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1 -  Introduction 
This chapter reviews basic notions of 2D geometry. We start with the study of vectors and points. Then we 
discuss coordinate systems (frames) and transformations. Finally, we look at lines, edges, triangles, and circles. 
1.1 Why are points and vectors important 
Points and vectors are the fundamental primitives from which most of the representations and of the geometry 
processing techniques used in Geometric and Visual Computing (GVC) are constructed. Other geometric 
primitives are often defined and represented using points, vectors, and scalar values representing various 
measures (angles, distances). For example, a sphere may be represented by its center (point) and by a radius; a 
triangle is usually defined by its three vertices (points); a ray traced by a photon in the absence of obstacles is 
conveniently specified by a starting point (maybe the light source) and a travel direction (vector). Hence, much of 
the geometric processing performed in GVC deals with points and vectors. 
 How would you use points, vectors, and scalars to represent an infinite cylinder in 3D? 
 How would you use points, vectors, and scalars to represent the force acting on a shape? 
1.2 Why are initially we assuming that the world is flat 
Although much of modeling, animation, and graphic deals with three-dimensional (3D) objects and scenes, 
initially, we restrict our attention to planar scenes. Hence, our points, vectors, and various primitives derived 
from them (polygons, curves, circles, triangles…) will live in a plane (a page of these notes, the white board, or a 
projection screen). We do so because many of the constructions discussed in these notes are slightly easier to 
present in such a two-dimensional (2D) setting. Furthermore, numerous problems that one must solve in 3D are 
intrinsically two-dimensional. Nevertheless, we will later lift these 2D concepts into the third dimension… and 
even into four dimensions to discuss some representations and algorithms for 3D animation. 
 Planar models are commonly used to represent 3D scenes. Can you think of an example? 
 How would you use a 4D space to represent the motion of a point in 3D? 
1.3 What is a point and how is it denoted and drawn in these notes 
A point is in fact nothing but a specific location (in the plane, since we are initially working in 2D). Examples 
include the center of a disk, the end of a segment, and the corner of a triangle.  
We typically use single letters to refer to points. When we discuss isolated points, we typically use uppercase 
letters, such as P or Q. When we talk about a point in the context of an infinite set of points, such as a curve, we 
may use a lower case letter for the point and an uppercase letter for the curve. For example, we may say: “For 
every point p in curve P…”. When the points are ordered, such as the vertices of a polygonal curve, we typically 
use subscripts, such as P0, P1, P2…, or  Pi, Pi+1… to identify them. However, in these situations, to simplify 
notation by removing the need for subscripts, we may temporarily rename a short subsequence of such points and 
say for example: “Given 4 consecutive vertices {A,B,C,D} of polygon P…”. 
In our illustrations, we show points as dots (small disks) so as to distinguish them from the curves they lie on. 
Remember however that a point is not the disk, but the location of its center. 
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 Can you suggest another way of drawing points? Compare the dots used above with your suggestion and 
discuss their respective advantages and drawbacks. 
1.4 What is a vector and how is it denoted and drawn in these notes 
Most often, a vector represents a direction, displacement, velocity, or acceleration.  
We typically use uppercase letters, such as U, V, or W, to denote vectors. We may also use subscripts, such as in 
L1, L2…, to identify consecutive elements in an ordered list of vectors. 
We draw vectors as arrows in the figures. 

 
 List 3 instances where you have used vectors to represent different entities. For each one, explain exactly 
what the vector represented. 
A given vector is defined by the direction and length of the arrow, but is not restricted to any particular location. 
Hence, a vector may be drawn anywhere on the page, or even replicated at several locations. 
 Is the force pulling on the handle of a door a vector? Justify your answer. 
1.5 What kind of computations are points and vectors used for 
Many algorithms in modeling, animation, and computer graphics take as input combinations of points and vectors 
and compute scalars, points, or vectors that represent a particular distance, time, location, or orientation. We 
illustrate these with a couple of classic examples. 
EXAMPLE 1: Consider a ray from point P with tangent vector T and a flat wall (represented in 2D by an edge 
between points A and B). Compute the point X where the ray hits the wall and the direction R of the reflected ray, 
assuming a mirror reflection. This computation is performed in animation when simulating the collision of a ball 
with a wall. It is also used in photorealistic rendering when simulating the trajectories of photons as they leave the 
light source, hit surfaces, and bounce off into new directions. Hence, all practitioners in the broad GVC field must 
be able to quickly invent and implement efficient approaches for computing point X and vector R from the input 
parameters (P, T, A, and B). Typically, it is easier to present the solution as several construction steps, rather than 
a single formula. Hence, intermediate variables, such as the normal N defined as the unit vector orthogonal to the 
wall, are often introduced to simplify the derivation of the solution and its implementation.  

 
EXAMPLE 2: Consider two disks one of radius r1 and the other of radius r2. At time t=0, the center of the first disk 
is at point P1 and the center of the other disk is at point P2. Assume that the first disk travels at constant velocity 
(vector) V1 and that the second disk travels at constant velocity V2. We use these points and vectors and test 
whether the two disks collide. If so, we compute the time t* of collision. We will also use them to compute the 
position of the two disks at t* and their respective velocities W1 and W2 after an elastic shock. This is a key 
component when performing simple animations involving disks in 2D or balls in 3D, such as for instance in a 
game of pool (billiard) or in molecular simulations. 
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 Suggest another geometric problem that may be defined and solved using points and vectors. 
There are often several strategies for solving a typical problem of this kind. You should try to master a variety of 
them, since one or another may lead to a simpler or more efficient solution. 
The analytic approaches strive to formulate a series of simultaneous equalities or inequalities and then to solve 
them to obtain the desired values. Typically, these equalities and inequalities involve ratios of polynomial 
expressions of scalar parameters, such as time, arc-length, and the coordinates of points and vectors. Although 
sometimes unavoidable, such formulations are often unnecessarily verbose, tend to obscure the intuitive 
construction that has lead to their development, and may require solving high-degree polynomials. 
Instead, to take advantage of simple shortcuts that reduce labor and computational cost, we advocate geometric 
formulations, which manipulate vectors and points directly, rather than their coordinates. These formulations are 
based on construction involving the few operators defined below. The advantage of our approach is that the reader 
is able to really understand and retain a particular construction and to adapt it to a slightly different problem. The 
drawback is that readers not familiar with operators on points and vectors (such as additions and dot product) 
must learn them and practice using them. 
 Consider two disks, one with center C1 and radius r1 and the other with center C2 and radius r2. Propose 
two solutions for testing whether they interfere. The first one should be formulated using points, distances 
between points, and scalar values (assume here that the function for computing the distance d(A,B) between point 
A and B is provided). The second one should be formulated as an algebraic inequality involving coordinates of 
points (A.x,A.y) and other variables (r1…). Which of these solutions is easier to explain and retain?  
1.6 How is this chapter organized and why 
We first review vectors, their representations, their operators, and present few constructions to illustrate their use 
in graphics, modeling, and animation.  
Then, in a separate subsection, we discuss points, their representations, their operators, and present a few 
constructions. This organization stresses the fundamental semantic difference between vectors and points. 
Then, we discuss linear transformations and changes of coordinate systems (which we call frames). A frame 
may be specified by an origin (point) and a set of vectors (orthonormal basis) and changes of frames are used to 
transform points and vectors as a convenient tool for constructing and animating scenes. 
Finally, we discuss a few simple geometric primitives (lines, edges), which may be represented in terms of points 
and vectors, and present the computations of their intersections, which are a fundamental tool for many 
algorithms in modeling (e.g. Boolean operations), animation (e.g. collision), and graphic (e.g. ray-tracing). 

