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Abstract

One of the main objectives of scientific work is the
analysis of complex phenomena in order to reveal
the underlying structures and to explain them by
means of elementary rules which are easily under-
stood. In this paper we study how the well-known
process of triangle mesh subdivision can be ex-
pressed in terms of the simplest mesh modification,
namely the vertex split. Although this basic oper-
ation is capable of reproducing all common subdi-
vision schemes if applied in the correct manner, we
focus on Butterfly subdivision only for the purpose
of perspicuity. Our observations lead to an obvious
representation of subdivision meshes as selectively
refined progressive meshes, making them most ap-
plicable to view-dependent level-of-detail render-
ing.

1 Related Work

Subdivision of triangle meshes is usually based on
a dyadic edge split where a new vertex is inserted
for every edge of the given triangle mesh and then
these new vertices are connected. As a consequence
each face is split into four triangles, motivating the
term 1-to-4 split (cf. Fig. 1). The new vertices are
also known as odd vertices, whereas the old ver-
tices of the given mesh are often referred to as even
vertices.

Another variant of refining triangle meshes has
been proposed recently in [6, 7]. It inserts new ver-
tices at the center of each triangle, connects them
with the old vertices, and replaces each original
edge by the one that connects the two new ver-
tices of the two adjacent triangles. Performing this

Figure 1: Subdivision of a triangle mesh by 1-to-4
splits.

scheme twice results in a triadic edge and a 1-to-9
face split, and thus this method is called � � subdi-
vision.

These splitting operations per se concern the
topology of the refined mesh only and additional
rules are required for determining the geometry.
This is usually done by specifying how to describe
the vertices of the subdivided mesh as affine combi-
nations of the neighboring even vertices. One of
the most popular of such averaging rules for the
1-to-4 split was given in [2] and is known as But-
terfly subdivision.

In contrast to approximating schemes like Loop
subdivision [8] which give rules for placing both
the old and the new vertices, Butterfly subdivision
is an interpolating method and does not modify the
positions of the even vertices. Repeatedly quadri-
secting an initial triangle mesh and setting the odd
vertices according to the Butterfly masks in Fig. 2
gives a surface in the limit that is � �

-continuous
almost everywhere except at extraordinary vertices
with valence � � � and � �  . A modified Butter-
fly scheme that ensures overall � �

-continuity was
proposed in [12].
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Figure 2: Butterfly subdivision.

Besides global or uniform subdivision, where the
same splitting and averaging rules are used for all
triangles and vertices of a given mesh, adaptive sub-
division permits to restrict the refinement to regions
of interest [13]. In order to avoid T-vertices, which
would result in a discontinuous surface, additional
edges are introduced according to the rules of the
so-called red-green triangulation [1, 11]. The usual
1-to-4 split is called a green split. Unrefined trian-
gles neighboring one and only one quadrisected tri-
angle are split by a red 1-to-2 split in order to fix the
T-vertex. If two neighbors of an unrefined triangle
were subdivided, a green split will be applied to this
triangle itself, causing a further red or green split of
the third neighboring triangle. In this way the differ-
ence between the subdivision levels of neighboring
triangles is never greater than 1 (cf. Fig. 3).

Figure 3: Two levels of usual adaptive subdivision:
In order to avoid T-vertices additional edges are in-
troduced according to the rules of red-green trian-
gulation.

Figure 4: Vertex split and edge collapse.

While subdivision introduces additional vertices
to a triangulation, mesh decimation algorithms re-
move vertices. The approach taken in [3] reduces
the number of vertices by iteratively applying edge
collapses as fundamental decimation steps. This
operation removes an edge v � � v � � and the adjacent
triangles by combining the vertices v � � and v � � to
a single vertex v � (cf. Fig. 4). Note that v � � and v �
can be identified topologically although their geo-
metric positions may differ.

The inverse operation of an edge collapse is
called a vertex split. It replaces the vertex v � with
v � � and v � � and inserts the edge v � � v � � as well
as the two faces � � � � � v� � � v � � v � � � and � � �

� � v � � � v � � � v � � . We refer to the collection of faces
between � ! " and � ! � as the support of a vertex split
operation.

