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ISSUES ON FEATURE-BASED EDITING AND 
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JAROSLAW R. ROSSIGNAC 
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Abstract-Operations that create additive or subtractive volume features, such as bosses or slots, simplify 
the computer aided design of mechanical parts. Surface features, whether extracted automatically or selected 
interactively, group functionally related boundary elements, and thus provide an expedient interface between 
CAD systems and analysis or manufacturing applications. Despite much progress in CAD, design remains 
an iterative process and involves error-prone modifications of previous solutions. Features should in principle 
offer a high level vocabulary for characterizing errors and for specifying how they should be corrected. This 
paper points out the semantic ambiguities of simplistic feature-based commands for editing models. It 
recommends procedural models for editing volume features, and corrective volumes for editing surface 
features. It shows how space decomposition techniques and CSG expressions based on active zones reduce 
the cost of executing an editing command. Error detection may be automated by supporting intentional 
features, which correspond to the desired characteristics of the model, and by endowing them with domain 
dependent validity criteria expressed in terms of associated geometric elements. The paper demonstrates 
that validity may be tested by simply interrogating a mixed-dimensional geometric structure which is used 
to represent not only the model, but also the interactions between the geometric elements associated with 
intentional features. 

1. INTRODUCTION 

Solid modelling improves the efficiency of the design 

mulating validity checks that assess the compliance 
of the model with the designer’s intent. 

process for manufactured parts by supporting the geo- 
metric representations of these parts. It provides 

Expressing and performing engineering changes or 
simply corrections of design errors may be eased by 

graphic feedback to the designer and offers interfaces 
to some analysis applications. Despite recent Progress 
in computer hardware and in interactive graphics, 
geometric design of three-dimensional shapes remains 
a complex and time consuming task. Since geometric 
representations Of complex mechanical parts tend to 
be verbose, various abstractions, globally called geo- 
metric features, are often used to characterize certain 
types of shapes or to refer to Portions of a part model 
that may be important to the designer or to an appli- 
cation program. 

Features are used in Computer Aided Design and 
Manufacturing for a variety of purposes: 

Geometric features provide a concise description of 
the parts characteristics[ 1] and thus simplify group 
technology and process planning. They also facilitate 
the communication between designers and solid 
modelling systems. 
Features provide a mechanism for attaching product 
or manufacturing information and various attributes 
to specific parts of a geometric model (see for ex- 
ample [2] for attaching tolerance information to 
features). 
The properties intuitively associated with common 
feature types define many convenient shape altering 
operations[3] that attempt to create features of 
specified types and dimensions. 
Access to the geometric elements that compose a 
feature simplifies the interrogation of shape by pro- 
viding a naming scheme for sets of boundary ele- 
ments [2], a convenient vocabulary for expressing 
relevant dimensions and positions [4] and for for- 

using geometric features [5] . 
This paper focuses on the last two issues, namely 

the use of geometric features to automate-or at least 
simplify-the editing of the solid model and the 
checking of the model’s  compliance with functional 
requirements (validity conditions). 

Most CAD models of 3D manufactured parts are 
created by combining and incrementally modifying 
simple models. These combinations and modifications 
are often conveniently expressed in terms of Boolean 
operations. The primitive shapes from which the mod- 
els are constructed are often restricted to arbitrarily 
positioned and sized solid primitives (blocks, cylin- 
ders, spheres ...), generic volume features (holes, slots, 
bosses ...), and linear or circular extrusions of 2D re- 
gions. The resulting part models can thus be repre- 
sented by a CSG (Constructive Solid Geometry) 
tree [6], which leads to certain algorithmic advantages 
(see [7-9] for examples) and to an obvious archival  
conciseness. 

CSG expressions may be complex, and the end-user 
often prefers to interact with a boundary model, which 
is algorithmically derived from CSG [10] and contains 
the list of faces and their adjacency graph [11]. There- 
fore, it is important to develop techniques for inter- 
actively specifying validity conditions and modifica- 
tions in terms of boundary elements (faces, edges, and 
their incidence graphs) rather than in terms of CSG. 
Domain-dependent features provide a particularly 
convenient vocabulary for accessing relevant groups 
of boundary elements. On the other hand, direct 
boundary editing is error-prone, and editing operations, 
even if specified in terms of boundary information, 
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should be translated into mathematically well-defined 
(nonambiguous) operations, such as Boolean set op- 
erations or global rounding and filleting opera- 
tions[ 12]. Besides, it is important to maintain a CSG 
representation of the model and to express validity 
conditions in terms of CSG so that the model can be 
parameterized, easily edited, and reused. 

