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Abstract

The recent launch of the NVIDIA CUDA technology
has opened a new era in the young field of GPGPU
(General Purpose computation on GPUS). This tech-
nology allows the design and implementation of paral-
lel algorithms in a much simpler way than previous ap-
proaches based on shader programming. The present
work explores the possibilities of CUDA for solving
basic geometric problems on 3D triangle meshes like
the point inclusion test or the self-intersection detec-
tion. A solution to these problems can be implemented
in CUDA with only a small fraction of the effort re-
quired to design and implement an equivalent solution
using shader programming, and the results are impres-
sive when compared to a CPU execution.
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1 Introduction

The General-purpose computing on graphics process-
ing units (GPGPU) is a young area of research that
has attracted attention of many research groups in the
last years. Although graphics hardware has been used
for general-purpose computation since the 1970s, the
flexibility and power processing of the modern graph-
ics processing units (GPUs) has generalized its use for
solving many problems in Signal Processing, Com-
puter Vision, Computational Geometry or Scientific
Computing [OLG+07].

The programming capabilities of the GPU evolve
very rapidly. The first models only allowed limited
vertex programming; then pixel programming was
added and gradually, the length of the programs and
its flexibility (use of loops, conditionals, texture ac-
cesses, etc.) were increased. The last generation of
NVIDIA GPUs (8 Series) supports programming at a
new stage of the graphics pipeline: the geometry as-
sembling. Several new programming languages like
ARB GPU assembly language, GLSL [Ros06], HLSL
or Cg [FK03] were developed aiming at exploiting
GPU capabilities. GPU programming has been ex-
tensively used in the last years for implementing im-
pressive real-time physical effects, new lighting mod-
els and complex animations [Fer04, PF05], and have
allowed a major leap forward in the visual quality and
realism of videogames.

But it should be kept in mind that vertex, pixel and
geometry programming capabilities were aimed at im-
plementing graphics computations. Their use for gen-
eral purpose computing is difficult in many cases, im-
plying the complete redesign of algorithms whose im-
plementation in CPU require only a few lines. Clearly
the rigid memory model is the biggest problem: mem-
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ory reads are only possible from textures or a limited
set of global and varying parameters, while memory
writes are usually performed on a fixed position in the
framebuffer. Techniques such as multipass rendering,
rendering to texture, and use of textures as lookup ta-
bles are useful to overcome these limitations, but pro-
gramming GPUs remains being a slow and error-prone
task. On the positive side, the implementation effort
is usually rewarded with a superb performance, up to
100X faster than CPU implementations in some cases.

The last advance in GPGPU is represented by the
CUDA technology of NVIDIA. For the first time, a
GPU can be used without any knowledge of OpenGL,
DirectX or the graphics pipeline, as a general purpose
coprocessor that helps the CPU in the more complex
and time-expensive computations. With CUDA a GPU
can be programmed in C, in a very similar style to a
CPU implementation, and the memory model is now
simpler and more flexible.

In this work we explore the possibilities of the
CUDA technology for performing geometric compu-
tations, through two case-studies: point-in-mesh inclu-
sion test and self-intersection detection. So far CUDA
has been used in a few applications [Ngu07] but this is
the first work which specifically compares the perfor-
mance of CPU vs CUDA in geometric applications.

Our goal has been to study the cost of implement-
ing two typical geometric algorithms in CUDA and its
benefits in terms of performance against equivalents
CPU implementations. The algorithms used in each
problem are far from being the best, but the promis-
ing results in this initial study motivate a future devel-
opment of optimized CUDA implementations of these
and similar geometric algorithms.

2 Common Unified Device Architec-
ture (CUDA)

The CUDA technology was presented by NVIDIA in
2006 and is supported by its latest generation of GPUs:
the 8 series. A CUDA program can be implemented in
C, but a preprocessor included in the CUDA toolkit is
required to translate its special features into code that
can be processed by a C compiler. Therefore host and
device CUDA code can now be combined in a straight-
forward way.

A CUDA-enabled GPU is composed of several
MIMD multiprocessors that contain a set of SIMD
processors [NVI07]. Each multiprocessor has a shared

memory that can be accessed from each of its proces-
sors, and there is a large global memory space com-
mon to all the multiprocessors (Figure 1). Shared
memory is very fast and is usually used for caching
data from global memory. Both shared and global
memory can be accessed from any thread for reading
and writing operations without restrictions.