In Fig. 4 and throughout this paper we use the
following symbols to briefly characterize a vertex
split operation. The split vertex (v � , v � � ) is depicted
by $ , the vertices defining the support of the split
operation (v � , v � ) are represented by % , and � is
used for the newly introduced vertex (v � � ).

By applying a sequence of edge collapses to a
given triangle mesh &'

,

&' � ' ! ecol ( ) +- . ' ! 0 � ecol ( ) 2- . 4 4 4 ecol 5- . ' " �

the complexity of &'
is successively reduced up to

the simple base mesh
' " . The sequence of edge

collapses is usually chosen such that the intermedi-
ate meshes

' 6
are optimal approximations of &'

with respect to some appearance metric.
The original mesh &'

can later be reconstructed
by applying the vertex splits that correspond to the
edge collapses to the base mesh in reverse order,

' " vsplit 5- . ' � vsplit +- . 4 4 4 vsplit ( ) +- . ' ! � &' 4

The base mesh
' " and the vertex split operations

vsplit " , 4 4 4 , vsplit ! 0 � define a hierarchy of trian-
gle meshes that is referred to as a progressive mesh
(PM) [3].
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Figure 6: Generating an adaptive 1-to-4 subdivision split with three successive vertex split operations. The
support of all quarks contains exactly two different triangle indices (b-quarks).

Since a vertex split is a local operation many of
the split operations are independent of each other
and can therefore be performed in a different order
which allows to selectively refine regions of inter-
est. The only restriction on the order in which the
split operations can be carried out is that a vertex
split can only be performed if the split vertex v �
and the triangles � ! " and � ! � are already present
in the current mesh. Moreover, in the context of
view dependent meshes intermediate edge collapses
need to be performed in order to adapt the mesh
to changing viewing parameters [4]. This requires
the selectively refined mesh to be unique, regard-
less of the sequence of vertex splits and edge col-
lapses that led to it. To satisfy this requirement,
both vertices v � � and v � � are stored as children of
the split vertex v � , whereas in a usual PM the ver-
tex v � is simply replaced by v � � . The duplication
of the split vertex leads to a vertex hierarchy called
the vertex forest and each selectively refined mesh
corresponds to an active vertex front through this
hierarchy (cf. Fig. 5).

Figure 5: The vertex forest with an active vertex
front.

2 Topology of Subdivision Quarks

As we have seen in the previous section there are
several ways of refining the topology of a triangle
mesh which differ by the sort and the extent of mod-
ification they apply to the mesh. While the ver-
tex split adds one vertex, two triangles, and three

edges only, a global 1-to-4 subdivision step quadru-
ples these quantities. Regarding the complexity
of such topological operators, the natural question
arises whether the more complex ones can be ex-
pressed in terms of the simpler ones. In the same
way that physicists use elementary particles for de-
scribing protons or neutrons, we will explain in this
section how to express complex topological refine-
ment operators such as 1-to-4 and � � subdivision in
terms of the most elementary one, namely the ver-
tex split. In order to stick to the analogy of physics
[5, 9] we call these elementary operations subdivi-
sion quarks and will find them to come in different
flavors (e.g. m-, b-, and t-quarks).

Let us consider the 1-to-4 split of a single trian-
gle first. Such a split requires to insert three new
vertices, one for each edge, and we therefore expect
that such an operation can be represented by three
subdivision quarks. Fig. 6 confirms that we obtain
indeed the regular quadrisection of a triangle after
applying three vertex split operations in the correct
manner. Note that the problem of T-vertices is au-
tomatically avoided since vertex splits always pre-
serve the validity of a triangle mesh.

Figure 7: It is also possible to reproduce a 1-to-4
split via quarks whose support contains only one or
even three triangle indices (m-quarks and t-quarks).
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Figure 8: In order to reproduce � � subdivision we
need m-quarks and/or t-quarks.