This paper studies the translation process, which 
takes validity conditions or model modifications ex- 
pressed in terms of features (and thus of boundary 
elements) and performs the appropriate model mod- 
ifications using CSG operations. Due to a lack of for- 
malism of the semantics of feature-based specification, 
automatic translation remains a challenging research 
goal (some pitfalls of a “naive” translation process are 
pointed out in Section 3). Several new or recently de- 
veloped techniques are discussed, which do not always 
provide the correct translation, but at least increase 
the designer’s vocabulary or can automatically generate 
a tentative solution, which may have to be further ad- 
justed by the designer. Furthermore, the paper ad- 
dresses the issue of efficiently performing the model 
modifications or the validity tests by using informa- 
tionally rich geometric structures and properties of 
Boolean expressions. 

The paper is organized as follows: 

The basic concepts and terminology are introduced 
in Section 2.  
Section 3 points out some of the limitations of a 
straightforward use of features for editing and inter- 
rogating solid models. This section focuses on con- 
cepts and techniques rather than on their historical 
evolution or implementation, (For a more formal 
survey of the literature on features, the reader should 
refer to [13, 14].) 
The importance of procedural models for capturing 
the designer’s intent into a flexible parameterized 
sequence is emphasized in Section 4. To edit a feature 
explicitly created by an operation, it may be simpler 
to “ask” the feature what operation created it, change 
the parameters of that operation, and reexecute the 
entire sequence. 
Reexecuting the entire sequence amounts to evalu- 
ating the boundary of a CSG representation, and 
may be very costly for large CSG models. A new 
approach that reduces the reevaluation cost is pre- 
sented in Section 5. It derives a CSG expression for 
the regions that must be added to, or subtracted from, 
the solid model. Furthermore, Section 5 also presents 
a recently developed mixed-dimensional geometric 
representation called SGC (Selective Geometric 
Complex). Algorithms for SGCs generate a subdi- 
vision of space imposed by the features. This sub- 
division can be used to reduce considerably the 
amount of geometric calculations and of logic 
expression evaluations necessary to perform the fea- 
ture-editing operations. 
Some features do not correspond to a single opera- 
tion, and it may be too complicated to identify all 
the operations in the sequence that must be edited 

in order to rectify an “invalid” feature. Section 6 
demonstrates on some simple examples how correc- 
tive volumes, obtained by extruding feature faces, 
can be used to perform simple feature alterations 
without reexecuting the design sequence. In more 
complicated situations, these corrective volumes 
must be trimmed before they can be added to-or 
subtracted from-the model of the part. Without 
the trimming step, side-effects may appear, especially 
when several features interact or when compound 
features incrementally created by successive oper- 
ations, are edited. Trimming is best performed using 
Boolean operations, but producing a timming CSG 
expression may prove difficult and remains the de- 
singer’s responsibility. 
Section 7 addresses the problem of feature validity. 
Specifically, it shows how features may be efficiently 
tested by interrogating the corresponding SGC rep- 
resentation. 

2. BASIC CONCEPTS AND TERMINOLOGY 
This section clarifies the distinction between inten- 

tional features and their geometric embodiment, and 
between volume features and surface features. It also 
introduces the CSG notation used in this paper. 