2 -  Vectors 
2.1 What is the norm of a vector 
A vector has a length, also called its norm or its magnitude. The norm of vector V is denoted V.n, n(V) or ||V||. 
The reader must retain this redundant terminology, since all three terms are used in the literature. The notation 
n(V) is the most practical for describing an implementation. The abridged object-oriented notation V.n may be 
preferred by some. The notation ||V|| is often used in mathematical texts. 
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The norm is a measure. It is expressed in a chosen unit (for example inch or meter). Hence, V.n should in 
principle be qualified with the unit in which it is expressed. However, for convenience, we often assume some 
unspecified but agreed upon unit. Remember that it is acceptable, and often convenient to select the unit. For 
example, one may say “Without loss of generality, assume that the unit is chosen so that U.n==1.” and then 
proceed with a given construction in which U.n may be replaced by 1 and hence omitted when it is multiplying 
another quantity. 
A unit vector is a vector with norm 1. Many vectors used in graphics are unit. For example, the directions of rays 
tangent to curves, and the normal’s to surfaces in 3D are unit vectors. Knowing that a vector is unit often leads to 
shortcuts in geometric constructions and in their implementations.  
When the norm of a vector is zero, we say that it is the null vector, which we represent with a bold 0. Throughout 
the remainder of this section and unless specified otherwise, assume that the vectors discussed are not null. 
 What are the synonyms for the length of a vector V? What are the different notations for it? 
 We have used above a constraint on the norm to identify two special classes of vectors. List their names 
and provide the constraint that defines each one of them. 
2.2 What are the polar coordinates of a vector 
A vector may be defined by its length and its “direction”. In two dimensions, the “direction” of a vector may be 
conveniently represented by a signed angle from some reference direction, as discussed below. To avoid this 
dependency on the reference direction, and to simplify the definition of the “direction” of a vector in 3D, we 
simply say that a direction is a unit vector. As explained below, we use the term “angular coordinate” when 
referring to the angle of a direction. Hence, you must remember that the term “direction” refers to a unit vector 
and that the expression “direction of vector V” is the unit vector, denoted V.D or D(V), that is obtained by 
scaling V by 1/V.n, as explained below. We assume of course that V is not null. Hence the direction D(V) of a 
vector V is parallel to V but has unit length. Note that we use the letter D to remind us that this is the “direction” 
and an upper-case letter D to remind the reader that the result returned by D(V) is a vector, and not a scalar.  
A direction may be used to represent the tangent to an oriented curve at a specific point along the curve. In two 
dimensions, the vector obtained by rotating such a tangent by 90 degrees counterclockwise is called the normal to 
the curve at that point.  The reader should remember that the term “normal” defines a direction (i.e., unit vector), 
while the term “norm” refers to the length (scalar measure) of a vector. These two terms should not be confused. 
A direction (vector) may also be used to represent the direction (orientation of the velocity) in which some 
hypothetical photon may travel.  
 What is the difference between “normal” and “norm”? 
 What is the direction of a vector V? 
An arbitrary vector V is completely defined by its norm, V.n, and its direction, V.D. The norm is a length and 
hence may be represented by a scalar (assuming an agreed-upon unit for measuring lengths). Because we are 
working in two dimensions, the direction may be represented by an angle V.a, also denoted a(V), with respect to 
some agreed-upon base direction (often the horizontal of the page). The units in which that angle is represented 
may be radians, degrees, or turns (1 turn = 360 degrees = 2π radians).  
V.n is called the radial coordinate of vector V. V.a is called to angular coordinate of V. The pair of numbers 
(V.n, V.a) is called the polar coordinates of V. Note that (V.n, V.a) and (V.n, V.a+2kπ), for any integer k, 
represent the same vector. Hence, for simplicity, we assume that V.a, when expressed in radians, is always in [–
π,π]. Furthermore, we assume that V.n is never negative. 
 The polar coordinates representation of a vector comprises two coordinates. Give their names. Explain 
what they represent. List the range of values. Discuss the units. 
 Does the null vector have a unique representation in polar coordinates? 
 What is the polar coordinates representation of a direction? 
2.3 How does a vector represent a displacement 
A vector may represent the displacement between two points. For example, consider points P and Q. One may 
define the location Q by saying “Start at P and then move by a displacement V, which has direction D and 
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magnitude n.” In other words, “Start at P, face direction D, and walk n units.” Such a displacement from P to Q is 
often denoted PQ. Hence, when you see two letters together, where each one represents a point, the pair defines 
the vector displacement between them, from the first one, to the second one. Another popular notation for a 
displacement vector PQ is the difference Q–P between two points. The role of “–” in “Q–P” is at odds with the 
intuitive notion of the term “minus”. What does it mean to subtract a point from another? Nevertheless, this 
notation is consistent with the rules of the + and – operators in vector and point expressions, because one may say 
that Q is the result of displacing P by vector PQ, and hence should be written Q=P+PQ. Hence, it may seem 
natural to move P to the left side of the equation while changing its sign and say that Q–P=PQ.  
Also note that QP = –PQ. 
Expressions involving vectors written in this two-point displacement style may be reordered and sometimes 
simplified.  For example AB+CD–CB can be written AB+BC+CD by replacing –CB by BC and by using the fact 
that vector addition is commutative. Then, AB+BC+CD may be simplified to AD, since it defines the cumulative 
displacement from A to B, then from B to C, then from C to D. We started at A and ended at D. Hence, the total 
displacement is AD. The reader should practice such simplifications. 
We draw vectors as arrows in our figures. Note that even though a vector may be defined as the displacement 
PQ, it may be drawn anywhere on the plane. Hence, the arrow does not need to start at P. As long as two arrows 
all have the same polar coordinates (length and angle), they represent the same vector. 

 
 Draw an origin O and two points, A and B. Then draw vector AB so that it starts at the origin O. 
 Explain why any given vector may be drawn anywhere on the page. 
 What is PQ+QP? Justify your answer. 
 Draw four arbitrary points A, B, C and D. Now compute the vector V=AB+AC+AD and draw it four 
times, each time starting at a different point in {A,B,C,D}. 
2.4 What are the Cartesian coordinates of a vector 
Pick two orthogonal directions on the page. For instance, the left-to-right horizontal H and the upward vertical U. 
Remember that H and U are directions, and hence are unit vectors. The displacement defined by a vector V may 
always be achieved as a sequence of two axis-aligned displacements: one horizontal by an amount V.x and one 
vertical by an amount V.y. In fact, as discussed below, V = V.x H + V.y U. 
These two are the Cartesian coordinates of vector V. We use the notation <V.x,V.y> to represent V by its 
Cartesian coordinates. It does not matter which axis-aligned displacement comes first (the cumulative 
displacement vector is the same whether we first move horizontally or first vertically). Nevertheless, by 
convention, we list first the coordinate V.x that measures the amount of horizontal displacement. 
When V.x is positive, the horizontal displacement goes towards the right. When V.x is negative, it goes to the left. 
Similarly, when V.y is positive, the vertical displacement goes up. (Unless a different convention is chosen, which 
is the case in some 2D graphic systems, where a positive V.y components indicates a vertical displacement 
downwards.) 
We use parentheses, such as “(n,a)”, to denote the polar coordinates of a vector and brackets, “< , >”, to denote its 
Cartesian coordinates. Hence (n,a) denotes a vector V such that V.n==n and V.a==a, while <x,y> denotes a vector 
V, such that V.x=x and V.y=y. 
 Draw 2 different instances of vector <–2,3>. 
 What are the different Cartesian representations of the null vector? 
2.5 How do we convert between polar and Cartesian coordinates 
We have studied two different representations of a vector. Some vector operations are simpler to perform in 
Cartesian coordinates, others in polar. Hence, you may need to switch between them to simplify constructions or 
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calculations. Conversions between Cartesian and polar coordinates follow from the definition of trigonometric 
functions and from the Pythagorean theorem. For conciseness, assume V=(n,a)=<x,y>. 
To convert from Cartesian to polar, use n=√(x2+y2) and a=atan2(y,x), where the function atan2 returns an angle in 
[–π,π]. To convert from polar to Cartesian, use x = n cos(a) and y = n sin(a). You need to understand and 
remember these formulae. 