A CUDA execution runs several blocks of threads.
Each thread performs a single computation and is exe-
cuted by a SIMD processor. A block is a set of threads
that are executed on the same multiprocessor and its
size should be chosen to maximize the use of the mul-
tiprocessor. A thread can store data on its local regis-
ters, share data with other threads from the same block
through the shared memory or access the device global
memory. The number of blocks usually depends on
the amount of data to process. Each thread is assigned
a local index inside the block with three components,
starting at (0, 0, 0), although in most cases only one
component (x) is used. The blocks are indexed using
a similar scheme.

A CUDA computation starts at a host function by al-
locating one or more buffers in the device global mem-
ory and transferring the data to process to them. An-
other buffer is usually necessary to store the results
of the computation. Then the CUDA computation is
launched one or more times by specifying the num-
ber of blocks, threads per block, and thread function.
Pointers to data and results buffers are passed as pa-
rameters of the thread function. After the computa-
tion has completed, the results buffer is copied back to
CPU memory.

The learning curve of CUDA is much faster than
that of GPGPU base on shader programming with
OpenGL/DirectX and Cg/HLSL/GLSL. The program-
ming model is more similar to CPU programming, and
the use of the C language makes most programmers
feel comfortable. CUDA is also designed as a stable
scalable API for developing GPGPU applications that
will run on several generations of GPUs. On the nega-
tive side, CUDA loses the powerful and efficient math-
ematical matrix and vector operators that are available
in the shader languages, in order to keep its compati-
bility with the C standard. Moreover, it is likely that
in many cases an algorithm carefully implemented in
a shader language could run faster than its equivalent
CUDA implementation.
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Figure 1: CUDA Architecture with n MIMD multiprocessors with n×m SIMD processors.

3 Point-in-mesh inclusion test on
CUDA

The point-in-mesh inclusion test is a simple classical
geometric algorithm, useful in the implementation of
collision detection algorithms or in the conversion to
voxel-based representations. A GPU implementation
of this algorithm is only of interest with large triangle
meshes and many points to test, as the cost of setting
up the computation is high.

For our purpose we have chosen the algorithm of
Feito & Torres [FT97] which presents several advan-
tages: it has a simple implementation, it is robust and
can be easily parallelized. The pseudocode is shown
next:

bool i n c l u s i o n T e s t (Mesh m, Po in t p ) {
Poin t o = po in tCreate (0 ,0 ,0 ) / / O r i g i n po in t
f l o a t res = 0; / / I n c l u s i o n counter

for ( i n t nf = 0 ; n f < meshNumFaces(m) ; n f ++) {
Face f = meshFace (m, n f ) ;
Tetrahedron t = te t rahedronCreate ( f , o ) ;
i f ( t e t r ahed ronPo in t I ns i de ( t , p ) ) {

res += 1;
} else i f ( te t rahedronPoin tAtFace ( t , p ) ) {

res += 0 . 5 ;
}

}

return isOdd ( res ) ;
}

The algorithm constructs a set of tetrahedra between
the origin of coordinates and each triangular face of
the mesh. The point is tested for inclusion against each
tetrahedron and a counter is incremented if the result
of the test is positive. If the point is inside an odd num-
ber of tetrahedra, the point is inside the mesh. Notice
that if the point falls at a face shared by two tetrahedra,
the counter is added 0.5 by each one to avoid a double
increment that would lead to incorrect results.

The programming model of CUDA fits especially
well with problems whose solution can be expressed
in a matrix form. In our case, we could construct a
matrix in which the rows are the tetrahedra to pro-
cess, and the columns the points to test. This matrix
is divided into blocks of threads, and each thread is
made responsible of testing the point in the column j
against the tetrahedron in the row i, and adding the
result of the test (0, 1, 0.5) to the counter j (see Fig-
ure 2). This approach has a minor drawback: in order
to ensure a correct result after several add operations
on the same position in global memory, performed by
concurrent threads, support for atomic functions is re-
quired. This feature is only available in newer devices
of GeForce and Quadro series with compute capabil-
ity 1.1 [NVI07]. The need of atomic functions can be
avoided if each thread stores the result of the point-
in-tetrahedron inclusion test in the position (i, j) of a
matrix of integers, but the memory requirements for
this matrix can be very high when working with large
meshes and many points to test. But the main problem
of these two approaches is the high number of mem-
ory access conflicts that they generate, as every thread
in row i requires triangle i to work and every thread in
column j requires testing point j. This leads to poor
results when compared with a CPU implementation of
the algorithm.