2.1. Intentional features and their geometric embod- 
iment 

A distinction should be made between geometric 
features and intentional features. A geometric feature 
is a collection of geometric elements (for example, faces 
or volumes) that form a subset of the part’s interior, 
boundary, and / or complement. An intentional fea- 
ture [15] is an abstraction for accessing groups of geo- 
metric elements and for associating with them a type 
and consequently certain properties defined for all the 
features of this particular type. For example, an inten- 
tional feature of type slot may be associated with a part 
model. This association indicates that the designer in- 
tends to have a slot in the model, i.e., a void bounded 
on three sides by faces of the model. The intentional 
feature contains references to the corresponding faces. 
However, due to model manipulations, the referred 
faces may have been modified or even deleted from 
the models’ boundary. Whatever remains of them and 
of the associated void constitutes a geometric feature 
that may no longer exhibit the properties associated 
with a slot, 

Inconsistencies between intentional features and the 
actual geometry of the part are avoided by treating 
intentional features only as hints and by relating them 
to geometric elements through collections of uneval- 
uated references. It is acceptable that some, or all, of 
these references do not correspond to any geometric 
element of the model’s boundary at some particular 
stage during the design process. Even if all geometric 
elements referenced in an  intentional feature are pres- 
ent in a geometric model, their shapes and positions 
with respect to the rest of the model need not comply 
with the characteristics usually associated with the 
particular feature type. For example, an intentional 



feature of type cylindrical hole could be associated with 
geometric elements (faces) that have been removed 
from the model’s boundary by some Boolean opera- 
tion, and thus do not correspond to a “valid” hole. In 
such situations, the intentional feature is said to be 
invalid, but should not be discarded, because the de- 
signer may have produced (intentionally or not) tem- 
porary situations, or instances of the model, where 
many previously defined intentional features are in- 
valid, The overall validity may later be restored by 
repositioning a subsolid or adjusting a parameter. The 
designer should not be required to redefine all inten- 
tional features that went through an invalid transition 
stage. 

Furthermore, feature validity is very subjective and 
in fact depends on the role the feature plays with respect 
to a particular application. To take a simplified ex- 
ample, a cylindrical hole is a valid “detail feature” to 
be discarded for analysis purposes only if its radius is 
sufficiently small; on the other hand, it is a valid 
“manufacturing feature” for process planning only if 
it is empty and accessible. Feature validity criteria may 
be expressed in terms of validity rules, which are logical 
predicates defined in terms of the referenced geometric 
elements and of their existence, shape, and relation to 
other geometric elements of the model. Evaluating the 
model’s geometric references is therefore necessary to 
establish the validity of an intentional feature with re- 
spect to any one of the instances (or stages) through 
which a solid model evolves during the design process. 
Consequently, the interrogation of invalid features 
plays an essential role in correcting design errors [ 4]. 
Typically, the presence of an intentional feature of a 
certain type, valid or not, implies some intention that 
the designer has regarding the functionality of some
portion of the part. Thus, intentional features may 
provide important hints for model alterations and 
manufacturing process planning. 

2.2. Constructive Solid Geometry (CSG) 
CSG (Constructive Solid Geometry)[ 6] refers to an 

unevaluated representation scheme for solids obtained 
by combining, in Boolean expressions, simple primitive 
shapes of arbitrary dimensions and positions. Solids 
specified in that way may conveniently be represented 
by a binary tree whose leaves correspond to primitive 
shapes, whose internal nodes correspond to Boolean 
operations and represent subvolumes, and whose root 
represents the final solid. Often, the primitive shapes 

are expressed as the intersection of closed half-spaces. 
Commonly used half-spaces (planar, cylindrical, 
spherical) are mathematically defined as the set of 
points for which the value of a simple linear or qua- 
dratic function is negative or null. For practical im- 
plementation reasons, solid models are often restricted 
to be r-sets (a  subclass of closed, bounded three-di- 
mensional sets with no dangling boundary elements 
and with a finite number of faces and edges) [ 16]. They 
are often represented in terms of their boundary, i.e., 
a list of their faces (in turn defined in term of their 
bounding edges) often structured in an adjacency 
graph [11]. To guarantee that results of Boolean op- 
erations are r-sets, a regularized version of these op- 
erations is used. It performs the standard operations 
and then removes the dangling and interior faces and 
edges and makes sure that a valid boundary is part of 
the pointset. Theoretically, this cleaning operation 
amounts to taking the topological interior of the point- 
sets produced by the Boolean operation (this eliminates 
the exterior dangling faces, edges, and vertices), and 
then the topological closure of the result (which 
amounts to putting a tight boundary around the point- 
set). These transformations are illustrated in Figure 1. 
In practice, the faces and edges of the model are clas- 
sified using neighborhoods[ 10]. Only the elements that 
play the appropriate role in the boundary of the solid 
are kept. Throughout this paper, all Boolean operations 
are regularized, unless explicitly specified otherwise. 