 
 Let V=(n,a)=<x,y>. Assume x>0 and y>0. Draw V and indicate n, a, x, and y on your figure. Then, write 
down the four formulae for converting back and forth between polar and Cartesian coordinates. What is the range 
of angle a? 
 Let V=(n,a)=<x,y>. Assume x<0 and y<0. Draw V and indicate n, a, x, and y on your figure. Then, write 
down the four formulae for converting back and forth between polar and Cartesian coordinates. What is the range 
of angle a? What is the sign of n? 
 Convert <1,0>, <0,1>, <–1,0>, <1,1>, and <3,4> to polar coordinates. 
 Convert (1,45°), (2,–45°) and (2,135°) to Cartesian coordinates. 
2.6 Rotating vectors and measuring angles between them 
It is trivial to rotate a vector that is expressed by its polar coordinates. The rotated version of V by angle b is the 
vector (V.n,V.a+b). We use the notation R(V,b) to denote the result of such a rotation. We use the mnemonic “R” 
for rotation and an upper case letter to indicate that we return a vector. 
R(V) is a convenient short-cut for R(V,π/2). It returns the vector obtained by rotating V by 90 degrees 
counterclockwise. It is typically used to obtain a pair of orthogonal vectors for a frame (as discussed later) or for 
obtaining a normal to a curve, given a tangent. 
We use a(U,V) to denote the angle from vector U to vector V. We take the convention that a(U,V)==0 when 
D(U)==D(V) and that a(U,V)>0 when D(V)=R(D(U),b) for some angle b in [0,π]. Hence a(U,V) returns an angle 
in [–π,π[. 
 Let V = (1,a). Write the pseudocode to compute R(V,b). Make sure that the resulting polar form is valid, 
i.e., that its angle is in [–π,π[. 
 Assuming that U and V are in polar coordinates, write the pseudocode to compute a(U,V). Make sure that 
the resulting angle is in [–π,π[. 
 Implement and test a(U,V). 
2.7 Comparing and scaling vectors 
Two vectors U and V are equal when they are both null or when they have the same coordinates (using either 
polar or Cartesian coordinates). To express the test whether U and V are equal, we write U==V or equal(U,V). 
Note that, to follow a programming convention, we use “==” to denote logical equality and “=” to denote 
propositional equality (“A=B” means that A is always equal to B) or an assignment (“x=x+1;”). The context is 
used to decide whether “=” is a propositional equality and an assignment. 
Let s be a positive real number (scalar). The scalar-vector product sV denotes the vector V scaled by s. When 
s==0, sV==0. When s is positive, sV is the vector with polar coordinates (sV.n,V.a). When s is negative, sV is 
the vector with polar coordinates (–sV.n,V.a+π). In other words, it is obtained by scaling the norm of V by the 
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absolute value |s| of s and by rotating the vector 180 degrees (i.e., adding π to its angle and possibly subtracting 2π 
if necessary to ensure that V.a stays in [–π,π]).  
Scaling a vector represented in Cartesian form is trivial: s<x,y> = <sx,sy>. 
When we wish to divide the norm of a vector by s, as a short cut for (1/s)V, we can write V/s. 
The vector with norm V.n and an angle of V.a+π is the opposite of V and is denoted by –V. Hence, using 
Cartesian coordinates: –<x,y>=<–x,–y>. 
For example, in the figure below, 2V is a vector of the same direction as V, but twice longer. The opposite vector, 
–V, has the same norm as V, but opposite direction.  

 
Two vectors, U and V, are parallel when D(U)==D(V). This test or constraint is written U//V or U==kV. The 
latter notation is a shortcut for “there exists a scalar k, such that U equals kV”. When U.a==V.a+(1+2k)π, we say 
that U and V are antiparallel. We have then D(U)== – D(V). 
 Let V=<3,4>. Convert it to polar coordinates. Compute the polar coordinates of W= –V by adding π to 
the angular coordinate of V. Convert W to Cartesian coordinates. Verify that they are <–3,–4>. 
 Let V=<4,–6>. What is –V/2? 
 How would you test whether two vectors in Cartesian coordinates are parallel, without computing their 
angular coordinates? 
2.8 Adding vectors 
Vector addition (or vector sum) has a simple intuitive meaning when we think of vectors as displacements:  Start 
at some arbitrary point A and move by U and then by V. U+V denotes the cumulative effect of the two 
displacements. Of course, we can add more than two vectors: U+V+W… 
To compute U+V, consider our metaphor for Cartesian coordinates and realize that instead of performing a 
horizontal displacement by U.x, then a vertical displacement by U.y, then a horizontal displacement by V.x, and 
finally a vertical displacement by V.y, we may perform the two horizontal displacements first, which amounts to a 
single horizontal displacement by U.x+V.x, and then a vertical displacement by U.y+V.y. Hence U+V=<U.x+V.x, 
U.y+V.y>. 
Similarly, vector difference U–V is  <U.x–V.x, U.y–V.y>.  

 
Note that U+V = V+U, and that U–V = –(V–U). 
More generally, we can write a weighted sum (linear combination) of two vectors as sU+tV to denote 
<sU.x+tV.x, sU.y+tV.y> and extend it to more than two vectors uU+vV+wW… which we conveniently denote 
using the weighted average function A(u,U,v,V,w,W…). 
 Explain at an intuitive level why U+V=V+U and why U–V≠V–U. 
 Compute 3(<–1,–2> + 2<3,4> – <4,6>/2). 
 Let U, V, and W represent forces exerted upon a point mass. U is exerted by a spring. V is gravity. W is 
the force that you exert by pulling on the mass with a string. You want the mass to stay where it is, hence you 
want the forces to balance. Compute W. 
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 Let U, V, and W represent forces exerted upon a point mass. They have the same magnitude (radial 
coordinate). What can you say about their angular coordinates if we assume that the mass is stationary (the 3 
forces cancel out)? Given U, use that condition to compute V and W. 
2.9 Dot product  
The dot product is the most important operator on vectors. It is used as the main tool in most geometric 
constructions. Hence, you need to fully understand what it computes and retain its formulation, properties, and 
example applications discussed in this section. You should be able to teach this section to your study group. 
The dot product, VU, of two vectors is a scalar. It may be computed as (V.x U.x + V.y U.y) using Cartesian 
coordinates or as (U.n V.n cos(a(U,V))) using polar coordinates. You need to know these two equivalent 
formulations, since they justify various fundamental properties of the dot product, which you also need to 
remember. 
To prove the equivalence of these two formulations, rewrite (V.x U.x + V.y U.y) by substituting the Cartesian 
coordinates with their expressions in terms of polar coordinates to obtain: V.n U.n cos(V.a) cos(U.a) + V.n U.n 
sin(V.a) sin(U.a). Now, using trigonometric identities, we obtain ½V.nU.n(cos(V.a–U.a)+cos(V.a+U.a)+ 
cos(V.a–U.a)–cos(V.a+U.a) ), which yields V.n U.n cos(V.a–U.a), and hence the polar form U.n V.n cos(a(U,V)). 
You do not need to remember this derivation, but make sure that you understand it.  
You do need to remember the following three properties, since you will be using them often to simplify 
expressions. 
From the polar formulation and remembering that s(n,a)=(sn,a), we obtain: (sV)(tU)=st(VU). 
From the symmetry of the Cartesian formulation, we obtain commutativity: VU= UV. 
From the Cartesian formulation, we obtain distributivity over vector addition: (V+W)U= VU+WU. 
From the polar formulation, we notice that VU==0 implies that one of the three quantities, U.n, V.n, or 
cos(a(U,V)) must be zero. Hence, when U and V are not null, VU==0 implies that U and V are orthogonal to 
each other (i.e., that a(U,V) is either π/2 or –π/2). We often use VU=0 as a constraint for computing intersections 
of linear entities as discussed blow. The use of VU==0 to indicate orthogonality is arguably the most common 
application of the dot product. 
Also, from the polar formulation, and remembering that U.n and V.n are positive, VU>0 when the |a(U,V)|<π/2. 
When this is the case, we say that U and V agree in direction. (Note that we did not say “have the same 
direction”.) We use the sign of VU for a variety of tests, including “Is this vertex convex?”, “Do these two edges 
intersect?”, and “Is this point inside the triangle?”. Hence, the sign of VU is the other key use of the dot product. 
When inventing a solution to a geometric problem, look for statements that imply orthogonality of two vectors 
and write the corresponding equation. Note that the two vectors may not be given or named in the problem 
statement. They often must be derived from given points or other vectors. 
 To practice working with expressions that include vector addition, subtraction, scaling, and dot product, 
simplify the expression (2U+3V)(2U–3V). 
 Test whether <2,3> and <–1,5> agree in direction. 
 Prove (sV)U=s(VU). 
 Prove VU= UV. 
 Prove (V+W)U= VU+WU. 
2.10 Tangential and normal components 
Now, temporarily assume that U is a unit vector. We will use it as a reference. For example, it may be the tangent 
direction to a wall. When U is unit, the quantity VU measures the signed length of the projection of V onto the 
direction U. As stated before, VU is positive when U and V agree in direction. By “projection”, we mean the 
normal projection  (or shadow) of U on V.  
Now consider that V represents for example the velocity of a photon upon its impact with the wall. We often wish 
to decompose V into its tangential and normal components with respect to U. VU measures the direction (sign) 
and magnitude of the tangential component of V with respect to U. However, it is a scalar (number), not a vector. 
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We can define the tangential component (vector), denoted V∠U, of V with respect to U as (VU)U, which is the 
scaling of U. When U and V do not agree in direction, neither do (VU)U and U. 

