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Abstract
To reduce  the cost of correcting  design  errors, assem-
blies of mechanical  parts are modeled  using  CAD  sys-
tems  and  verified  electronically  before the designs  are
sent to manufacturing.  Shaded  images are insufficient  for
examining  the internal  structures  of assemblies  and  for
detecting  interferences.  Thus,  designers  must  rely on
expensive  numerical  techniques  that  compute  geometric
representations  of cross-sections  and  of intersections  of
solids.  The  solid-clipping  approach  presented  here  by-
passes  these  geometric  calculations  and offers  realtime
rendering  of cross-sections  and interferences  for solids
represented  by their  facetted  boundaries.  In its simplest
form, the technique  is supported  by contemporary  high-
end graphics  workstations.  Its variations,  independently
developed  elsewhere,  have already  been  demonstrated.
Our  implementation  is based  on the concept  of a cut-
volume interactively  manipulated  to remove  obstructing
portions  of the assembly and reveal  its internal  structure.
For  clarity,  faces  of the cut-volume  which intersect  a sin-
gle solid  are hatched  and  shaded  with the color  of that
solid.  Interference  areas  between  two or more solids are
highlighted.  Furthermore,  to help  users  find the first oc-
currence  of an interference  along a search  direction,  we
have developed  an adaptive  subdivision  search  based
on a projective  approach  which guarantees  a sufficient
condition  for object  disjointness.  The  additional  perform-
ance  cost for solid-clipping  and  interference  highlighting
is comparable  to the standard  rendering  cost.  An efficient
implementation  of the disjointness  test  requires  a minor
extension  of the graphics  functions  currently  supported
on commercial  hardware.
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1. Introduction
Design  errors  discovered  at the manufacturing  or as-
sembly stages  result  in expensive  engineering  changes
and production  delays.  Manufacturers  of mechanical
goods have invested  in advanced  graphics  hardware  and
in the solid  modeling  technology  hoping that  they will
eliminate  the need  for clay models  and drastically  reduce
the number  of design  errors  prior to fabrication.  Although
designers  can interactively  visualize  subsets  of an as-
sembly  using shaded  or wireframe  pictures,  they need
cross-sections  and  interference  highlights  to understand
how components  fit together  in tight  assemblies.  For
example,  the shaded  image of the small assembly  in
Figure  1 may be produced  in realtime  on most high-end
graphics  workstations,  but reveals  neither  the internal
structures  of the assembly nor the interferences  between
its components.

Figure  1. A small  mechanical  assembly: The interference be-
fween the cylinder end the connecting  rod is not apparent.

The  availability  of an informationally  complete  solid
modeling  representation  of each  assembly  component
permits  the automatic  calculation  of cross-sections  and
the calculation  of interferences.  Unfortunately,  classical
implementations  of these functions  rely on expensive
geometric  operations,  which,  when  applied  to models  of
industrial  complexity,  increase  the system’s  response
time far beyond  tolerable  limits for interactive  sessions,

This paper  describes  new techniques  for automatically:
(1) filling and shading  multi-facetted  cross-sections
through  solids, (2) identifying  and hlghlighting  areas  of
interference  In a cross-section,  and (3) posltloning  cross-
sectioning  planes  at the beginning  of interference  or
contact  regions.
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The solid-clipping  techniques  presented  here  exploit  ex-
isting graphics  architectures  in novel  ways to create,  in
realtime,  shaded  images showing  cross-sections,  cut-
outs,  and interference  regions.  Cut-outs  are discussed  in
Section  2. Interferences  are addressed  in Section  3. The
result  of a combination  of these techniques  is illustrated
in Figure  2, where  a portion  of the assembly was cut away
using a user-specified  cut-volume  and where  the inter-
ference  region  between  the two components  was  high-
lighted  in red.  Furthermore,  the cross-section  areas  are
hatched  for clarity  and the cut-away  portions  are indi-
cated using transparent  faces  and silhouette  lines.