The regularized Boolean operations will be denoted 
U for the union,    for the intersection, - for the dif 
ference, and for the symmetric difference. Futher- 
more, the regularized complement of any solid X will 
be denoted For simplicity of notation, it is assumed 
that the Boolean operators in Boolean expression are 
ranked by decreasing priority as follows: complement, 
intersection, difference, symmetric difference, and fi- 
nally union. 

Throughout this paper it is assumed that the part 
models, or solids, are created by a sequence of oper- 
ations that add or subtract material or move and com- 
bine subsolids through Boolean operations. Therefore, 
a CSG representation of such a model always exists, 
even though the explicit construction and use of the 
CSG tree may be avoided in certain cases. 

2.3. Volume and surface features 
An important distinction pointed out in[ 13] sepa- 

rates surface features, which are collections of faces of 
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Fig. I .  Regularization: Three blocks, A, B, and C, shown in (a) are combined through a nonregularized 
Boolean expression to produce the pointset shown in (b), which has a dangling face 
and a missing face A regularized version of the pointset can be obtained by taking its interior, which is 
an open set depicted in (c) that does not contain any of its faces, and then taking the closure of the result 

and thus adding to the model all its faces, shown in (d). 
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Fig. 2. Surface feature: Adding two bosses (volume features) to the part (left) creates a slot (geometric 
feature) that can be recognized by the user and interactively associated with an intentional surface feature 

for later references. 

a part model[ 17-19], such as the walls and the floor 
of a slot, from volume features, which are full-dimen- 
sional pointsets of the part or of its complement, such 
as bosses and holes [ 20,2 1]. Very rarely are both types 
simultaneously supported in the same modelling sys- 
tem (as they are in the prototype system MA- 
MOUR [ 4 ] ). Pratt [ 1 3 ] provides a detailed discussion 
of the historical motivations, current merits, and 
drawbacks of both types of features and concludes that 
all surface features should be converted to volume fea- 
tures, which, although slightly more complex to sup- 
port, offer greater flexibility for interactive editing and 
more information for driving analysis and application 
programs. The author believes that both volume and 
surface features are useful for editing and that a volume 
representation of a surface feature need not always be 
derived. 

2.3.1. Volume  features. Design is often done in an 
incremental manner, by first laying out the overall 
shape, and then adding or modifying details by creating 
or editing features. The creation of a geometric feature 
is necessarily accompanied by a modification of the 
volume occupied by the part and io practice always 
corresponds to either an addition or a subtraction of 
material. This transformation may be expressed as the 
union or difference between the part and the volume 
feature. Because the volume feature may be viewed as 
a sophisticated parameterized primitive shape, this ap- 
proach is particularly effective in dual modellers which
derive a boundary representation from a CSG tree.

The computational expense of explicitly deriving the 
effect of a Boolean operation [ 10] has discouraged cer- 
tain developers of solid modellers from evaluating the 
boundary of the part obtained by subtracting or adding 
a volume feature. Instead, implicit features (also called 
unevaluated) have been recommended [ 19]. 

A boundary representation of the feature is directly 
derived from the designer’s specification without 
checking if this representation is geometrically correct. 

For example, an implicit feature of type slot may have 
been defined by mistake as hanging in air, away from 
the part, or buried inside the part and not accessible 
from any side. This incompatibility problem does not 
occur when intentional features are used instead of 
implicit features because intentional features, although 
unevaluated, carry no assumption as to their corre- 
sponding geometry embodiment. 

2.3.2. Surface features. The volume features re- 
sulting from shape modifying operations do not always 
provide a sufficient set of abstraction tools for inter- 
acting with the model. For example, a slot feature of 
interest for manufacturing applications may have been 
created as a side effect of adding two parallel boss fea- 
tures (Fig. 2). The slot may provide a convenient ab- 
straction for expressing engineering changes (which, 
for example, modify its width) and thus should be made 
accessible to the designer through an intentional fea- 
ture. The use of such a posteriori identified features 
requires the association of intentional features with a 
subset of an existing geometry. Often such association 
is done by interactively selecting a collection of faces 
of the part model and treating it as a surface feature. 

