Smooth curves and surfaces are used for aesthetic, manufacturing, and analysis applications where discontinuities due to triangulated approximations would create misleading artifacts. I like to distinguish three classes of surfaces:

- implicit: $f(x, y, z)=0$, where f is often a polynomial of low degree (handy for computing intersections with rays)
- parametric surfaces: $\mathrm{S}(\mathrm{u}, \mathrm{v})=(\mathrm{x}(\mathrm{u}, \mathrm{v}), \mathrm{y}(\mathrm{u}, \mathrm{v}), \mathrm{z}(\mathrm{u}, \mathrm{v}))$, where x, y, and z are often low degree polynomials in u and v
- generative surfaces, such as sweeps or subdivision surfaces, which are defined in terms of a construction procedure

Piecewise cubic parametric curves and surfaces are popular in CAD, animation, and graphics. A point $\mathrm{C}(\mathrm{t})$ on curve C has coordinates $(x(t), y(t), z(t))$, where x, y, and z are cubic polynomials in t. The shape of C is defined by a control polygon with control points (i.e. vertices) P_{i}. We discuss below how to subdivide the control polygon and how to evaluate $\mathrm{C}(\mathrm{t})$. To define a bi-cubic surface, express each P_{i} as a curve $P_{i}(s)$. As s is varied, $C(t)$ sweeps out a surface $S(t, s)$.

1. Split\&tweak subdivision of control polygons a uniform cubic B-spline curves Given a control polygon, for example (a, b, c, d), repeat the following sequence of two steps, until all consecutive 4-tuples of control points are nearly coplanar.
2. Split: insert a new control point in the middle of each edge $(2,4,6,8)$
3. Tweak: move the old control points half-way towards the average of their new neighbors ($1,3,5,7$)
The control polygon converges rapidly to the B -spline curve. This works whether the curve is closed or open.

2. Converting a uniform cubic Bspline into a series of cubic Bezier curves

Given a control polygon with vertices a, b, c, \ldots do: (1) insert new vertices ($w, y, 2,3,5 \ldots$) to split each edge into 3 equal parts; (2) move the original vertices to the average of their immediate neighbors ($\mathrm{b} \square 1, \mathrm{c} \square 4, \ldots$); and (3) delete the first and last 3 vertices ($\mathrm{a}, \mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{i}$). The consecutive trigons, $(1,2,3,4),(4,5,6,7),(7,8,9,10) \ldots$ are the control polygons of Bezier curves.

3. Subdividing a cubic Bezier control polygon

To replace the control trigon $\{A, B, D, E\}$ with trigons $\{A, L, B, M\}$ and $\{M, D, N, E\}$, each representing a portion of C :

- Insert points L, M, N at the centers of the three edges (second figure from left)
- Move B and D to be each the average of their two neighbors (center figure)
- Move M to be the average of its two neighbors (second figure from right)

This subdivision may be recursively applied to $\{\mathrm{A}, \mathrm{L}, \mathrm{B}, \mathrm{M}\}$ and/or $\{\mathrm{M}, \mathrm{D}, \mathrm{N}, \mathrm{E}\}$, as desired.
4. Evaluating a point $C(t)$ on a cubic Bezier curve To compute $\mathrm{C}(\mathrm{t})$ perform the following sequence of operations: $\{\operatorname{slide}(E)$, slide (D), slide(B), slide(E), slide(D), slide(E) $\}$, where slide(K) replaces control point K by $(1-t) J+t K$, where J precedes K in the sequence $\{A, B, D, E\}$. Subscripts indicate order of slides in the figure. The result of the last slide, E_{6}, is $C(t)$. Note that C starts at A, where it is tangent to $A B$ and finishes at D, where it is tangent to $C D$. It is contained in the convex hull of $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$.