We choose a different strategy, computing in each
thread the inclusion test of one or several points
against the entire mesh. Each thread iterates on the
mesh, copying a triangle from global memory to a lo-
cal variable and performing the inclusion test on the
points, then it accumulates the result in a vector that
stores an inclusion counter per point (Figure 3). It
could be argued that the task assigned to each thread is
very heavy, specially when compared with the matrix-
based implementations, but in practice it works very
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Figure 2: CUDA matrix-based implementation of the
inclusion test.

Figure 3: CUDA implementation of the inclusion test.

well. Two implementation aspects require a special
attention. First, the accesses from the threads to the
triangle list must be interleaved to avoid conflicts that
could penalize performance. And second, the rela-
tively high cost of retrieving a triangle from global
memory makes interesting testing it against several
points. These points must be cached in processor reg-
isters for maximum performance.

The host part of the CUDA computation starts by
allocating a buffer of triangles and a buffer of points
to test in the device memory, and copying these from
the data structures in host memory. Another buffer is
allocated to store the inclusion counters, which are ini-
tialized to 0. The number of blocks of threads (B) are
estimated as a function of the total number of points
to test (n), the number of threads per block (T ) and
the number of points processed by a single thread (P ):
B = n/(T ·P ). The last two constants should be cho-
sen with care to maximize performance: a high num-
ber of threads per block limits the number of registers
available in each thread, and therefore, the number of
points that can be cached and processed. A low num-

ber of threads per block makes a poor use of the mul-
tiprocessors. Finally, after the GPU computation has
completed, the buffer of inclusion counters is copied
back to the host memory.

A thread begins by copying P points from the point
buffer in global memory to a local array, that is stored
in registers by the CUDA compiler. The copy starts at
the position (bi · T + ti) · P , where bi is the index of
the block of thread and ti is the index of the thread in
the corresponding block. This assigns a different set of
points to each thread. The iteration on the triangle list
starts by copying each triangle to a local variable and
calling a point-in-tetrahedron inclusion test function.
In case of success, the inclusion counter of the corre-
sponding point is updated. A good interleaving is en-
sured by starting the iteration at the position given by
bi · T + ti. Using float counters is not really necessary
as we can add 2 when the point is inside a tetrahedron
and 1 when it falls at a face, and divide it by 2 at the
end of the iteration. The full source code of this thread
is shown in the appendix.

We have compared the performance of a CPU ver-
sion of the algorithm against the CUDA implementa-
tion using blocks of 64 threads and testing 16 points
per thread. The computer used for the experiments has
an Intel Core Duo CPU running at 2.4GHz., a NVIDIA
GeForce 8800GTX GPU and Linux-based operating
system. Four different models, with increasing num-
ber of faces were used (Figure 4). The improvements
of the GPU against the CPU version of the algorithm
are shown in Table 2. As expected, the CPU only beats
the GPU implementation with very simple meshes. In
the rest of cases, the GPU outperforms the CPU up to
77X in the case of the largest model and a high number
of points to test. Notice that the GPU completes this
computation in less than 7 seconds, while the CPU re-
quires 8 minutes.

4 Self-intersection test on CUDA

Detecting self-intersections in a triangle mesh is use-
ful in many applications. For instance, rapid proto-
typing using stereolithography technology usually re-
quires hole-free meshes without self-intersections and
consistent normal orientation in order to ensure a cor-
rect result. In interactive simulation of deformable ob-
jects, self-collisions are solved by detecting triangle
pairs that do intersect. This problem is particularly
difficult to solve efficiently, as updating pre-computed
spatial data structures can be hard and inefficient with
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number of points tested
mesh (number of triangles) 1000 10000 100000
simple (42) 0.05X 0.5X 3.7X
heart (1619) 1.2X 10X 38X
bone (10044) 2.6X 29X 55X
brain (36758) 3.5X 35X 77X

Table 1: Improvements of the GPU vs the CPU implementation of the inclusion test algorithm.