Figure  2. Graphics  inspection techniques:  A mu/t/-facet  cut-
volume  Is removed  to show the internal structure  of the assem-
bly. The resulting  cross-sections  are displayed in the appropriate
co/or and hatched. Red areas  indicate interferences.

These  techniques  are based  on clipping planes  and  on
auxiliary  bit-planes  that are manipulated  during  the
standard  surface  scan-conversion  to create  and later  ex-
ploit appropriate  pixel-masks.  They exhibit  realtime per-
formance  for simple  assembly  models.

A solution  similar  to ours  for cross-section  filling and  in-
terference  highlights  has been  independently  developed
at Silicon Graphics  Inc.  by Kurt  Akeley  in 1991  [l]. It is
discussed  in Section  3.1. Hewlett  Packard’s  graphics  li-
brary also offers  filling and interference  highlights,  but
no description  of the underlying  techniques  is available.
Since  the manual  mentions  “the  collection  of capping
edge  data”  and  “cap  polygons”  [S], we conjecture  that
an approach  different  from ours  is used.

The  automatic  detection  of interferences  is described  in
Section  3.2. Its requires  feedback  from  the graphics
hardware  to the application.  An efficient  implementation
of this feedback  loop is not supported  on commercially
available  workstations;  thus we simulate  it by a software
inspection  of the frame buffer.

2. Solid-clipping
This section  describes  a new  technique  for computing  in
realtime  images of solids,  or of assemblies  of solids, from
which user-controlled  linear  half-spaces  or polyhedral
cut-volumes  have  been  subtracted.  The  technique  lever-
a
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es on the recent  support  of auxiliary  clipping  planes

and pixel-masks  in the rendering  pipeline  of high-end
graphics  workstations  [13].

Clipping  planes  are commonly used for surface-clipping,
i.e. to trim the objects’  faces prior to display.  The differ-
ence  between  the solid-clipping  technique  presented  in
this section  and the previously  available  surface-clipping
is illustrated  in Figures  3 and 4 using a single-face  cut-
volume,  i.e.  a volume  bounded  by a single  clipping plane.
Figure 3 shows the effect of the standard  surface-clipping,
which  treats  each  solid as a hollow shell, because  clip-
ping  planes  do not fill pixels, but merely  limit the extent
of faces.  The  image is confusing,  since the viewer  must
mentally  reconstruct  the areas where  the clipping plane
intersects  the solids. Figure  4 shows the result  of the new
solid-clipping  technique,  which,  in addition  to clipping  the
solids’ faces,  also fills the regions  of intersection  between
each  solid  and the clipping plane.  These  cross-section
regions  are hatched  to visually  differentiate  them from
other  surfaces  in the assembly.

Figure  3. Surfacecllpping: The standard  surface-clipping tech-
nique correctly  removes  portions of the solids’ faces, but does
not fill in the cross-section areas.

Figure  4. Solid-clipping:  In addition to the surface clipping of
Figure 3, the cross-section  of each solid by the clipping plane is
hatched and shaded using the color of the solid.
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A standard way to produce the image of Figure 4 is to

perform the Boolean difference operation between the

solids and the cut-volume and to display the result. A

slightly better approach combines surface clipping with

the display of a cross-sections computed as the geomet-

ric intersection of the solid with a plane [7]. A CSG for-

mulation of the result may also be us&d with

special-purpose direct CSG rendering hardware

[3-5, 11],

The technique described in this section provides an al-

ternative which neither requires the hardware used for

efficiently rendering CSG models nor any complex ge-

ometric intersection calculations. It works with any

boundary representation for solids, provided that the

scan-conversion method used by the graphics hardware
satisfies the following parity condition,

Men the entire solid fits between the front and the back
clipping planes, each pixel is visited an even number of

times during the scan-conversion of the soiid’s faces.

Eariy scan-conversion techniques did not guarantee the

parity condition at pixeis traversed by the projection of

a common edge between two faces, A reiiable imple-

mentation of the methods presented here requires a

“true point-sampiing” scan-conversion [9].