Information provided by surface features may be 
sufficient for some applications, such as planning for 
surface finishing operations or as specifying and ana- 
lyzing dimensions and tolerances [ 2]. Other applica- 
tions, such as assembly or manufacturing planning, 
heavily rely on the manipulation of volume fea- 
tures [ 22]. Except for simple cases, the derivation of a 
volume feature that corresponds to a surface feature 
remains an open issue [13], because there is no unique 
mapping from surface features to volume features. 
Typically a selected set of closing faces is added to a 
surface feature in order to produce a valid two-dimen- 
sional shell that unambiguously defines a volume (Fig. 
3). Desirable, or even correct, closing faces may not 
always be obtained by extending existing adjacent faces 
(Fig. 4). Methods or heuristics for automatically con- 

Fig. 3. The volume of a surface feature: By adding a closing face (center) to the faces of a surface feature 
(left), one obtains a valid boundary of a corresponding volume feature (right). 
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Fig. 4. Complex closing faces: No simple set of closing faces 
exists for the pocket surface feature. 

structing such faces are currently limited to simple sit- 
uations, and the designer’s intervention may sometimes 
be required to generate acceptable solutions. 

2.4. Compound features 
Several volume or surface features may overlap. For 

example, two orthogonal slots (volume features) may 
have a common intersection volume (Fig. 5 ). 

Similarly, a boss and the adjacent slot may share a 
common vertical wall (Fig. 6) .  Furthermore, interior 
features, such as a boss on the floor of a slot (Fig. 7), 
may be used as modifiers of other features. It is not 
always necessary to capture such feature interactions 
explicitly in the data structure. For example, a geo- 
metric element (face or volume) may be shared by 
several intentional features that are independently used 
by different applications. On the other hand, a hier- 
archical organization of intentional features may be 
useful to represent explicitly compound features (Fig. 
8) and also patterns of features (Fig. 9 )  when such 
situations reflect the designer’s intentions or are im- 
portant for applications such as process planning. The 
nature of the geometric and topological interaction be- 
tween the individual features of a compound feature 
should be derived, when needed, from the actual ge- 
ometry of the faces referenced by the individual fea- 
tures. 

3. Pitfalls 
Because they provide an intuitive, domain depen- 

dent, high-level vocabulary, both volume and surface 
features are good candidates for facilitating the speci- 

fication of shape modifying operations and the expres- 
sion of validity Conditions, provided that one can make 
the specification convenient and unambiguous. 

For the designer’s convenience, these specifications 
have to be unambiguous, so that the effect of shape 
editing commands can be clearly understood and easily 
predictable, and the validity rules must precisely char- 
acterize invalid situations independently of the veri- 
fication procedures employed. They also must be con- 
venient, so that the specifications correspond to pow- 
erful high-level operations that produce the desired 
effect and so that validity rules are simple to formulate 
and powerful enough to trap common design errors. 
Furthermore, procedures for executing the shape 
modifying commands and for evaluating validity rules 
must be available. 

This paper shows how extensions of several tech- 
niques may be integrated to improve the specification 
and the execution of unambiguous shape modifications 
using compound or isolated volume or surface features. 
It also shows how a rich geometric representation 
scheme can be used to simplify the expression and 
evaluation of validity rules. Most of these techniques 
have been made possible by recent developments in 
geometric modelling, which must now be integrated. 
These developments will be briefly summarized, and 
their potential applications to feature-based editing of 
solid models will be demonstrated. 

3.1. Limitations of simple shape modifying techniques 
To stress the need for the approaches such as those 

proposed in this paper, this section discusses the lim- 
itations of several simple schemes that come to mind 
as possible ways of using features to modify and test 
solid models. 