A deeper analysis shows that there are many
ways of representing a 1-to-4 split by three subdivi-
sion quarks (cf. Fig. 7). In order to be able to man-
age this diversity we categorize subdivision quarks
in the following way. Suppose we provide each tri-
angle in the given mesh with a unique index and let
the new faces � � and � � inherit the index from � ! "
and � ! � respectively whenever a vertex split is per-
formed (cf. Fig. 4). Then each subdivision quark
can be classified by the number ; of different tri-
angle indices of all triangles in the support of this
operation:

; quark type

1 mono-quark (m-quark)
2 bi-quark (b-quark)
3 tri-quark (t-quark)
...

...

In this work we restrict ourselves to the analysis of
b-quarks since they are sufficient for representing 1-
to-4 subdivision. Note that � � subdivision cannot
be described by b-quarks solely (cf. Fig. 8).

Let < � and < � be the sets of those triangles in
the support of a b-quark that have the same trian-
gle index. We can then divide any b-quark into two
preons [10], one operating on < � , the other on < � .
Since < � as well as < � naturally correspond to one
of the coarse triangles in the initial triangle mesh we
can further view each preon as to successively refin-
ing a coarse triangle until it has been quadrisected.
Fig. 9 shows all possible configurations of a preon.

Figure 9: All possible configurations (except for
symmetry) of a preon (one half of a b-quark). Any
b-quark is a combination of one of the above preons
with a mirrored version of another preon such that
the split vertex $ and the new vertex � coincide.

If a triangle is refined by a preon for the first time
the configuration will always be the one shown in
Fig. 9 a. In case a preon is about to refine a tri-
angle that has already been split once, the three
configurations in Fig. 9 b can occur. Whenever a
triangle is split for the third time, this last ver-
tex split will not necessarily result in a regular
quadrisection of the triangle. Only the topmost
preon in Fig. 9 c leads to the desired configura-
tion, the other two preons are therefore invalid. We
have to exclude all b-quarks that contain an invalid
preon if we want to reproduce dyadic subdivision
connectivity.

During the quark subdivision refinement process
we may encounter the situation displayed in Fig. 10,
where the remaining unsplit edge can only be re-
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Figure 11: Global 1-to-4 subdivision of a triangle mesh by successive b-quark subdivision steps. Note that
steps 5, 7, 8, 9, 11, 13, and 14 were forced by the regularity rule.

Figure 10: Regardless of which b-quark we choose
to create the new vertex in the center, the result is
not a valid subdivision structure. Therefore we have
to ensure this configuration never to occur.

fined by a forbidden b-quark and there is no way of
obtaining regular subdivision connectivity through
quark subdivision. In order to avoid these cases, we
always force the third split of a triangle to be per-
formed immediately after the second one and take a
valid b-quark for this purpose. This regularity rule
is similar to the rules of red-green triangulations in
adaptive subdivision [1, 11].

Respecting the regularity rule we can apply suc-
cessive b-quark subdivision steps to a given triangle
mesh in any order and will always end up with a
regular 1-to-4 subdivision structure (cf. Fig. 11). As

a criterion for the order in which the b-quarks are to
be carried out we could take the area of the two tri-
angles adjacent to the edge that is going to be split
by the quark subdivision step and perform those
vertex splits first for which this value is largest.
However, other criteria, view dependent ones, for
example, are possible.

So far we have only considered quark subdivi-
sion that leads to one level of 1-to-4 subdivision.
If we want to adaptively refine parts of the triangle
mesh up to further subdivision levels we may have
to force some quark subdivision steps in the neigh-
borhood of the split vertex similarly to the rules of
adaptive red-green triangulations. In principle, the
criterion is the same, namely that the difference be-
tween neighboring subdivision levels should never
be greater than 1. However, these rules will be dis-
cussed in detail in the next section.