To estabiish which points of a clipping plane lie inside any

given soiidl we use the foiiowing property [14].

A point Q iies inside a bounded soiid S if and only if Q is

not on the boundary of S and if a semi-infinite iine (ray)

starting at Q intersects the boundary of S at an odd

number of isoiated transversal intersection pointsl. Since

the resuit is independent of the direction for the ray, the

viewing direction may be used. Suppose that the location

of (2 is stored in the z-buffer as Z(q), the depth of the pixel

q corresponding to the projection of Q onto the screen.

Q Iiea in the interior of S if and oniy if the number of times

q is visited during the scan-conversion of the faces of S

with a depth greater than Z(q) is odd.

Furthermore:

A point Q, projecting on a pixel q and lying on a clipping

plane C, ia inside a solid S if and only if q ia visited an odd

number of times whiie scan-converting the faces of S af-

ter they have been ciipped using C.

Note that aii points Q of C that correspond to pixels of the

screen may be classified during a singie pass over S, We
use the above property to construct a pixel mask (one bit

per pixel), Mp, for the cross-section region where the

clipping piane intersects any given soiid. The process is

illustrated in Figure 5.

When the outward normai of a cut-volume face points

away from the viewer, it corresponds to a potential front

face of the soiid resulting from the cut. Therefore, we use

the term front clipping plane when referring to the pianes

containing such a back face of the cut-voiume. We need

to fiil oniy the cross-sections of front ciipping pianes, be-

cause other (back) ciipping pianes are never visibie.

To make the classification results consistent with the

mathematical definition of the regularized difference be-
tween the originai soiid and the cut-voiume [8], the clip-

ping of faces coincident with the ciipping plane must be

performed using a “iess than” depth test for clipping
pianes and a “less or equai” depth-test otherwise.

The technique assumes that the soiids are not clipped by

the back piane of the viewing volume. if the depth span

of the object is known, it suffices to temporarily adjust the

back plane. However, changes to the z-resolution may

produce side-effects. It is also possible to set the per-

spective such that the back plane coincides with the ho-

rizon,s to guarantee that no object is ciipped by the back
clipping-piane.

Semen Ac
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Figure 5. Parity-based mask construction: The pixel-mask, Mp,
for the iritersectlon of plane C with so/id S /s computed by togg/-
irrg the mask durhrg the scan-conversion of the faces of S behhrd
C. R Is the projection of S onto the screen and R“ the projection
of S onto C.

A high-levei algorithm for rendering assemblies ciipped

by a cut-volume composed of a single half-space is pre-

sented below. It renders the cross-section through each

soiid using the coior (surface properties) of that solid4.
if C is a back clipping piane, the standard surface clipping

approach may be used, otherwise, we proceed as foiiows.

Single-plane sol id-cl ipping:

01
02
03
04
es
06

Activate C as a front clipping plane
For all pixels do Z=Et, 1=0, Mp=O
For each solid S do

Render all the faces of S toggling Mp
Deactivate C
Shade C and reset Mpwhere t4p==l

1 Tangential intersection cases, where the ray touches a primitive’s boundary wlthoul crossing it, must be treated properly by the hardware scan-
converslon, so as to ensure the correct panty at all pixels [9] Cases where a one-dimensional subset or the ray lies on a face are ignored by scan-
conversion procedures without compromising the parity condition

2 Scan-conversion inaccuracies, which produce inconsistencies when displaying overlapping coplanar faces, may be addressad by Introducing tolerances

in the depth-test [11]

3 The screen lies exactly between the viewpo)nt and the horizon-plane of all the vanishing peints

4 Interference areas may exhibit color mixing unless the interference highlighting technique of the next section is used
355
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Line 02 resets  the z-buffer  (Z), the frame  buffer  (I), and
the pixel mask  (Mp).  During  the rendering  of the faces
of S (Line  04). the portions  cut away by C or by the clip-
ping planes  of the viewing  volume  are discarded.  The
remaining  portions  are scan-converted  and for each  sur-
face  point s projecting  on some  pixel q, the following  op-
erations  are performed:  (1) toggle the parity  mask Mp(q),
(2) if the depth  of s is smaller  than  the depth  stored  at
q, update  the z-buffer  and the frame  buffer  at q. Note that
both the front  and the back faces  of S must  be scan-
converted  for the mask  computation,  although  only  the
front  faces  need  to be rendered.