3.1.1. Implicit features. Formerly mentioned im- 
plicit features may be trivially edited by modifying their 
parameters. For example, an implicit slot can be moved 
and enlarged by changing its position and its width. 
However, as pointed out earlier, the existence of an 
implicit feature with specified dimensions and position 
does not guarantee that the corresponding geometric 
feature with the expected characteristics is to be found 
on the part. Thus, to produce a reliable description of 
a part, implicit features should be treated as intentional 
features, and the corresponding geometric features 
should be constructed (if possible) and their validity 
(i.e., compliance with functional requirements) as- 
sessed. 

Fig. 5. Two interfering features: Subtracting a slot (volume feature) from the model (left) that already has 
a slot feature creates a model (center) in which the volumes of the two features interfere (right). 
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Fig. 6. Shared face: Adding a boss (volume feature) to the model (left) and then subtracting a slot feature 
(center) creates a model in which the boundaries of two adjacent features overlap along a portion of a face 

(right). 

3.1.2. Procedural models. To further automate the 
generation of models and allow the designer to con- 
centrate on high-level design decisions, it is suitable to 
support the automatic derivation of CAD models from 
a set of functional constraints specified by the designer. 
The functional requirements specifying the geometric 
characteristics of intentional features could be consid- 
ered as constraints and combined with the geometric 
constraints describing the part. A constraint solving 
system would converge to a valid solution, if such a 
solution exists, or declare that the specification (i.e., 
set of constraints) is invalid. Such a scheme would 
have the considerable advantage of supporting incom- 
plete specifications of features. For example, an inten- 
tional feature of type slot could be defined and its di- 
mensions specified, but its position would not be pro- 
vided by the designer, except for one constraint: The 
slot should be abutting on a given face of the object. 

Such an automated approach has been given a se- 
rious consideration [23,24], but it carries a high com- 
putational cost and requires that designers provide a 
complete set of consistent constraints before the CAD 
system can create a model and return some useful 
feedback. Deriving and maintaining such systems of 
constraints, especially when additive (bosses) and sub- 
tractive (pockets, slots, holes) features interfere is a 
considerable endeavor, as pointed out in [ 25 ]. Fur- 
thermore, a simple indication that the set of constraints 
is incompatible does not provide useful hints as to what 
part of the specification should be modified to produce 
the correct result. A more practical approach is to build 
models incrementally by transforming and combining 
simpler models. A procedural rather than declarative 
approach, in which the designers specify a sequence of 

operations that transform a model in attempt to satisfy 
constraints, has been described by Rossignac in [26]. 
It relies on the designer’s ability to decompose the 
problem into an ordered set of subproblems that can 
be solved one at a time. The procedural specification 
(i.e., the sequence of operations that solve the individ- 
ual problems) is saved and can be edited by the designer 
and reexecuted on demand. This technique could be 
used for feature-based editing by considering the im- 
plicit features as intentional features to be created in 
a predefined order. Reexecuting the specification would 
attempt to create the geometric counterpart of the in- 
tentional features at specified positions and would re- 
port whether the creation was successful (i.e., whether 
valid features have been produced). 

Considering that a procedural model can be obtained 
simply by storing the designer’s commands into a log 
file and making the file available for modification and 
reexecution fails to address three important problems: 

1. Features successfully created during an execution 
of the procedural model can be invalidated by the 
subsequent creation of other features. Therefore, to 
assess the validity of a design, intentional features 
created at an early stage of the specification must 
be preserved and methods for accessing the corre- 
sponding geometric elements (whenever they exist) 
and for testing the compliance of these elements 
with feature validity rules should be available. 

2. Feature parameters may be defined in terms of other 
features. For example, a boss may be intended to 
lie at the center of the floor of a rectangular pocket. 
Although this relation may have been established 
at the creation of the boss, subsequent editing of 

Fig. 7. Nested features: Adding a boss feature in the middle of a slot feature (left) creates a model (center) 
with a nested feature (right): The boss is inside the volume of the slot. 
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Fig. 8. Compound features: A hierarchical organization of features may be used to represent a compound 
feature made of a slot that contains two bosses, one of which has a hole (left). These relations can be 
captured by creating additional intentional features of type compound that refer to other features instead of 

referring to geometric elements (right). 

the procedural model may alter the position of the 
pocket. To preserve the relation between the posi- 
tions of the two features, this relation must be cap- 
tured in the procedural model and used to position 
the boss at each execution. 