 
The normal component, V⊥U, of V with respect to U is defined similarly using the orthogonal vector R(U) 
instead of U: V⊥U=(VR(U))R(U). The term “normal” here refers to the direction that is “normal”, i.e. 
orthogonal, to the wall. 
Hence V= V∠U + V⊥U. You must know how to express these two components and remember that these 
formulae for tangential and normal components assume that U is a unit vector. 
 Write V in terms of its tangential and normal component with respect to U and draw all 4 vectors. 
 You are given W and told that it is V∠U. Does this information suffice to tell whether U and V agree in 
direction?  
 Let U be the tangent vector to the beach and let d be the distance to the beach. Your boat moves at 
constant velocity V. Write an expression for the time t it will take you to reach the beach. 
2.11 How to use the dot product to compute the reflection vector 
To illustrate the power of the dot product, consider the problem of computing the reflected direction R of a ray 
that arrived with direction V upon a wall (edge) between point A and B. You should learn and remember the 
resulting formula and its derivation. 
Define the unit tangent vector U=D(AB) to the wall. 
V may be written as the sum V∠U + V⊥U of its tangential V∠U and normal V⊥U components with respect to U. 
By definition, R is the mirror image of V with respect to the wall. The mirror image of a vector is obtained by 
flipping the sign of its normal component. Hence, R = V∠U – V⊥U.  
Note that R–V = –2(V⊥U). Hence, we obtain a slightly simpler formula: R=V–2(V⊥U). 
Often, instead of the tangent direction U, the orientation of the wall is defined by its normal direction N. In 2D, 
N=R(U).  Hence, V⊥U = V∠N = (N•V)N. 
This change of variables leads to the popular formula which you should retain: R=V–2(N•V)N. 

 
 A billiard ball has constant velocity V and no spin. It collides with a wall that has normal N. What is its 
velocity R after the elastic shock? 
 Re-derive the popular formula for the reflection direction and justify each step. Draw all vectors and 
quantities used in the derivation and the formula. 
2.12 Inner, outer, and geometric products 
The dot product UV=U.xV.x+U.yV.y is also called the inner product and is sometimes denoted V∧U. It 
generalizes to any two n-dimensional vectors of numbers. One may also define the outer product U∨V = –
U.xV.y+U.yV.x, which is UR(V). Remember that UV=VU, but notice that U∨V = –V∨U. In fact, V∨U 
measures the signed magnitude of the normal component of V with respect to a unit vector U. 



Jarek Rossignac,  2008 Points & vectors 10 / 22 

The geometric product, denoted UV, is defined as U∧V+U∨V.  
It has been proposed as the fundamental building block for geometric constructions because the inner and outer 
products may be elegantly defined in terms of the geometric product: U∧V=(UV+VU)/2 and U∨V=(UV–VU)/2.  
When U is a unit vector, UV is the sum of the signed magnitudes of the tangential and normal components of V 
with respect to U. It decomposes the displacement of V into its component along U and along R(U) and returns 
the sum of these two signed displacements. 
 Let U =<1,0> and V=<x,y>, Let z=UV. Provide a simple formulation of the function z(x,y) and explain 
its shape or plot it. 

3 -  Points 
3.1 What is the relation between points and vectors 
If you pick an origin O, each point Pi is associated with a unique vector Vi=OPi. This trick let’s you represent 
points by the corresponding vectors, and vice versa.  
Even though, because of the trick above, both a point and a vector may be represented by the same pair of 
numbers, it is essential that you distinguish points from vectors. Failing to do so may slightly reduce the length 
of the source code, but will ultimately lead to confusion, wrong solution, coding mistakes, and debugging 
nightmare.  
For example, it you wish to translate, by a displacement V, a ray, which is defined by a starting point P and a 
tangent direction T, the result is a ray starting at a displaced point P+V, but having the same tangent direction T. 
Hence, under translation, points change, but vectors do not. 
You should always clearly specify which of your symbols are points and which are vectors, unless this is obvious 
from the context. For example if you say “Let P and Q be two points.”, then PQ is clearly a vector and you do not 
have to say “vector” PQ, although you may. If you say “Let P be a point and V a vector”, then P+V is clearly a 
point obtained by displacing P by displacement V. 
 Explain the distinction between points and vectors. 
3.2 How do we represent points 
The Cartesian representation of a point P is two coordinates: (P.x, P.y). Their interpretation assumes an agreed-
upon origin O and satisfy OP=<P.x, P.y>. Note that we use parentheses for the Cartesian coordinates of points 
and brackets for the Cartesian coordinates of vectors.  
Remember that we have also used parentheses for the polar coordinates of vectors. Hence (3,4) may either 
indicate a point or a vector in polar coordinates. The context or explicit annotations should suffice to remove this 
ambiguity, but when in doubt, assume that this notation refers to a point. 
 Suggest two good choices of origin when working with points in a window. Discuss their advantages and 
drawbacks. 
3.3 How do we translate points 
The simplest way to translate a point P by a displacement V is to add the displacement vector, hence obtaining 
P+V.  
Sometimes, V is a direction and we wish to translate P along V by a specific distance s. The result may be defined 
as P+sV and obtained through the call A(P,s,V). Such translation may of course be cascaded: P+sU+tV. 
 Why may one want to translate a point? Give examples from feature animation or video games.  
 Write a simple and efficient implementation of the function for A(P,s,V), assuming that points and 
vectors are represented by their Cartesian coordinates. 
3.4 How do we rotate points 
The rotated version R(P,a) of point P by angle A around an agreed-upon origin O is O+R(OP,a). Usually, we 
assume that O=(0,0). If we wish to use a different origin (fixed point) Q for the rotation, we may compute the 
rotated point by the call R(P,a,Q). Its implementation is discussed below. 
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 Write a simple and efficient implementation of the function for R(P,a). 

3.5 When is it acceptable to write affine combinations of points 
In general, one should try not to scale or add points, since they represent locations and since the concept of adding 
or scaling locations is absurd. Hence, we should not write P+Q or sP, when P and Q are points. 
 You wish to construct a parallelogram (O,P,Q,R), given the origin O and two points P and Q. You should 
not compute R as P+Q, which is an illegal operation on points. Provide a legal construction.  
We will tolerate two exceptions to this rule (homothety and affine combinations). 
A change of units corresponds to a scaling (also called homothety, dilation, and central similarity) with respect to 
a given origin O. The scaling P’ of a point P by a scaling factor s should be written O+sOP, but we will tolerate 
the form sP and even P/s. A blatant example of such transformations will be discussed when we explore 
perspective projections that map a point P onto dP/(d+P.z). 
The expression uU+vV+wW… is a linear combination of vectors U, V, W…  with scalar coefficients u, v, w… 
When u+v+w… = 1, it is called an affine combination. An affine combination is called a convex combination 
when none of the coefficients is negative. 
By extension, when a+b+c…=1, point O+aOA+bOB+cOC… is an affine combination of points A, B, C… and 
its location is independent of the choice of the origin O. As a proof, pick another origin O’. The affine 
combination O’+aO’A+bO’B+cO’C… may be written as O’+O’O+(a+b+c…)OO’+aO’A+bO’B+cO’C… by 
adding a the null vector O’O+OO’, which can be written O’O+(a+b+c…)OO’, since a+b+c…=1. The new 
expression yields O’+O’O+aOO’+aO’A+bOO’+bO’B+cOO’+cO’C…, which simplifies to O+aOA+bOB+cOC. 
Given that O+aOA+bOB+cOC… is independent of O, many authors use a shortcut and write this affine 
combination of points simply as aA+bB+cC… This shortcut notation is tolerable and quite handy, but only when 
a+b+c…=1 (i.e., affine combination).  
Note that such point addition follows the same rules as number addition with respect to distributivity of 
multiplication and division by a scalar. Hence ½A+½B can be written ½(A+B) or simply (A+B)/2. 
For example, the midpoint of the line segment (P,Q) may be written as (P+Q)/2, rather than the legal P+PQ/2.  
 Explain what are linear, affine, and convex combinations of vectors. 
 What is an affine combination of points? What important property justifies that we do not need to use 
legal points + vectors expression and may instead use the shortcut? 
 The center of triangle (A,B,C) may be written as (A+B+C)/3. What is the “legal” form for that location? 
3.6 When is the path joining three points making a left turn 
Consider a path A-B-C made of two straight edges: Edge(A,B) and Edge(B,C). How can we test whether this path 
makes a left turn at B? As we will see, this test is vital for testing whether a point lies inside a triangle and 
whether a vertex of a polygon is concave. Many algorithms build on these two functionalities. 
The answer, returned by Left(A,B,C), may be formulated using what we have learned so far. Left(A,B,C) 
returns true when R(AB)BC>0. 
 Draw three configurations of the path A-B-C showing a left turn at B, a straight path, and a right turn at 
B. For each verify that the formula for computing Left(A,B,C) is correct. 
 Recall the formula for computing Left(A,B,C) and explain it. 