The  cross-section  filling of Line 06 is performed  using the
color  and surface  properties  of S, to distinguish  the con-
tribution  of each  solid  to the cross-section.  C is deacti-
vated  (Line  05) to prevent  self-clipping.

The  standard  depth-test  for hidden  surface  removal  is
used during  the rendering  of the faces  of S (Line  04) and
of the cross-section  C (Line  06)  to ensure  that only  visible
faces  in a scene  are rendered.  Consequently,  convex
cut-volumes  may be produced  using several  passes
through  this algorithm  for different  clipping  planes.

To render  the cross-section  using the standard  scan-
conversion  with hidden-surface  removal,  a suitable  face
Fc on C must  be constructed.  As the clipping plane  is
manipulated  interactively,  Fc must  be adjusted  to always
contain  the cross-section  area. We use a rectangle  in C
enclosing  the orthogonal  projection,  R’, of S onto  C (Fig-
ure  5).

Polyhedral  cut-volumes  with  concave  edges  defined  as
arbitrary  Boolean  combinations  of half-spaces  may be
needed  to better  expose  the internal  structure  of tight
assemblies.  An example  is shown  Figure  6. The  remain-
der of this section  presents  an extension  of the solid-
clipping technique  for such  cut-volumes.

Figure  8. Sol/d-clipping  with non-convex cut-volumes:  Three
clipping  planes.  Cl,Cp. and Cs, are used to define  a compound
cut-volume,  Cl n (C2 u (23).

Although,  the metaphor  of a “cut-volume”,  v, interac-
tively  manipulated  by the designer  to remove  obstructing

An efficient  implementation  of the solid-clipping  with
composite  cut-volumes  requires:  (1) a standard  z-buffer,
(2) an application-controlled  set of clipping  planes,  (3) one
bit-plane  for the mask,  and (4) facilities  for programming
the scan-conversion  so as to toggle  the bit-plane  for each
surface  point  and to use  the mask  as a condition  for ren-
dering.  All these facilities  are supported  by commercially
available  graphics  hardware  for a limited  number  of
application-controlled  clipping  planes.

5 The dlsiunctivelorm  is a union  of products,  each product wing me inlersecllon of half-spaces.
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portions  of the assembly  may be more intuitive  than  the
notion  of a “clipping volume”,  v’, used  to delimit  the as-
sembly through  an intersection  operation,  both formu-
lations  are equivalent,  since  v’ is the complement,  V, of
v, and for any  solid  S, we have:  S - v = S n v’.

Given  a Boolean  expression  of v, it is straightforward  to
extract  a disjunctive  forms  for v’. For  example,  if the lin-
ear half-space  volumes  are denoted  Vi, the cut-volume
v = (vj U ~2) rl (~3 U v,) yields  the following  disjunctive
form  of two products:  fl n a u 6 n 3 for v’.

The  intersections  of S with these convex  clipping-
products  are processed  one-by-one  using  the algorithm
below.  The  image  of the union of these  intersections  is
composed  via the standard  z-buffer  test.

