rota-
tion of P aboutπcentered around its kernel point. The finial
procedure to compute the smallest enclosing homothet with
regard to a star–shaped polygonP starts with the computa-
tion of the upper envelope of the arrangement of (identical)
cones, where the base of the cones is the polygonP rotated
aboutπaround its kernel point. Any further step remains the
same as before, in the computation of the MEC.

Computing the smallest k–enclosing homothet

This problem is first stated by Efrat et al.11. Given a set ofn
points in the plane, the smallestk–enclosing circle problem
is defined to be the smallest circle enclosing at least a set of
k points.

Adopting the algorithms for higher order Voronoi dia-
grams, mentioned in section2 in the most natural way, en-
ables us to use this approach to compute the smallestk–
enclosing circle (homothet), too. The key idea is to use two
depth buffers. Although there is no second depth buffer, we
can emulate it in hardware deploying shadow buffering (cf.
5). With the aid of the second depth buffer, we peel the or-
der k Voronoi diagram (i.e. thek-th lower envelope) from
the k�1 diagram, one after another. After we compute the
appropriate depth buffer values, we continue with our algo-
rithms as before.

4.1.3. Analysis

For the upper hull computation based onn points and a poly-
gon P with v vertices we needn triangular fans consisting
each ofv triangles. In case ofP being a circle, this is the
computation of the furthest point Voronoi diagram, which is
also the worst case for the number of triangles send to the
graphics engine.

The next step is the crucial part in the time consumption
analysis. To find the center of the smallest enclosing homo-
thet we have to read back the depth buffer values of the entire
frame buffer. Based on the hardware at our disposal, it takes
about 30 milliseconds to readback 4 bytes for each of the
1000�1000 pixels.

Compared to the computation of Voronoi diagrams, we
do not use any color information but only the depth buffer.
Hence, except for the errors made by the graphic engine,
our computation is exact, and can be rendered in real-time.
Even the computation of the minimum enclosing circle is
only affected by vertical approximation errors such that 85
triangles per cone are sufficient.

4.2. Extremal polygon containment

Let us recall our example of the alliance of communities.
But now, instead of establishing a transmitting station for
their citizens, they are faced with the problem of finding the
best placefor a waste disposal site. Of course, nobody wants

Figure 10:

Biggest empty star–shaped polygon (in red with yellow
kernel point) constrained to be completely inside the

convex hull. The blue area represents the lower envelope
computation.

to live near a bad smelling waste disposal. Accordingly, the
best place is furthest away from its nearest city, i.e. the dis-
tance between the waste disposal and the next city should
be as large as possible. Additionally, the choice for a place
is limited by the area the cities have at their disposal. This
leads to the definition of theextremal polygon containment
problem.

Let S be a set ofn points in the plane,A be a subset of the
plane, andP be a simple star–shaped polygon. Determine the
biggest homothetic scalingH of P such that no point ofS is
contained insideH andH is contained inA. Thus, we search
for the pair���λ� with � ��2 andλ ��� with

max�λ����λP��S � � and���λP�� A��

A variation of the problem asks for the largest empty cir-
cle the center of which is inside a predefined bounding box,
commonly the convex hull of the points inS (see23pp. 256
et sqq.).

4.2.1. Previous work

Restricted to the largest empty circle, Shamos and Hoey
present anO�n logn� time algorithm based on Voronoi di-
agrams in25. Some years earlier, in 1986, Lee and Wu18

had just settled a lower bound ofΩ�n logn� for the alge-
braic decision tree model proving optimality of the preced-
ing algorithm. Sharir and Toledo26 developed an algorithm
for placing the largest copy of a convex polygonP with k–
vertices inside a bounded two dimensional environment con-
sisting of a collection of polygonal obstacles having alto-
gethern corners. The copy is not allowed to intersect any
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of the obstacles and may have arisen fromP by transla-
tion, rotation and scaling. The execution time is bounded by
O�k2nλ4�kn� log3�kn� log log�kn�� (λq�r� is the maximum
length of an�r�q� Davenport Schinzel sequence, i.e. almost
linear inr for fixedq). Fortune14 and Leven and Sharir19 at-
tended the problem to find the largest homothetic copy of a
polygon P inside an arbitrary polygonal environment. One
result is anO�kn log�kn�� time algorithm providedP is a
convex polygon withk vertices and the environment consists
of at mostn vertices. The more general question – nesting
two non–convex, possibly non–connected polygons – is an-
swered by Avnaim and Boissonnat4 with anO�k3n3 log�kn��
time algorithm.