4 -  Frames 
4.1 What is a basis 
Consider two directions, I and J, such that J=R(I). They define a basis denoted [I,J]. The components <x,y> of 
vector V in the basis [I,J] are defined as x=VI and y=VJ. Note that, given a basis [I,J] and two components 
<x,y>, the vector V may be expressed as the weighted vector sum V=xI+yJ. Note that the norm V.n is the 
diagonal of a right triangle, hence, by Pythagoras’s theorem, x2+y2=V.n2.  
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4.2 How to change basis 
Consider two bases: [I1,J1] and [I2,J2]. Let <x1,y1> be the components of a vector V in [I1,J1]. If we wish to change 
the basis, we must compute the components <x2,y2> of V in [I2,J2]. We do this by first computing V=x1I1+y1J1 
and then x2=VI2 and y2=VJ2.  
To implement scaling, addition, subtraction, projection, and dot-product, we must decide on a representation for 
vectors. Usually, one represents vectors by their components in a global basis that is implicit, i.e., not specified. 
In two dimensions, it is customary to assume that the first basis vector (the X-direction) is horizontal pointing 
towards the right of the page and that the second basis vector (the Y-direction) is therefore vertical. 
Mathematicians often assume that it is pointing up, while some graphics packages assume that it points down. We 
call this a Cartesian representation of the vector. 
Let <V.x,V.y> be the components of V. Note that if we do not specify a basis, we assume that the components are 
computed with respect to the global basis. Similarly, let <U.x,U.y> be the components of U. We implement the 
operators discussed above as follows: 
sU = < sU.x , sU.y >, –U = < –U.x, –U.y> 
U+V = < U.x+V.x ,  U.y+V.y>, U–V = < U.x–V.x ,  U.y–V.y> 
R(U) = < –U.y , U.x > 
VU = U.xV.x + U.yV.y 
V.n = √(VV) 
 Select values for the coordinates of [I1,J1], [I2,J2] and for <x1,y1>. Draw these 5 vectors. Compute <x2,y2> 
and show them on your drawing. 
 Express the change of coordinate systems in matrix form. 
4.3 When are two vectors parallel and when are they orthogonal 
Stating that two vectors are parallel or perpendicular implies an equation that can be written as a geometric 
expression or algebraically as an equation on the coordinates of the vectors. Assume that U.norm≠0 and 
V.norm≠0. U and V are perpendicular when VU=0 (i.e., when U.xV.x + U.yV.y=0) and parallel when 
VR(U)=0 (i.e., when U.yV.x = U.xV.y). You should be able to re-derive these equations. 
 Write the equation satisfied by the coordinates of two parallel vectors. 
 Write the equation satisfied by the coordinates of two orthogonal vectors. 
4.4 How are points defined in a coordinate system 
Points in two-dimensions are associated with locations in the plane. If we assume the existence of an implicit 
(unspecified) global origin G, to each point P of the plane corresponds a vector from G to P. We use the 
combination GP to denote that vector. Remember that GP=P–G and that GP= –PG. 
Consequently, we may use the components <x,y> of GP to represent P. However, we must not confuse points and 
vectors, which have different semantics and different operators. Consequently, when referring to a point P, we 
will call x and y its coordinates and will denote them using parentheses (x,y), rather than brackets. 
Remember that (x,y) is in fact the point G+xI+yJ, where [I,J] is the default basis discussed above. 
Let (P.x,P.y) be the coordinates of point P and (Q.x,Q.y) be the coordinates of point Q. The vector PQ=Q–P has 
components <Q.x–P.x,Q.y–P.y>. 
4.5 What are rigid transformations 
Consider a point P represented by its coordinates (x,y) with respect to a local coordinate system in which the 
point was specified by the user as part of some shape. Now, we want to place the shape in a scene or to animate 
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its motion through a scene. To do so, we will use compositions of two rigid body transformations: rotations and 
translations. The translation TV(P) of P by vector V is P+V. The rotation Ra(P) is the point (x cos(a) – y sin(a) , 
x sin(a) + y cos (a)). We can compose the effects of several transformations.  
For example, TV(Ra(P)) will first rotate by a, then translate by V. Similarly, the transformation TU(Rb(TV(Ra(P)) 
will first rotate by a, then translate by V, then rotate by b, and finally translate by U. Note that two consecutive 
translations commute and can be merged: TU(TV(P))=TV(TU(P)) =TU+V(P). Similarly, consecutive rotations (in 2D 
only) commute and can be merged: Rb(Ra(P))=Ra(Rb(P))=Ra+b(P). However, rotations and translations do not 
commute: in general TV(Ra(P))≠Ra(TV(P)).  
In order to provide a fixed size representation of the composition of an arbitrary number of rotations and 
translations, we can use a coordinate system [I,J,O], also called frame, which defines an origin O and basis 
directions [I,J]. Given the coordinates (x,y) of point P in [I,J,O], we compute the point P=(P.x,P.y) in the global 
coordinate system of the scene as P=O+xI+yJ. In other words, to get to point P, start at the origin O, walk x units 
along the I direction, then walk y units along the J direction. We assume here that the coordinates of O, I, and J 
are given in the global coordinate system. The local coordinates (x,y) may of course be negative. 
Occasionally, we may want to perform the inverse transformation and compute the local coordinates (x,y) of 
some point P defined by its global coordinates (P.x,P.y). For example, the user may wish to select a point on an 
instance of the object in the scene and all we have is the (P.x,P.y) coordinate of the graphic pointer. To obtain the 
local coordinates (x,y) of that point with respect to the object, we use the change basis discussed above: x=OPI, 
y=OPJ. 