Solid-clipping  algorithm  for (I clipping-product:
01 For all pixels do Z=D, IsO, Hp-13
02 For each solid S do
03 For each clipping-product  P do
04 Activate all the front clipping planes of P
05 Disable writing into the depth and frame buffers
06 Render all the faces of S toggling  Hp
07 Select rendering  color for S
08 Enable writing into the depth and frame buffers
09 Activate all the front and back clipping  planes
10 Render the front faces of S
11 For each front clipping plane C in P do
12 Deactivate  C
13 Shade C and reset Hp for pixels where Hp-=l
14 Activate  C
15 Deactivate  all planes of P

In Line 06,  the front  and back faces  of S are clipped
against  all the front  clipping planes  of a product  and then
scan-converted.  Each  time a pixel q is visited  during  that
scan-conversion,  its mask  bit Mp(q)  is toggled.  The  frame
and z-buffers  are never  updated  during  that scan-
conversion  (see  Line 05). After  the execution  of tine 06,
the mask  Mp corresponds  to a cut-volume  composed  of
only  the front  cutting  planes  of that product  (see  Figure
7). When  the cross-sections  are displayed  for that prod-
uct (Line  13), this mask  is used  in conjunction  with the
other  front  and back clipping planes  to delimit  the con-
tribution  of each  front  clipping  plane.

Each  front  clipping plane is temporarily  deactivated  (tine
12) prior to display (Line  13) to avoid  self-clipping.  The
portions  of the front  faces  of S that lie within  the
clipping-product  and are not hidden  by previously  ren-
dered  objects  are rendered  into the z-buffer  and the
frame  buffer  (Line  10). The  rendering  in Line 13 is per-
formed  using  the standard  z-buffer  test.
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I screen /

performance on an affordable platform has not been

demonstrated. Boxing techniques provide only a neces-

1 r’ /
sary condition for interference. Consequently, the ap-
proach described in this section constitutes an important

W
-~A.———

s
Mp

——— — ——

cross-emotion

tool for detecting and displaying interferences. The first
portion of this section focuses on an extension of the
solid-clipping technique to highlight interferences in the
cross-sections (Figure 9). The second portion presents a

technique for automatically locating the beginning of in-

terference regions along a user-specified search direc-

tion. This search facility is used interactively for two

purposes: (1) to quickly and reliably establish that a par-

.~ B titular region is free of interferences or (2) to automat-

Figure 7. A4asking for a clipping-product Two front clipping
planes A and B and one back clipping plane C bound a
c/ipping-producL L4p is constructed by scan-converting S c/ipped
by A and B. The visible cross-sections are obtained by rendering
A (clipped to B and C) and B (clipped to A and C) over pixels
where Mp IS 1.

3. Interferences

Usually, a mechanical assembly must be free from inter-

ferences, but may contain lower-dimensional contact re-

gions z between its components.

Intersections between pairs of solids may be computed

in various ways. A geometric approach evaluates the

boundary of the regularized Boolean intersection of the

two solids. The existence of a single vertex in the inter-

section suffices to indicate interference. Efficient Null

Object Detection techniques may be used, especially if
the solids are in CSG form [1 O, 15]. Hardware architec-

tures for testing interferences between triangulated

boundaries have also been proposed [16]. Although

asymptotically efficient computational geometry tech-

niques for finding the minimum distance between two
polyhedra are available [2], these numeric approaches

are too expensive for interactive inspection and should

be reserved for the final stages of the assembly verifica-

tion.

Two hardware-assisted graphics techniques are relevant

to interference detection: (1) a discretized (ray casting)

approach reduces interference detection to a series of

one-dimensional interval-intersection tests and is sup-

ported by special-purpose ray-casting hardware [3] and

(2) the ability to automatically select and report which of

the scan-converted objects interfere with an application-

defined block provides a mechanism for eliminating un-

necessary interference calculations. (Solids that are

clearly disjoint from any solid S because they are disjoint

from a box containing S may be efficiently identified that

way. )

Geometric intersection techniques are too expensive.

Ray-casting can be efficiently parallelized, but interactive

ically loc~te the first interference region a’nd position the

clipping plane at its beginning to facilitate the visual in-

spection of the extent of the interference. Subsequent

interferences are located automatically by starting the

search past the current interference region.