Figure 4: Models used for running the inclusion and
self-intersection tests.

large deformations.
We find different CPU strategies in the literature to

detect, prevent or eliminate self-intersections in trian-
gle meshes [LAM01, GD01, LL06]. Most of these
methods are complex and inappropriate for many real-
time applications. The algorithm of Govindaraju et
al. [GLM05, GKLM07] is a GPU-accelerated colli-
sion detection algorithm that uses occlusion queries to
cull non-intersecting triangles, but it still requires a fi-
nal exact CPU-based intersection test on the remaining
triangles of the Potentially Colliding Set. The method
proposed by Choi et al. [CKK06] solves triangle inter-
sections entirely in the GPU by using shader program-
ming. It uses three 1D textures to store the triangles,
a 2D texture for all pairwise combinations and a hi-
erarchical structure in order to improve the readback
of collision results from GPU. Prior to testing each
pair of triangles for intersection, it performs a visibil-
ity culling similar to that proposed by Govindaraju et

Figure 5: Generation of a matrix with the intersecting
triangle pairs using CUDA.

al. [GLM05], and a topology culling to avoid testing
each pair of triangles twice. The remaining triangles
are tested for collision using Möller triangle-triangle
test [Mol97]. Although this method improves a CPU
implementation up to 17X, the number of triangles that
can be processed in a single pass is limited by the max-
imum size of a 1D texture in the GPU architecture.

We propose a simple solution to this problem us-
ing CUDA, based on testing each pair of triangles for
intersection. The results can be stored in a symmet-
ric matrix of booleans as shown in Figure 5, but its
high storage requirements suggests using a different
alternative. Our implementation only generates a list
of indices of the intersecting triangle pairs, stored in
a results buffer (Figure 6). The first position of this
buffer keeps the current size of the list, and is updated
by each thread every time a pair is added by using the
atomic function atomicAdd.

Following a similar strategy to the point-in-mesh
inclusion test described in the previous section, each
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Figure 6: Self-intersection test using CUDA.

thread tests a triangle against the rest of triangles in
the mesh, using the triangle-triangle test of Möller
[Mol97]. In order to avoid duplicated comparisons,
triangle ti is only tested for intersection with triangles
ti+1...tn. See the Listing 2 in the appendix for details.

Table 2 shows the results of a comparison against
a CPU implementation considering different meshes.
The system is similar to that used in the previous sec-
tion, but the GPU is a 8800GTS with atomic functions
support. In the CUDA implementation, the number
of threads per block has been set to 64. The best re-
sults are found in larger meshes: for instance, the brain
model requires a computation time of 3.6 minutes in
CPU while the GPU detects the self-intersections in
less than 6 seconds.

5 Conclusions and future works

The CUDA architecture allows the design and imple-
mentation of algorithms in the GPU with only a frac-
tion of the effort required with shader-based program-
ming. The memory model is now flexible, and the so-
lution can be implemented in C language with little or
no previous knowledge of the graphics pipeline opera-
tion.

Most geometric algorithms can be rewritten for
CUDA, however the setup and readback time im-
plied in the execution suggests its application to algo-
rithms with a high computation cost. Both the self-
intersection and the point-in-mesh inclusion test for
large point sets presented in this work are cuadratic
problems well suited for this purpose, running up to
77X faster than the CPU implementations with large
meshes. We have implemented other geometric al-
gorithms in CUDA like the computation of the axis-
aligned minimal bounding box and convex hull of

large meshes but the results have been poor. The first
is a simple linear problem that requires little computa-
tional power, and in the second case the problem can
hardly be decomposed into simpler independent tasks
that can be assigned to the threads.