 
Consider now that we have a vector or direction V defined by their components <x,y> in the local coordinate 
system where the object was designed. For example, that vector may be the tangent or normal to a virve at a given 
point. How can we compute their components in the global coordinate system? We simply ignore the translation 
part (origin) and perform a change of basis, V=xI+yJ, as explained above. Remember that vectors are not 
affected by translations. 
  You are given two frames [O1,I1,J1] and [O2,I2,J2] and the local coordinates (x1,y1) of a point P in [O1,I1,J1]. 
Explain how to compute the local coordinates (x2,y2) of P in [O1,I2,J2]. Draw an example, showing P, [O1,I1,J1] 
and [O2,I2,J2] and indicate in the drawing the 4 coordinates. 
4.6 Homogeneous matrices 
To use matrix multiplications for composing rotations and translations, we represent a transformation that defines 
a local coordinate system [I,J,O] by a 3×3 homogeneous matrix [I.h J.h O.h] where the .h operator maps a point 
(x,y) to its homogeneous counterpart (the homogeneous three-dimensional vector <x,y,1> obtained by adding a 1 
as third coordinate) and maps a vector <x,y> to its homogeneous counterpart (the homogeneous three dimensional 
vector <x,y,0> obtained by adding a zero as third coordinate). Notice the difference: points are padded with a 1 
(so that we take translations into account) and vectors with a 0 (so that we do not take translations into account). 
To transform a point in local coordinates (x,y), we perform the matrix-vector multiplication and compute  
<P.x,P.y,1> as [I.h J.h O.h](x,y,1) = xI.h + yJ.h + O.h.  
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Note that the top left 2×2 portion of that homogeneous matrix is the basis [I J], which represents a rotation Ra, 
where I.x = J.y = cos(a) and I.y = –J.x = sin(a). The top two entries of the right-most column represent the 
translation vector. Hence, given any 3×3 matrix representing such a transformation or the composition of an 
arbitrary number of transformations, one can compute the final rotation angle a=atan2(I.y,I.x) and the final 
translation vector V=<O.x,O.y>. Note that this transformation corresponds to TO(Ra(P)), where the rotation is 
performed first. Inversely, given angle a and translation vector V, we can trivially compute the coefficients of the 
matrix directly. 
We can similarly transform a vector V=<V.x,V.y> by multiplying its homogeneous formulation <V.x,V.y,0> by 
the homogeneous matrix. Note that the padded zero will multiply—and hence cancel—the translation effect. 
Also, note that the inverse of Ra is R–a, which is obtained from Ra by changing the signs of the I.y and J.x 
coefficients, since sin(–a) = –sin(a) and cos(–a)=cos(a). Finally, the inverse of TO(Ra(P)) is R–a(T–O(P)). 
  Write the matrix form of a transformation that first performs a rotation of 90 degrees and then a translation 
by <1,2>. Apply this transformation to point (2,3). Show the details using homogeneous coordinates. Plot the 
point and its image and verify that it is correct. 
  Apply the above transform to the vector <2,3>. 
4.7 Transformations in graphic libraries 
Graphic libraries provide support for these transformations. However, they must be called in reverse order. For 
example, to render the transformed point TU(Rb(TV(Ra(P)), we would issue the sequence of commands: 
translate(U.x,U.y); rotate(b); translate(V.x,V.y); rotate(a); render(P); To develop an 
intuitive understanding of this approach, consider that the calls to translate and rotate transform the global 
coordinate system with respect to which all subsequent transformation and rendering operations will be 
performed. Hence, in the sequence {translate(U.x,U.y); rotate(b);}, the rotation is performed around 
the new origin, U.  
Graphic libraries also provide a scaling transformation, which is not a rigid body transformation. Specifically, 
{scale(a,b); render(P);} will render point (aP.x,bP.y). Scaling does not preserve distances, nor vector 
norms. Furthermore, when a≠b, the scaling operation will not preserve angles. Hence, one should be careful when 
transforming normal directions and other vectors by a scaling transformation. 
Let paint() render an ellipse with height 100 and width 50. The sequence {fill(red); paint(); 
translate(100,0); fill(green); paint(); rotate(PI/4); fill(blue); paint(); 
translate(100,0); fill(cyan); paint(); scale(1.0,0.25); fill(yellow); paint(); } 
would produce the image below on the left, while the sequence {fill(red); paint(); 
translate(100,0); fill(green); paint(); rotate(PI/4); pushMatrix(); fill(blue); 
paint(); translate(100,0); fill(cyan); paint(); scale(1.0,0.25); fill(yellow); 
paint(); popMatrix(); translate(0, -100,0); fill(cyan); paint(); scale(1.0,0.25); 
fill(yellow); paint(); } would produce the image below on the right. Note that the command 
pushMatrix() pushes the current coordinate system (the one used to paint the blue ellipse) on the stack and 
that popMatrix() restores it. The global x-axis goes right. The y-axis goes down. 
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In mathematics, a transformation T is said to be linear if it preserves vector addition T(V+U)=T(V)+T(U) and 
multiplication by a scalar T(sV)=sT(V). Hence combinations of rotations, uniform scaling, and even shear 
(scaling along a single direction) are linear transformations on vectors. Therefore, we also say that any 
combinations of rotations and shear on points is a linear transformation. A linear transformation in 2D may be 
represented by a 2×2 matrix. 
An affine transformation on points is a linear transformation followed by a translation. As shown above, any 
affine transformation may be represented by a homogeneous matrix. Affine transformations map lines onto lines 
and preserve affine combinations of points (T(aA+bB+cC…)=aT(A)+bT(B)+cT(C).. when a+b+c…=1). 
A homothety (sometimes written homotecy) and also called dilation is a combination of a translation with a 
uniform scaling. It maps any line into a parallel line. The scaling factor s is also called the similitude ratio. When 
the ratio is negative, the homothety inverts the points with respect to the fixed point Q of the dilation. Hence, the 
image P’ of a point P is defined by QP’=sQP. The homothety is an affine transformation and is also a similarity 
transformation. When Q is the origin, the homothety is a linear transformation. 
  Write the code that will draw a spiral made of increasingly larger disks. Discuss the two kind of spirals and 
write the code for each. 
4.8 How to rotate a point around a fixed point 
What is the rotation P’ by angle a of point P around center C? We can obtain P by rotating CP by angle a around 
C and then adding it to C. Hence P’=C+R(a,CP).  
Note that we can also directly compute it as P’=C + CP.x <cos a , sin a> + CP.y <sin a , cos a>. 
4.9 How to rotate a portion of the scene around a fixed point 
To rotate a portion of a scene by an angle a around a fixed point C, we could transform each vertex as discussed 
above and rotate simply each vector by a. If the entire scene is completely defined in terms of these vertices and 
vectors, the result will be correct. However, it may be slow. To take advantage of the GPU hardware acceleration 
for performing geometric transformations, we may use the graphics API (Processing, OpenGL…) to temporarily 
change the homogeneous matrices that will be used when transforming points and vertices of all geometric 
primitives that will be sent to the graphics pipeline. Our solution involves 6 steps: 
1) Push the matrix onto the stack to save its previous state 
2) Translate by CO, now C is temporarily at the origin  
3) Rotate by angle a, which does not affect C 
4) Translate by OC, to reverse the effect of 2) 
5) Render the desired portion of the scene 
6) Pop the matrix to restore its previous state 

5 -  Intersections of lines and edges 
In this section, we discuss the computation of intersections between lines and line segments. 
5.1 What is a parametric form of a point on a line 
A given line is an infinite set of points. How can we define all the points of a given line? How can we identify a 
particular point? 
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Consider the location A+sAB, where A and B are fixed points, but where s is a variable (parameter). To indicate 
that the result depends on the value of s, we write it as P(s). Note that P(0)=A+0AB=A, and that P(1)=A+1AB=B. 
Hence, as s varies from 0 to 1, P(s) traces the line segment from A to B. If we restrict s to be in [0,1], then P(s) is 
a convex combination of A and B. 
Since A+sAB=A+s(B–A)=A+sB–sA=A–sA+sB, we can write P(s) as the affine combination (1–s)A+sB and use 
the function A(P,s,Q) to compute it. 
When s is not confined to the interval [0,1], P(s) covers all the points on the line that passes through A and B. 
Note that if we chose n(AB) as unit of distance, then |s| measures the distance between A and P(s) and its sign 
indicates whether P(s) is on the same side of A as B along the line. 
Because we use a parameter s to identify any given point on the line, we say that P(s)=A+sAB is the parametric 
form of the line. Such a form is often used when computing points on the line that satisfy a given property, which 
is usually defined by an equation. For example, we may require that P(s) lie on another given line or circle or that 
it minimizes the distance to a given point Q. Hence, the problem is solved by finding the value or values of s for 
which the equation is satisfied and by substituting these values (roots) in A+sAB. 
You should remember how to derive the parametric expression of the line passing through points A and B. 
 How would you compute the point P at one third of the distance from A to B? Draw it. Write the 
corresponding function call, the legal form of the geometric construction, and the affine combination.  
 Write the parametric expression of the line through points (1,2) and (3,4). Compute the point where it crosses 
the X-axis.  
5.2 Implicit formulation of a line 
Sometimes, when formulating the geometric construction of a point, we may want to create auxiliary lines (for 
example the median of two points). We may define a line by specifying two different points, A and B, that it 
contains. We create an instance of that line via the call L=line(A,B). We may also define a line that passes 
through a point R and has normal N. (By that we mean that N is the direction orthogonal to the line.) We may 
create an instance of such a line by the call L=line(R,N). A point Q lies on L when the vector RQ is parallel to 
L, and thus when RQ is orthogonal to N. Hence, L is the set of points Q that satisfy equation RQN=0. This is the 
implicit equation of line L. This equality (i.e., constraint) is useful when computing intersections between a line 
and another curve. 
5.3 How to compute the intersection of two lines using implicit forms 
Let L1=line(R1,N1) and L2=line(R2,N2). Their intersection, L1∩ L2, is the set of points Q satisfying 
simultaneously the two equations: R1QN1=0 and R2QN2=0. Note that these are two linear equations with two 
variables: the coordinates Q.x and Q.y of Q. When N1≠N2, the intersection point exists and is unique. The 
coordinates of Q are obtained by solving this linear system. 
5.4 How to predict the collision time 
Consider the parametric form of a point P(t) that starts (i.e., when t=0) as S and moves with constant velocity T. 
Hence, P(t)=S+tT. We want to compute the value of time t, when P(t) collides with a planar wall. We represent 
the wall by a point Q on its surface and by the direction N of its normal (i.e. the direction orthogonal to the wall). 
In 2D, this problem is actually one of finding the time t where a particle that travels at constant speed collides 
with a line that passes through Q and has normal N. 
To solve this problem, we need to formulate an equation in t that describes the particular configuration between 
P(t), Q, and N at collision. What is that equation? As seen above, it is QP(t)N=0. Hence, we obtain the collision 
time t by solving this equation. We obtain the collision point by substituting the solution for t in S+tT. 
How do we solve QP(t)N=0? First, remember that QP(t) is P(t)–Q. Substituting P(t) with S+tT, QP(t) becomes 
S+tT–Q, which can be written S–Q+tT, and hence QS+tT. Distributing the dot product over vector addition and 
scaling, QP(t)N becomes QSN+tTN. Hence, the solution of QP(t)N=0 is t = – QSN / TN or equivalently, 
using –QS=SQ, t = SQN / TN. You should be able to re-derive this solution. 
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5.5 How to compute the intersection of two lines using implicit and parametric forms 
In the previous section, P(t) is the parametric form of a line passing through S with tangent T. Hence, the solution 
constructed above computes the intersection of two lines, one represented in its parametric form (by point S and 
tangent T), and the other in its implicit form (by point Q and normal N). 
5.6 How are half-spaces defined 
A line L passing through point Q with normal N partitions the plane into three sets. The line itself is the set of 
points P satisfying equation QPN=0. The interior, denoted L.interior, is the set of points satisfying equation 
QPN<0. The exterior, denoted L.exterior, is the set of points satisfying equation QPN>0. Note that these three 
sets are pairwise disjoint. L.interior and L.exterior are called half-spaces. They are open because they do not 
contain their boundary L. Sometimes, a closed half-space is desired. For example, the closed interior is the union 
of L with L.interior and may be denoted as L.interior.closure. Note that choice of terminology implies that the 
normal N points towards the exterior. Similarly, assume that you travel in the tangent direction T along L. By 
convention, we may agree that N=R(T) and hence that L.interior is on your right. 