3,1 HighiighCing interference areas

The algorithm for highlighting the interference is pre-

sented below in its simplified version for a clipping
product restricted to a single front ciipping piane C. The

successive steps are illustrated in Figure 8, The aigorithm

computes a parity pixel mask, Mp, for the cross-section

of the current soiid, a cumulative (union) pixel mask, Mu,

for the union of the cross-sections of all previously proc-

essed solids, and an intersection-mask, Mi, The cross-

section of the solid, restricted to (Mp AND NOT Mu), is

rendered with the soiid’s colors. The interference area

is rendered at the end in a highlighted mode over Mi.

Algorithm for highl ighting interferences:

01 For all pixels do Z=O, 1=0, Mu-O, Mi=O, and Mp=O
02 For each solid S do
03 Activate C as a clipping plane
04 Scan S toggling Mpand rendering where Mu==O
05 Oisable writing into z-buffer
06 Deactivate C
07 Render C where Mp==l and Mu==O
08 For all pixels in R do
09 If (Mu==l &&Mp==l) Mi=l
10 If (Np==l) Nu=l and t!p=O
11 Enable writing into the z-buffer
12 Oisable writing into z-buffer
13 Select color and style for the interference
14 Render R’ on C for pixels where Hi==l
15 Enable writing into the z-buffer
16 Oisable writ{ng into the frame buffer
17 Render R’ on C for oixels where Mu==l

in Line 04, all the front and back faces of S are ciipped

by C and then scan-converted. For each access to a pixei

during that scan-conversion the pixei’s parity mask, Mp,

is toggied. Furthermore, if at that pixei the mask Mu is

not set, the z-buffer and frame buffer are updated. (Note

that this update is not necessary for the back faces of S. )

Testing Mu prior to update avoids overwriting previously

computed cross-sections for which the z-buffer has not

yet been properly set.

6 The interference between two solids A and B is their regularized intersection (A n*B) Regularization removes lower dimensional parts, ihus, the regu.

Iarized intersection IS the closure of the interior of the Intersection [8]

7 The contact between two solids Is ((A n B) (A n*B)), the set theoretic difference between their set theoretic Intersection and their regularized inter-

section
357



SIGGRAPH  ‘92 Chicago,  July 26-31,  1992

In Line 07, the R’ portion  of C is rendered  over  pixels in
the Mp mask,  but out of the Mu mask,  to fill the cross-
section  contribution  of S. However,  the z-buffer  is not yet
updated  to the cross-section  depth,  so as to avoid
depth-conflicts  when  filling in the interference-region,
Line 14. The  z-buffer  is correctly  set in Line 17, without
altering  previously  computed  colors  in the frame  buffer.
This technique  of delaying  the update  of the z-buffer  is
used  to make sure  that when  the interference  area  of the
cross-section  is filled, the surface  depth  is not  compared
to previously  computed  z-values  from pixels  on the same
cross-sectioning  plane.  Such  comparisons,  when  per-
formed with limited  numeric  accuracy,  produce  incon-
sistent  pixel colors  across  the overlap  area.

Figure  8. Highlight  wnstruction:  A 20 slice through  the scene  Is
used  to explain  the steps  of the interference-highlighting  algo-
rithm.  The interfering  solids  A and B are  intersected  by the clip-
ping  plane  C. In the drawing  the  contents of the z-buffer  is
indicated  by thin horizontal  lines.  The contents of the pixel-masks
are shown  using  the thin vertical  lines  on the left. Asserted  bits
are  shown by heavy lines.  The contents of the frame buffer  is in-
dicated  using  colors in the vertical window  on the /eft  of each
figure.  Color  lines  on the contours  of A. B, or  C indicate,  for  each
pixel, which surface  has contributed  to the frame buffer.  (a)
Solid  A is scan-converted  into  the frame buffer  and  the z-buffer;
the parity  mask  is constructed  in Mp.  (b) The contents of Mp is
unioned  into Mu. (c) Solid  B is scan-converted  into  the frame
buffer  and  the z-buffer;  the parity  mask is constructed  In Mp.  (d)
MI Is asserted  where Mp and  Mu  overlap. The contents of Mp is
unloned  into  Mu.  (e) The cllpping  plane  is scan-converted  into
the frame buffer.  Regions  of interference  are marked  in red. (f)
The clipping  plane is scan-converted  into  the depth  buffer.