3. Surface features are typically selected by the user 
in an interactive mode, preferably using a graphic 
cursor to pick the appropriate geometric elements 
from a picture of the model on a computer screen. 
Surface features in a model may be used to attach 
tolerances or other manufacturing attributes to 
particular portions of the model and to serve as 
clues for process planning [ 5 ] , or simply to provide 
constraints on the position and size of volume fea- 
tures to be created later by the procedural model. 
It is therefore essential that surface features, once 
selected by the designer on one instance of a model, 
be selected automatically when a new instance of 
the model-is created. To support automatic rese- 
lection, operations that select surface features must 
be captured in the procedural model in such a 
manner that their execution produces the desired 
result, even when earlier parts of the procedural 
model are modified. 

Techniques for supporting procedural models to- 
gether with intentional surface features and for cap- 
turing relations between such features have been de- 
veloped and implemented by Borrel, Nackman, and 
the author, and are described in [4]. They will be briefly 
reviewed in Section 4 and their applications to feature- 
based editing will be discussed. 

3.1.3. Local boundary modifications. If no proce- 
dural model is available for editing and reexecuting, 
or if the execution of the procedural model is costly, 
the part model may sometimes have to be directly ed- 
ited, or “patched.” Since a valid solid model is un- 
ambiguously described by its boundary, boundary 
“tweaking” seems an attractive technique for editing. 
For example, the four vertices of the floor of the slot 
in Fig. 10 could be raised to change the depth of the 
slot. A new boundary representation would be readily 
available if the floor and the adjacent faces were im- 
plicitly defined by their vertices. However, such 
boundary tweaking techniques may require major al- 
terations of the boundary structure of the object. If 
polyhedral modellers, if the geometry of the edges and 
faces of the model are implicitly represented in terms 
of vertex coordinates, a face (for example, the floor of 

Fig. 9. Patterns of features: A pattern of hole features (left) may be represented by a compound feature 
referencing the intentional features of each hole (center). The compound feature has a description of the 

pattern parameters (right) and can be used to access and interrogate the entire pattern. 
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Fig. 10. Boundary tweaking: The floor of a slot (left) may be 
raised by moving up its vertices (right). 

a pocket) may be moved simply by displacing its ver- 
tices. However, the vertices of each face must remain 
coplanar. Coplanarity is guaranteed by forcing the ver- 
tices of the face being moved to remain coplanar and 
to move along extensions of the edges they bound. 

The situation is more complicated when vertices 
correspond to intersections of curved surfaces. Suppose 
that the designer wishes to move only one face of the 
feature and wants to express this modification in terms 
of vertex displacement. Then vertices are constrained 
to move along extensions of abutting (curved) edges 
while simultaneously remaining on the edited surface 
as it evolves. The number of degrees of freedom, which 
specifies how many of the vertices may be moved in- 
dependently, is dictated by the nature of that surface 
and its acceptable deformations (scaling, rotations ...). 

In addition, the validity domain, which specifies the 
maximum amount of vertex displacement along each 
edge so that the boundary structure (adjacency graph 
between faces) remains constant, is defined by the ge- 
ometries and relative positions of the faces. Restricting 
the displacement of each vertex along the extension of 
an edge so that it does not exceed the intersection of 
this extension with other faces is not sufficient to guar- 
antee that the resulting boundary will not be self-in- 
tersecting (as is the case in Fig. 1 1 ). 

An alternate approach is to modify the boundary 
structure or to alter several faces simultaneously. A 
simple example may be found in Fig. 1 1, where a ver- 
tical left wall is added to connect the lowered floor to 
the abutting cylindrical face, but in general it is difficult 
to devise procedures for specifying these modifications. 
Furthermore, detecting self-intersecting boundaries is 

computationally difficult, and no unambiguous and 
useful semantics has been defined for specifying how 
self-intersecting boundary representations should be 
corrected. 

In conclusion, the semantics of boundary tweaking 
operations is not well defined and the results may be 
invalid. This paper thus proposes techniques that use 
mathematically well-defined set theoretic operations 
to alter features. 