 
We say that a line L separates points P and Q when one point is in L.interior and the other in L.exterior. 
  Write the geometric construction and then the code that will test whether a line passing through points A 
and B separates points P and Q. 
5.7 When do edges intersect 
An edge E, from point A and point B will be denoted Edge(A,B). It is an oriented line segment. It is the set of 
points E(t)=A+tAB with t∈[0,1]. By rewriting tAB as t(B–A) and then distributing and collecting terms, one 
obtains an equivalent weighted sum formulation: E(t)=(1–t)A+tB. Let E.start denote the starting point A and 
E.end the ending point B of edge E.  
As we will see later, such edges may correspond to the sides of a polygonal region and may be oriented 
(clockwise) so that the interior of the polygon is on their right. 
An edge E from A to B is a subset of an oriented line Line(E) that has D(AB) for tangent direction. Hence, we say 
that point P is on the left of E when it is on the left of Line(E). 
When do edges E1 and E2 intersect? An accurate answer to this question is surprisingly complex. For now, assume 
that the set of 4 vertices bounding these two edges does not contain any triplet of collinear vertices. Such a 
simplifying assumption is excluding the singular cases of collinear edge and even situations when the vertex of 
one edge lies on the other. When such singularities are excluded, we say that our solution is limited to general 
positions. 
In this general case, E1 and E2 intersect if and only if Line(E1) separates the vertices of E2 and vice versa. 
 Explain and justify the above result. 
Note that this intersection test does not require computing the intersection point. If the test indicates that an 
intersection exist, and if the intersection point is desired, it may be computed as the intersection of the two 
supporting lines, as already explained above. 
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To deal with the singular cases, assuming full accuracy of numeric computations, one may try to enumerate all 
topological configurations possible and implement a decision tree that identifies the proper configuration. Note 
that the intersection may be the empty set, a single point, or an edge (where the two collinear edges overlap).  
The presence of numeric round-off errors further complicates things. For example, because of round-off errors, 
one may not be sure whether the vertex of one edge is really to the left of the other. There are two main 
approaches to deal with this problem. The first one is to eliminate numeric round-off errors by using extended 
precision rational arithmetic, which typically slows down computation. The second one is to forgo accuracy and 
simply strive to produce an answer that is correct but for a slightly modified configuration, where for example the 
vertices have been moved. For example, if we discover that the vertex of one edge is sufficiently close to the line 
of the other edge, we may decide that it lies on that line, hence favoring a singular case. The difficulty with this 
approach is to guarantee that these guesses never lead to a logical impossibility. For example, some guesses may 
indicate that the two vertices of the first edge are on the line of the second edge, but that the reverse is not true. 
  Write the geometric construction and then the code that will test whether Edge(A,B) and Edge(C,D) 
intersect, assuming general position. 
  Assuming that an intersection is found by the above test, explain how to compute the intersection point and 
provide the geometric construction. 
5.8 How to compute the closest projection of a point onto an edge 
Consider an Edge(A,B) between points A and B and a point P. Let Q be the closest point to P onto Line(A,B). Q 
may be to the left of A, on A, between A and B, on B, and to the right of B. What test should we use to decide? 

   
An elegant answer simply positions the scalar APAB on the real line with respect to 0 and ABAB. For example, 
when APAB<0, then Q is to the left of A. When 0<APAB<ABAB, then Q lies between A and B. When 
APAB<ABAB, then Q=B. 

6 -  Triangles 
A triangle, Tri(A,B,C) interpolates its three vertices, A, B, and C. Note that it is the area of the plane between 
these three points, not just the three edges! Triangles are the predominant geometric primitive for 3D graphics. 
Here however, we only consider triangles in the plane and study their interactions with points, edges, lines, and 
other triangles in the plane. 
6.1 How to test whether a triangle is clockwise 
We say that Tri(A,B,C) is clockwise when left(A,B,C) is false. It is counterclockwise otherwise. 

6.2 How to test whether a point lies inside a triangle 
How can we use what has been discussed above to devise a simple test that will report whether a point P lies 
inside Tri(A,B,C)? Again, for simplicity, let us assume that the triangle is not degenerate (i.e., that its vertices are 
pairwise disjoint and not collinear) and that P is not collinear with any one of the edges of the triangle. 
We say that P is in the interior of Tri(A,B,C) when no line that passes through 2 vertices of the triangle separates 
P from the third vertex. 
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  Explain why the proposed solution for testing point-in-triangle inclusion works. 
 Explain how to modify it to test whether P lies on the border (on the 3 bounding edges) of the triangle. 
  Provide the pseudocode for testing whether point P lies inside Tri(A,B,C) by using left(…). 
 Provide an algorithm for testing whether an Edge(P,Q) intersects Tri(A,B,C). 
6.3 What is the area of a triangle 
The area, area(A,B,C), of Tri(A,B,C) is ACR(AB)/2. 
  Verify this formula for a triangle with vertices (0,0), (1,0), and (0,1). 
 Justify this formula. 
6.4 What is the center of mass of a triangle 
The center of mass (also called the geocenter) of Tri(A,B,C) lies on the three medians and therefore at the 
centroid. It is (A+B+C)/3. Note that the 3 medians divide the triangle into 6 smaller triangles of equal area, hence 
they each divide the triangle into two parts of equal area. However, no other lines that passes through the centroid 
has that property. Nevertheless, the triangle will stay in equilibrium if positioned on a line that passes through its 
center of mass. 

 
6.5 What is the barycentric coordinates of a point with respect to a triangle 
Given a non-degenerate triangle, T=Tri(A,B,C), any point P may be uniquely expressed as aA+bB+cC, with 
a+b+c=1. The triplet (a,b,c) is called the barycentric coordinates of P in T.  
Barycentric coordinates are convenient for computing a variety of special points of triangles, see for example 
http://mathworld.wolfram.com/BarycentricCoordinates.html 
6.6 How to compute the barycentric coordinates of a point with respect to a triangle 
How can we compute the barycentric coordinates of a point P with respect to a non-degenerate triangle, 
T=Tri(A,B,C)? A simple, although possibly not the most efficient formulation uses areas: 
The barycentric coordinate a of P is area(P,B,C)/area(A,B,C). Similar formula define b and c. 
  Provide the pseudocode for computing the barycentric coordinates of a point P with respect to Tri(A,B,C). 