Flgure  9. interference  hlghlight:  The solid-dipping  technique  of
Ftgure  4 is enhanced by highlighting  (in red) the cross-section
regions  where pairs  of solids  interfere.  The portion  of the as-
sembly  removed  by the cut-volume  is d/splayed  in transparent
mode.

An elegant  alternative  was  independently  invented  by
Akeley  Cl].  It exploits  the numeric  increment  operation
on three  stencil  bits to implement  our  mask-combine  op-
erations  (Lines  OS and 10).  For each  solid,  Mp is com-
puted  as in our  approach.  Then  the 3-bit  counter
(Mi,Mu,Mp)  is incremented  for pixels where  Mp is set. The
counter  clamps  to preserve  Mi in case  of overflow  (i.e.
when  more than  three  solids are intersected  by the same
portion  of the cross-section  plane).

Using  several  parallel  cross-section  planes  and  only
rendering  interference  areas,  one  can produce  stacks  of
20 cross-sections  that indicate  the extent  and the shape
of the 3D interference  volume  (see Figure  10).  An algo-
rithm for rendering  only  the Interference  part,  i.e. the
cross-section  where  the mask  Mi was  set may be ob-
tained  by eliminating  the shading  operations  Lines 04,  07,
and 17. It was used  to produce  the stacks  of Figure  10.

Figue  10. Interference  stacks:  The Interference  visualization
technique  of Figure  9 is further  enhanced  with  stacks of parallel
cross-sections  through  the 30 interference  region.

358



Computer Graphics, 26, 2, July 1992

3.2 Locating interference regions

This subsection is devoted to the automatic detection and
location of interferences and contacts along a user-

defined search direction and within a given search inter-
val.

Without loss of generality, the search direction is chosen

orthogonal to the cross-sectioning plane C. The search

interval is confined to a slice between C and another

plane C’ parallel to C. The location of C’ may be specified

by the user or computed automatically from a bounding

box, so as to extend past the entire assembly. The posi-

tions of C and C’ are indicated by the starting and ending

parameters Z,ati and Z,nd along the search direction D.

Using a stack of parallel cross-sections evenly distributed

between Ztian and ZOn~and testing if any of them contains

an interference region will not guarantee the detection

of interferences, since these may occur between two

consecutive cross-sections. The cost of testing a suffi-

cient number of cross-sections to reduce the size (in

depth) of possibly missed interferences is prohibitive.

Instead of such a discrete probing, the technique pre-

sented here uses the procedure “IntersectionFreeSlice”

to compute a sufficient but not necessary condition for

interference. If the answer is negative, the designer may

be reassured immediately. Otherwise, the following al-

gorithm recursively subdivides the search interval

(Ztifi, Z.~) until a user-defined maximum level (i.e. mini-

mal slice thickness), L, is reached (in which case, the

beginning of a possible interference region is returned)

or until all branches of the search tree that correspond

to positive test result have been explored (in which case

there is no interference and Z.ti is returned). The mini-
mal slice thickness, the depth resolution, and the z-

scaling factors control the accuracy of the test and define

the ability to differentiate between interference and con-

tact. The command Search(Ztiati, Zon& Ml), where Ml de-

fines the maximum recursion level, starts the search.

Ml may be adjusted to ensure the desired accuracy. The

parameters, 2s, Ze, and level define the current status

of the recursion,

Algorithm for interval 1ocation:

91 Search (Zs, Ze,level)
e2 If (Intersect ionFreeSl ice(Zs, Ze)) return Zend
03 If (level -=L) return Zs
04 Zm=(Zs+Ze)/2
05 Zf=Search (Zs, Zm,level+l)
06 If (Zf!=Z,nd) return Zf
07 Else return Search (Zm,Ze,level+l)

A 2D bounding box around the discovered interference is

used to position an arrow highlighting the potential in-

terference region. The clipping plane C is automatically

placed at the beginning of that interval, so that the user

can inspect the area, then move C past the current in-

terference, and finally resume the search.

