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3D geometry 
Points may represent vertices of polyhedra, samples on a surface, or control points of a B-spline patch. 
Vectors represent displacements between points. AB, the vector from point A to B, is. also written B–A. Furthermore BA=–AB. 
Points, vectors, and operations that combine them are the common tools for solving many geometric problems. The fundamental 
operators on vectors are the dot product, the cross product, and the mixed product.  
When formulating geometric solutions or algorithms, try using point and vector expressions, rather than their coordinates. 
The norm of vector U will be written ||U|| and denotes its length. A vector is said to be unit length if its norm is 1. A vector with 
zero norm is said to be null. For example, AA is a null vector. We will use the notation |U|, to denote the unit vector U/||U||. The 
term direction usually refers to a unit length vector. Directions represent tangents to lines or curves, normals to planes or 
surfaces, base vectors of coordinate systems, and the columns of matrices that represent rotations and translations.  
U•V is the dot product (also called the inner product) of the vectors U and V. U•V is a scalar equal to the product c |U| |V|, 
where c is the cosine of the angle between them. Therefore, the dot product of two unit vectors is the cosine of their angle. Thus, 
two non-null vectors are orthogonal if and only if their dot product is zero. Furthermore, the norm of a vector U is (U•U)0.5. 
More generally, if U is a unit vector, then U•V measures the length of the orthogonal projection of V onto the direction U. To 
illustrate the power of the dot product, consider the problem of computing reflections. Given two unit vectors U and V, the 
vector S=2(U•V)V–U is the symmetry of U with respect to V. The construction is based on the observation that by definition, 
U+S is parallel to V and has a norm that is twice the length of the projection of U upon V. Therefore, when a light ray or particle 
moving in the direction U bounces off a surface with normal N, its new reflected direction will be U–2(U•N)N. 
UxV is the cross product (also called the outer product) of U by V. When U and V are parallel, UxV is a null vector. Otherwise 
it is a vector orthogonal to both U and V. Its norm is the product s |U| |V|, where s is the sine of the angle between them. Note 
that if U is the upward vertical direction and V is the forward direction, then UxV, it points to the left. Two non-null vectors are 
parallel if their cross product is zero. To illustrate the power of the cross product, consider the problem of finding a vector N 
that is orthogonal to U and lies in the plane spanned by U and V. N=(UxV)xU. For example, given a viewing direction U and an 
upward vertical direction V, the three vectors NxU, N, and U may be used to form the basis of a viewing coordinate system that 
would avoid leaning the head sideways. Furthermore, the surface normal N at a vertex A of a triangle mesh may be estimated 
as ABxAC+ACxAD+ADxAE+…+AHxAB, where B, C, D, E…H are the neighbors of A in the order in which they appear in a 
counter-clockwise walk around A. 
The expression U•(VxW) is called a mixed product. It may also be computed as the determinant of the 3x3 matrix having 
vectors U, V, and W as columns. To illustrate the power of the mixed product, note that DA•(DBxDC)/6 is the signed volume of 
a tetrahedron with vertices A, B, C and D. If the triangle A, B, C appears clockwise from D, then DA•(DBxDC) is positive. 
The volume of a solid bounded by a triangle mesh may be computed as 1/6 of the sum over all triangles T of the mixed 
products DA•(DBxDC), where D is any fixed point, such as the origin of the coordinate system or the center of gravity of the 
vertices of the mesh and where A, B, and C are the vertices of T sorted counterclockwise with respect to its outward normal. 
A line may be represented by a point P and a tangent direction T. We will refer to it as line(P,T). 
A plane may be represented by a point Q and a normal direction N. We will refer to it as plane(Q,N). 
Note that all points on line(P,T) may be expressed in parametric form as L(s)=P+sT, where the scalar s is the parameter that 
defines the signed distance between point L(s) and P along T. All points A on plane(Q,N) satisfy the implicit equation 
AQ•N=0. Thus, the line/plane intersection I of plane(Q,N) with line(P,T) is defined by the value of s for which L(s)Q•N=0. 
Substituting P+sT for L(s) yields: (Q–P–sT)•N=0. Distributing the dot-product yields: PQ•N=sT•N. When T•N=0, the line is 
parallel to the plane. Otherwise, s=(QP•N)/(T•N). 
Let I be the tree-planes-intersection of plane(A,U), plane(B,V), and plane(C,W). I satisfies AI•U=0, BI•V=0, and CI•W=0, 
which can be written I•U=–A•U, I•V=–B•V, and I•W=–C•W. These three equations form a linear system IT(U V W)=–(A•U, 
B•V, C•W), which may be easily solved for the three coordinates of I if the determinant of the matrix (U V W) is not zero. 
The signed point/plane distance between point P and plane(Q,N) is QP•N. The square of that distance is (QP•N)2 and can be 
written as (P•N–Q•N)(N•P–Q•N), or PT(NTN)P–2(Q•N)(N•P)+(Q•N)2. This is a second degree polynomial in the three 
coordinates of P and is represented by 10 coefficients. The whole expression may also be written in homogeneous coordinates 
using a 4x4 matrix M as HTMH. Where H is a 4D vector constructed by appending a 1 as a fourth coordinate to P. Consider two 
planes and their quadrics, M1 and M2, as defined above. The sum of the squares of the distance of a point P to these two planes 
can be written as HTMH, where M is M1+M2. Thus, the average of the squares of the distances between P and a set of planes may 
be easily computed as HTMH, where M is the sum of the quadric matrices Mi for the planes. Setting to zero the derivatives with 
respect to the coordinates x, y and z of HTMH yields three linear equations in x, y, and z. Solving them produces the point closest 
to all the planes in the least square sense. 
Exercise 1: Use the operators introduced here to express the minimum distance between line(P,T) and line(Q,U). 
Exercise 2: Formulate a test establishing whether point P lies inside tetrahedron with vertices A, B, C, D. 