The benefits of CUDA technology can also be ap-
plied to other geometric problems like mesh simpli-
fication or computation of boolean operations. Cur-
rently we are also studying accelerating GIS raster op-
erations by GPU using this programming model.
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Appendix

Listing 1: Source code of the point-in-mesh inclusion
test thread.

g l o b a l void inclusionTestGPUThread (
T r iang le ∗dMesh ,
unsigned nTr iangles ,
Po in t ∗dPoints ,
i n t ∗dTestResults ,
unsigned nTests )

{
/ / Index o f f i r s t p o i n t to process
i n t np = ( b lock Idx . x ∗ THREADS PER BLOCK +

thread Idx . x ) ∗ POINTS PER THREAD;
i n t npl ;

/ / Local copy o f the po in t s to process
Poin t po in t s [POINTS PER THREAD ] ;
/ / Resul t counters
i n t c [POINTS PER THREAD ] ;

/ / Copy po in t s to process
for ( np l = 0 ; np l < POINTS PER THREAD;

np l ++) {
vertexCopy ( po in t s [ np l ] , dPoints [ np + np l ] ) ;
c [ np l ] = 0 ;

}

/ / S t a r t a t a d i f f e r e n t t r i a n g l e
/ / to avoid c o n f l i c t s
i n t nt = np % nTr iang les ;
i n t t c = nTr iang les ;

/ / Local copy o f the te t rahedron
Poin t t e t r a P o i n t s [ 3 ] ;

/ / I t e r a t e on the t r i a n g l e l i s t
while ( tc−−) {

vertexCopy ( t e t r a P o i n t s [ 0 ] , dMesh [ n t ] [ 0 ] ) ;
vertexCopy ( t e t r a P o i n t s [ 1 ] , dMesh [ n t ] [ 1 ] ) ;
vertexCopy ( t e t r a P o i n t s [ 2 ] , dMesh [ n t ] [ 2 ] ) ;

/ / Test po in t s on the te t rahedron
for ( np l = 0 ; np l < POINTS PER THREAD;

np l ++) {
/ / Add 2 , 1 or 0 to the counter
c [ np l ] += inc lus ionTes t InTe t rahedron (

t e t r a P o i n t s [ 0 ] ,
t e t r a P o i n t s [ 1 ] ,
t e t r a P o i n t s [ 2 ] ,
po in t s [ np l ] ) ;

}
nt = ( n t + 1) % nTr iang les ;

}

/ / Wr i te r e s u l t s , d i v i d i n g the counters by 2
/ / and checking p a r i t y
for ( np l = 0 ; np l < POINTS PER THREAD; np l ++) {

dTestResul ts [ np + np l ] = ( ( c [ np l ] >> 1) & 1 ) ;
}

}

Listing 2: Source code of the self-intersection test
thread.

g l o b a l void se l f In tersect ionGPUThread (
T r iang le ∗dMesh ,
unsigned nTr iangles ,
i n t ∗dTestResul ts )

{
/ / Index o f t r i a n g l e to process
i n t nt = b lock Idx . x ∗ BLOCK SIZE + thread Idx . x ;

/ / Get t r i a n g l e from g loba l memory
Vertex v0 , v1 , v2 , u0 , u1 , u2 ;
vertexCopy ( v0 , dMesh [ n t ] [ 0 ] ) ;
vertexCopy ( v1 , dMesh [ n t ] [ 1 ] ) ;
vertexCopy ( v2 , dMesh [ n t ] [ 2 ] ) ;

/ / S t a r t t e s t i n g t r i a n g l e s from index nt + 1
i n t n t t = n t + 1 ;

while ( n t t < nTr iang les ) {
/ / Get t r i a n g l e to t e s t
vertexCopy ( u0 , dMesh [ n t t ] [ 0 ] ) ;
vertexCopy ( u1 , dMesh [ n t t ] [ 1 ] ) ;
vertexCopy ( u2 , dMesh [ n t t ] [ 2 ] ) ;

/ / Test t r i a n g l e s f o r i n t e r s e c t i o n
i f ( t r i T r i I n t e r s e c t ( v0 , v1 , v2 , u0 , u1 , u2 ) ) {

i f ( dTestResul ts [ 0 ] < MAX RESULTS) {
/ / Get and move cu r ren t p o s i t i o n o f
/ / the l i s t . Store the ind i ces o f t r i a n g l e s
i n t pos = atomicAdd (& dTestResul ts [ 0 ] , 2 ) ;
dTestResul ts [ pos ] = n t ;
dTestResul ts [ pos + 1] = n t t ;

}
}
++ n t t ;

}
}
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