The “IntersectionFreeSlice” test is implemented in the

following algorithm by generating a mask Mp for the

projection of the intersection of the current solid S with

the slice and by testing if this mask intersects the Mu

mask for the union of the projection of previously proc-

essed solids. The approach is based on the following

property.

If the projections of the slices through the solide are die-
joint, there is no interference within the ailce.

Intersect ionFreeSl ice:

01 Activate C as a front clipping plane
02 For all pixels do Mu=tl, Mi=O, 14p=0
03 For each solid S do
04 Scan-convert S toggling Mp
05 Activate C’ as a back clipping plane
06 Scan-convert S forcing i4p=l
07 For all pixels in R do
08 If (Hu==l ~& Mp==l) return O

09 If (Hp.-l) Mu-1 and Mp=O

To avoid missing thin interferences that fall between

pixels, it suffices, as part of the shading of a solid, to draw

the edges of each solid in lines 3 pixels wide. Each edge

must be drawn twice to maintain the parity condition. (We

simply draw the edges of each face after shading it. ) On

the other hand, to distinguish contact regions from true

interferences, we apply a two-dimensionai discretized

morphological shrinking operation [12], i.e. a 3x3 filter

over ali pixels, to the mask Mi so as to remove interfer-

ences that are thinner than two pixeis.

By acting on the scaling factor (i.e. the space distance

corresponding to the inter-pixel resolution), one can ad-

just the thresholds between clearance, non-invasive

cent act, and true interference. By performing the

“lntersectionFraeSlice” test twice (once with drawing the

edges and once with eroding the mask) one can distin-

guish ciearance (if both test return false), from contacts

(if the results of imth tests are different), from interfer-

ences (if both tests return true). However, searching true
interferences (through mask erosion) for regions with

oblique contact areas between overlapping faces of dif-
ferent objects forces the adaptive subdivision to visit all

the branches of the search tree down to a depth corre-

sponding to a slice thickness for which there is no inter-
ference between the projections of the solids.

The interference search automatically positions the

cross-sectioning plane at the beginning of an interference

region. The user examines the interference by moving

the viewpoint and the clipping piane. The interfering ob-

jects may be selected by a graphic pick and the corre-

sponding CAD modeis which require engineering changes

may be identified. Facilities for interactively hiding some

models or for producing exploded views also help decide

which of the interfering parts must be redesigned.

The search algorithms described above require exten-

sions to the functions supported by currently available

graphics iibraries and may also involve some hardware

modifications. For example, Line 08 of the

“lntersectionFreeSlice” algorithm requires a feedback

from the buffer to the application. Such a feedback exists

for reporting enclosing boxes around pixels traversed by

the scan-conversion, but does not take into account any

result of testing mask values for these pixels. This step

is handled trxfay by the application software which must

inspect each pixel of Mi. Similarly, the erosion operation

is also currently performed in software, which consider-

ably reduces the performance of the search algorithm.
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Nevertheless, except for regions where two or more ob-

jects are in contact, the search algorithm only visits a few

branches of the search tree, and thus its software imple-

mentation requires the inspection of only a small number

of pixel-masks within a limited domain (R).

Conclusion
Simple algorithms for displaying cross-sections through

solids, for highlighting interference areas, and for auto-

matically detecting interferences and contacts between

solids have been presented. Because the additional cost

for filling the cross-sections and for highlighting interfer-

ence areas does not significantly exceed the original

rendering cost, these algorithms exhibit realtime per-

formance for small assemblies–with the exception of in-

terference detection. They provide the engineering

visualization techniques needed to replace the expensive

c1ay models, traditionally used during the design-

inspection phases, by electronic “virtual” solid models.
The algorithms have been integrated in an experimental

system developed by the Interactive Geometric Modeling

group at IBM Research and have been successfully

tested on industrial assembly models.
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