3 Geometry of Subdivision Quarks

In the previous section we have described how each
subdivision quark adds one vertex to the triangle
mesh, concerning the topology of the operation.
Now we want to discuss how to determine the ge-
ometry, in other words the position of this new ver-
tex. In addition, in the context of a selectively refin-
able mesh, a new vertex is introduced for the split
vertex, too. We refer to this new vertex as the even
child of the split vertex, whereas the other newly
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Figure 12: After a split in the Butterfly mask of
an odd vertex � has been performed this mask
is no longer given by the three neighboring trian-
gles above and the three ones below the split edge
(cf. Fig. 2).

introduced vertex is called the odd one. Of course
we also have to assign a new position to the even
child in this setting. But for the sake of simplic-
ity we will focus on reproducing Butterfly subdivi-
sion [2], an interpolating subdivision scheme where
the split vertex does not change its position. In this
way the positions of even vertices are always the
same as the positions of their parents. But note
that in general we are also able to reproduce an
approximating subdivision scheme like the one by
Loop [8].

Using Butterfly subdivision, the position of the
odd child is determined by the mask in Fig. 2. How-
ever, there is a problem in accessing the vertices of
the subdivision mask due to our central requirement
of being able to apply subdivision splits in an ar-
bitrary order and in an incremental way. The re-
gion that is to be adaptively subdivided should not
be known a priori. This means that it should be al-
lowed to begin subdivision in one region and pro-
ceed somewhere else. Also when two subdivided
regions join the result should be consistent with the
usual Butterfly subdivision. In this way our subdi-
vision quarks are as independent of each other as
possible. The problem of accessing the vertices of
the subdivision mask under these circumstances is
illustrated in Fig. 12.

After a vertex split has been performed that af-
fected a triangle inside the Butterfly mask, this
mask is no longer given by the three neighboring
triangles above and the three ones below the split
edge (cf. Fig. 2). If we want to access the vertices
of the original Butterfly mask we have to analyze
the current subdivision configuration. In order to
explain how to perform such an analysis we take
a look at the C++ data structure of our selectively

Figure 13: The principal C++ data structure of our
selectively refinable progressive mesh with infinite
refinement.

refinable progressive mesh with infinite refinement
(cf. Fig. 13).

The data structure of a vertex includes an at-
tribute, the splitOpIndex member, which we will
utilize for our purposes. For non-subdivision ver-
tices it contains the index of the split operation
that splits this vertex. If there is no split opera-
tion defined for a certain vertex we indicate this fact
by setting its splitOpIndex member to - � . Also
for vertices created by subdivision the splitOpIn-
dex member is negative and codes how often a ver-
tex was split during the current 1-to-4 subdivision
step.

In Fig. 14 we illustrate how the splitOpIndex
member is set during subdivision. The even child
(child[0]) inherits its parent’s splitOpIndex, decre-
mented by one, whereas the splitOpIndex of the
odd child (child[1]) is initialized by - = , marking
it as a vertex that is forbidden to be further split for
the time being. We also mark even vertices whose
neighborhood has been entirely subdivided in a spe-
cial way by setting their splitOpIndex member to

- ? . If we want to split such vertices we have to pro-
ceed to the next 1-to-4 subdivision level. This suc-
cessive refinement is discussed later in this section.
Note that since in the next 1-to-4 subdivision level
also the odd children belong per definition to the
original mesh, being an odd vertex in the usual sub-
division sense is not determined by being child[1]
of its parent but by having a splitOpIndex member
of - = instead.
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Figure 14: When a split operation is performed two
new vertices, A and B , are introduced in the ver-
tex forest as the children of the split vertex $ . The
even child (child[0]) inherits its parent’s splitOpIn-
dex, decremented by one, whereas the splitOpIndex
of the odd child (child[1]) is initialized by - = . As
long as the splitOpIndex member of a vertex is - =

the vertex is not allowed to be split.

Analysis of the local subdivision configuration
In Fig. 15 we demonstrate how the splitOpIndex
member of a vertex helps analyzing the possible
subdivision configurations when an arbitrary face �
with a vertex v " , that is either a vertex of the orig-
inal mesh or an even child, is given. Dependent
on whether the other two vertices in the face are
odd children or not, i.e. whether their splitOpIndex
member is - = or not, we know whether the coarse
triangle has been split twice, once, or never. We can
further determine the exact subdivision configura-
tion if we consider the face parameters of the par-
ents of the odd child(ren). Fig. 16 demonstrates the
basic principle.