7 -  Circles 
7.1 What is the implicit equation of a circle 
A circle Circ(C,r) of center C and radius r is the set of all points P at distance r from C. Hence, the implicit 
formulation of Circ(C,r) is {P: ||PC||=r}. In other words, all points P on Circ(C,r) must satisfy the implicit 
equation ||PC||=r. Note that in practice, we often use an equation where the two terms are squared: PCPC=r2. 
  Provide the simple geometric form of the quadratic equation satisfied by all points on a circle of a given 
center and radius. 
  Expand this equation for the case where C=(0,0) and verify that this is the usual equation of a circle of 
radius r around the origin. 
7.2 What is the parametric equation of a circle 
A point P on Circ(C,r) may be expressed parametrically as C + r cos(t) I + r sin(t) J with t varying between 0 and 
2π. Note that we often replace cos(t) with (1–u2)/(1+u2), and sin(t) with 2u/(1+u2), where u=tan(t/2), in hope to 
produce an implicit polynomial equation in u. 
  Verify this formula for a triangle with vertices (0,0), (1,0), and (0,1). 
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7.3 What is the circumcircle of a triangle and how to compute it 
The circumcircle Cir(C,r) of Tri(A,B,C) is the circle passing through all 3 vertices. Its center C has barycentric 
coordinates ( a2(b2+c2-a2), b2(c2+a2-b2), c2(a2+b2-c2) ), where a=||BC||, b=||ca||, and c=||AB||. Its radius r is abc/(4w), 
where w is the total area of the triangle. 
7.4 How to compute the intersection of a circle with a line 
Several approaches are possible. For example, one may plug in the parametric equation of the line into the 
implicit equation of the circle. This generates a quadratic equation. Its real roots, when they exist, define the 
intersection point. 
  Provide a test that establishes whether Line(A,B) and Circ(C,r) intersect. 
 Write an algorithm that computes the number of intersection points between Line(A,B) and Circ(C,r). 
 Provide an algorithm, with the detailed geometric constructions, that computes the intersection points 
between Line(A,B) and Circ(C,r), assuming that the line does intersect the circle. 
 Write an algorithm that computes the number of intersection points between Edge(A,B) and Circ(C,r). 

Notation  
We provide here a summary of some of the notations and symbols used in the chapter. Note that calls to software 
methods or functions are indicated using a different font. 
A, B, C, D, P, Q, R points 
P0, P1, P2, Pj points in an ordered sequence 
P.x, P.y Cartesian coordinates of a point P 
L, U, V, W vectors 
N, T, U  directions (unit vectors indicating normals, tangents…) 
V.x, V.y Cartesian coordinates of a vector V 
V.n, n(V), or ||V||. the norm (also called length, magnitude, and radial coordinate) of vector V 
V.a, a(V) angle (also called the angular coordinate) of vector V 
V.D or D(V) the direction (unit vector) V/V.n of V  
angle(U,V) or a(U,V) angle in [-π,π] between vectors U and V 
PQ, Q–P, or V(P,Q) vector (displacement) from P to Q 
equal(A,B), A==B points A and B define the same location 
equal(U,V), U==V vectors U and V define the same displacement 
R(V,b) V rotated by angle b: (V.n,V.a+b) 
R(V) V rotated by 90 degrees: (V.n,V.a+π/2) 
sV, A(s,V) scaled vector:  0 when s==0; (sV.n,V.a) if s>0, (|s|V.n,V.a+π) if s<0 
V/s, D(s,V) V divided by s: (1/s)V 
U//V, U==kV vectors U and V are parallel 
–V opposite vector with radial coordinate V.n and angular coordinate V.a+π 
sU+tV weighted sum <sU.x+tV.x, sU.y+tV.y> of two vectors U and V 
A(u,U,v,V,w,W…) weighted sum uU+vV+wW… of three or more vectors  
UV or d(U,V) dot (interior) product VU = V.xU.x+V.yU.y =  U.n V.n cos(a(U,V))  
UV==0 vectors U and V orthogonal to each other 
V∠U Tangential component (VU)U of vector V with respect to unit vector U   
V⊥U Normal component (VR(U))R(U) of vector V with respect to unit vector U 
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U∨V  Exterior product UR(V) of two vectors 
UV Geometric product UV+U∨V of two vectors 
A(P,s,V) Point P+sV obtained by translating P by the scaled vector sV  
A(P,s,Q) Point P+sPQ=(1–s)A+sB, affine combination of points P and Q  
Line(P,N) Line through P with normal N 
Line(P,Q) Line through P and Q, oriented from P to Q 
Edge(P,Q) Edge from P to Q 
Circ(C,r) Circle of center C and radius r 
Left(A,B,C) C is on the left of Line(A,B). Equivalently, A-B-C makes a left turn at B. 

References 
David Hestenes: New Foundations for Classical Mechanics (2nd Edition), Kluwer, in Fundamental Theories in 
Physics, Academic Pub. Offers a nice discussion of the geometric product. 

Resources 
The concepts presented here are discussed on various web sites. These include: 
MathWorld http://mathworld.wolfram.com/DotProduct.html  
AlgebraLab http://www.algebralab.org/lessons  
The Virginia tech Math Emporium has interactive practice tools for learning about vectors and matrices in the 
Math 1114 module http://www.emporium.vt.edu/math1114/index.html and on Vector Geometry in the Math 1224 
module accessible from at http://www.emporium.vt.edu/math1224/index.html. 

Exercises 
1) Let V=<3,4>. Compute –V, 2V, V.norm, V.direction, V.left. 
2) Are vectors <3,4> and <–9,–25> parallel? 
3) Let U=<1,–2> and V=<3,4>. Compute U+V, U–V, UV, VU, V∠U, and U∠V. 
4) A ball arrives at speed V=<3,–4>. What it its speed U after an elastic chock with the ground (no gravity)? 
5) Compute a coordinate system (O1,I1,J1) that would be the result of a translation by <3,4> followed by a 

rotation of 90 degrees counterclockwise. Compute a second coordinate system (O2,I2,J2) that would be the 
result of a rotation of 90 degrees counterclockwise followed by translation by <3,4>. 

6) Provide two expressions for the center of mass of a triangle with vertices A, B, and C: one as a weighted 
combination of points and one using proper operators on points and vectors. 

7) Let (x1,y1) be the coordinates of a point in the system (O1,I1,J1). Let (x2,y2) be the coordinates of a point in 
the system (O2,I2,J2). Provide closed-form conversion expression for (x2,y2) in terms of all the other 
variables.  

8) Let U and V be two non-null vectors. Provide simple equations for testing whether U and V are parallel 
and whether U and V are orthogonal in terms of their coordinates <V.x,V.y> and <U.x,U.y>. 

9) You are looking on an architectural drawing. There is a short wall between points A and B. There is a 
long wall between points C and D. There is a light source at E. 

10) Write a test that will determine whether Edge(A,B) intersects Edge(C,D). 
11) Given an edge E=Edge(A,B) and a point C, provide the pseudocode for computing the point D that is the 

point of E and closest to C. Then, compute the parameter t for D in the parametric representation of E. 
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12) Write the homogeneous matrix form representing a translation by <100,0> followed by a rotation of 90 
degrees. What is the total translation of that transformation? What is its inverse matrix? Use the inverse 
matrix to identify its inverse translation and rotation parameters. 

13) Write a test that will determine whether Edge(A,B) intersects Circ(C,r). 

Class projects 
1) Implement classes for points and vectors and provide methods for the operators discussed above. 
2) Implement a program that tracks the position C of the cursor as you move the mouse and computes and 

draws (as a small red disk) the closest point D to C on Edge(A,B). Make sure that the user can edit points 
A, B, and C. 

3) Compute the intersection points between two edges, as their vertices are moved by the user. 
4) Compute the intersection points between Edge(A,B) and Circ(C,r), as A, B, and C are moved by the user. 
5) Compute the points of collision of a disk with an edge. Assume that the disk moves with constant velocity 

between collisions with the edge and with walls and that the collisions are elastic. Compute the new 
velocity after each collision. Add an interface for giving the disk an initial speed and for dragging the 
edge end-points. 

Research topics 
1) Compute the cost (measured as the number of arithmetic operations used) in the point-in-triangle test 

discussed above. Assume that you will be doing this test many times for the same triangle, (A,B,C), but 
for different candidate points P. Modify or improve the approach to reduce the expected cost when half of 
the points would be in the triangle. 
 
 