4.2.2. Pixel–based realization

Let S � �s1� � � �� sn� be a set ofn points in the plane, and
P a star–shaped polygon. Our aim is to compute the largest
empty homothetic scalingH of P. In a basic approach we do
not impose any constraint on the position of the kernel point
mH of H but to be inside the rectangular area of the screen.

The way we determine the kernel point ofH is quite sim-
ilar to the one for determining the smallest enclosing ho-
mothet. In contrast to there, we now use the lower envelope
of the arrangement of cones to discovermH . As before, all
cones are translations of a cone the base of which has the
shape ofP rotated aboutπaroundmP. The kernel pointmH
of the requested homothet is determined by the pixel with
the highest depth buffer value, which is also a measure for
the scaling factor ofH.

4.2.3. Restricting the position of the homothet

There are a several ways to extent the basic algorithm. A
frequent one is to demand the kernel point to be contained
inside a predefined polygon. In the pixel based world, it
is rather easy to comply with this requirement: Before we
determine the highest depth buffer value, we just reset the
depth buffer values of allforbiddenpixel. This can be ac-
complished by drawing a polygon corresponding to the de-
sired region without altering the depth buffer values but the
stencil buffer values. After that we reallow altering of the
depth buffer, and limit a frame buffer update to these pixels
the stencil buffer value of which is 0. Eventually we render
a screen size wide rectangle at heightz � 0.

In case that the idea behind this constraint is to avoid irri-
tations with your neighbors, we can do better. Deploying the
idea of Voronoi diagrams for line segments, we can forceH
to lie completely inside the predefined polygonal region (cf.
figure10).

Let C be the cone under consideration, thus the base ofC
corresponds to the polygonP. In addition to the above de-
scribed rectangle, we position for each line segment a copy
of C at both endpointses and et . Furthermore, we render
a rectangle for each vertexv of P. Then the corresponding

et

vt

vs

es

Figure 11:

Construction to force the homothet to fit entirely.

rectangle is spanned between the apices of the cones ates

andet and the verticesvs�vt of both copies ofC correspond-
ing to v. The swept volume is given by the Minkowski sum
of the two cones and the line segment (see figure11).

It is easy to see, that after this rendering step, the depth
buffer is adequately altered to yield the desired result. From
there on, we execute the basic algorithm.

As a consequence of the construction, theforbiddenarea
can be an arbitrarily shaped polygonal region, i.e. with holes
in it, with only a marginal impact on the complexity of the
algorithm.

4.2.4. Weighted Facilities

Compared to the standard problem, theweighted maximum
facility location problem asks for the best place under the
condition thateach point of the input set has an associated
weight.

Weighted maximum facility location
Let S � �s1� � � �� sn� be a set ofn points in the plane. Let
�w1� � � ��wn� be the set of associated weights, withwi � 0,
A be a subset of the plane, andd :�2��2 ��� a distance
function. Find the pointc � A such that

c � argmaxp�A min
i

wi d�p� si��

Follert et al.13 give a sub-quadraticO�n log4 n� time algo-
rithm, exploiting parametric search, which is a bit surprising
as the computation of weighted Voronoi diagrams ofn points
is known to have quadratic complexity.

To solve this problem in the pixel based world, we main-
tain our basic algorithm but scale each cone appropriately in
the rendering step of the arrangement of cones – the same
method already applied, to compute the weighted Voronoi
diagrams in the second section. If the pixel shading func-
tionality is available, we can make use of it as follows. We
just build only one depth texture and scale the values appro-
priately, each pixel at its own.
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5. Conclusions

We presented a framework to solve problems arising in com-
putational geometry by using graphics hardware. As an ex-
ample for the versatility of our approach, we give a fast al-
gorithm to compute the Voronoi diagram of point sites even
for non euclidean distance functions. Our algorithm can also
be applied, if the sites are line or circle segments.

Furthermore, our approach can be used to solve a sub-
set of geometric Optimization problems, e.g. facility loca-
tion problems, for which previously there was no solution
by combinatorial algorithms.
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