Since each possible split operation requires the
given face � to be a certain face of the parent’s face
members that encode its split operation, it suffices
to compare � with these face parameters to exactly
determine the subdivision configuration. Knowing
the subdivision configuration it is then straightfor-
ward to get the vertices of the Butterfly mask, since
we exactly know in which faces they lie and which
faces are opposite to these vertices.

The analysis of the subdivision configuration de-
scribed so far does not necessarily access the ver-
tices in the vertex forest that belong to the origi-

Figure 15: Given an arbitrary triangle in which v "
is to be split we can restrict the possible subdivi-
sion configurations with the help of the splitOpIn-
dex member of the vertices v � and v � .

nal subdivision mask but only their even children
in the active vertex front. However, since we use
an interpolating subdivision scheme, the positions
of the even children coincide with the positions of
the mask vertices. In an approximating subdivision
scheme we would have to access the original mask
vertices. Again, this is possible by using the infor-
mation stored in the splitOpIndex member but will
not be further detailed here.

For the analysis of the subdivision configurations
so far it was important that the odd children were
not split again. As can be seen in Fig. 15 we rely on
identifying odd children by a splitOpIndex member
of - = which restricts the number of possible sub-
division configurations. This has to be taken into
account for successive refinement when proceeding
to the next 1-to-4 subdivision level.

Successive refinement Let us consider the situ-
ation in Fig. 17 where the odd vertex $ in (a)
shall be split. At first the region around this ver-
tex is subdivided by forced splits of even vertices
in the neighborhood (b). This step is quite similar
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Figure 16: With the help of the parent’s face pa-
rameters it is straightforward to analyze the exact
subdivision configuration.

to usual red-green triangulation and already guar-
antees the difference between neighboring subdi-
vision levels to be less or equal to 1. In addition
we have to ensure that the subdivision mask of any
split operation that might be carried out later on
the coarser level does not intersect with the dark
grey area in (b) which will be subdivided when
proceeding to the next subdivision level. Other-
wise the method of analyzing the subdivision con-
figuration that we presented in the last paragraph
cannot be applied. Therefore we have to ensure
that the odd vertices marked as black dots in (b)
have been introduced, giving the result shown in
(c). After all these splits have been forced, the ac-
tual split of $ can be performed without any prob-
lems. This is indicated by its splitOpIndex member
which we decrement from - = (“forbidden”) to - �
(“ready to split”). Note that the modified area is
much larger than in the case of usual adaptive sub-
division (cf. Fig. 3). However, in the context of a
selectively refinable progressive mesh this config-
uration corresponds to an active vertex front that
runs through the leaves of the vertex forest, but
the active vertex front can also be moved such that

it represents the less complex triangulation shown
in (d).

Similar rules have to be observed if we want to
split an even vertex once its entire neighborhood has
been quadrisected (cf. Fig. 18). We have to ensure
that no future split operation needs access to the ver-
tices in the dark grey area in (b). Again, this can be
guaranteed by forcing splits of even vertices that in-
troduce the vertices represented by black dots in (b).
We further indicate that the desired vertex is now al-
lowed to be split by decrementing its splitOpIndex
member from - ? (“forbidden”) to - � . As illus-
trated in (c) the modified region is even larger than
in the case of an odd vertex split. However, after
moving the vertex front (d) the same result as in
Fig. 17 d is obtained.

4 Conclusion

In this paper we have discussed how to express
triangle mesh subdivision in terms of the simplest
mesh modification, namely the vertex split. This
enables us to combine the concept of subdivision
with the framework of selectively refined progres-
sive meshes, thus making subdivided meshes appli-
cable to view-dependent level-of-detail rendering.
We have explained in detail how the topology as
well as the geometry of the adaptive Butterfly sub-
division scheme can be reproduced by a sequence of
adequate vertex splits. In future work we are going
to extend our investigations to the reproduction of
other subdivision schemes like Loop and � � subdi-
vision.
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