A possible approach would be to convert incorrect 
surface features into volume features (by the insertion 
of closing faces) and then delete these volume features 
and create new correct ones. As pointed out earlier, 
the set of closing faces is not unique for any surface 
feature, and even a single suitable set may be hard to 
produce. To overcome the “closing face problem,” a 
technique based on corrective volumes, previously em- 
ployed by Requicha and the author for local blending 
operations[12], will be proposed in Section 6. Here, 
it uses a generalization of sweeps or extrusions to create 
solids that can be added to-or subtracted from-the 
part in order to change the dimensions or positions of 
geometric features, 

3.1.4. Order dependency of volumetric alterations 
A volume feature, whether directly created by a Boo- 
lean operation or derived by closing a surface feature, 
could in principle be modified by deleting it and, if 
necessary, by creating a new volume feature with the 
desired characteristics (Fig. 12 ). 

Deletion of a volume feature may be obtained by 
using the inverse of the Boolean operation that could 
have been used to create it. For example, a subtractive 
feature of type slot could have been created by sub- 
tracting the corresponding slot volume from some pre- 
vious representation of the part. Therefore, adding the 
volume back, using a Boolean union, would delete the 
feature. Unfortunately, this approach suffers from three 
major problems, which could be qualified as “unde- 
sirable side effects.” 

1. As demonstrated in Fig. 13, the lack of associativity 
properties of set theoretic Boolean operations do 
not in general permit to undo the effect of sub- 
tracting (respectively adding) a feature by adding 
(respectively subtracting) it back. Specifically: 

unless B C A ,  and similarly 
unless 

Fig. 11 .  Validity problems: The depth of the slot (left) is altered by lowering its floor face. In the resulting 
model, the boundary is disconnected and self-intersecting. To connect the boundary on the right side of the 
slot, the right wall can naturally be extended to follow the vertices. On the left side, however, the wall is 
cylindrical and the lowered vertices do not lie on its extension. They either have to be moved horizontally, 
or a new vertical face must be created. In any case, the boundary is self-intersecting on the right side of the 

slot, and therefore portions of it must be eliminated, which involves geometric calculations. 
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Fig. 12. Editing by deletion and creation: A hole volume feature (left) may be moved by deleting it (center) 
and by creating a new hole in the right position (right). 

2. When additive and subtractive features interfere, 
the order in which they have been created is im- 
portant and in general cannot be altered without 
producing undesirable side effects, such as the one 
illustrated in Fig. 14. 

3. Modifying features by deleting them and creating 
new ones could modify or destroy other features 
(see Fig. 15). 

For solids created by combining simpler solids and 
volume features through Boolean operations, correct 
results may be obtained, without reevaluating the whole 
Boolean expression, by confining the deletion of the 
old feature and the creation of the new correct one to 
the active zone of the old feature. Active zones have 
been introduced by Voelcker and the author in [ 27], 
and would correspond here to the portion of space 
where the shape of the feature is important. A formal 
definition and relevant properties of active zones will 
be summarized in Section 5, and new properties for 
applications to feature-based editing will be derived. 

Instead of computing the active portions of all fea- 
tures (i.e., their intersection with their active zones), 
space decomposition techniques [ 28-30] may be used 
to precompute and store the geometry of the active 
portions of all features simultaneously, and thus to im- 
prove the performance of algorithms that execute the 
editing operations. Then, each editing operation may 
be confined to the appropriate regions without re- 
peating expensive geometric calculations each time. 
Such an approach has been proposed by Pratt [ 13] using 
an extension of the radial edge structure developed by 
Weiler[ 28]. Section 5 briefly presents a different, more 
general, and slightly simpler structure called Selective 
Geometric Complex (abbreviated SGC) described by 
O’Connor and the author in [29]. Algorithms for sub- 

dividing SGCs may be used to decompose space into 
cells of dimension three or less, such that given any 
cell C and any volume (or even surface) feature F, C 
either lies entirely in the interior of F, entirely in its 
complement, or entirely in the boundary of F (when 
C is a face and F is a volume feature). Each cell of an 
SGC “remembers” what features it belongs to and is 
associated with an attribute which defines whether the 
cell is part of the represented solid or not. Fig. 16 il- 
lustrates such a decomposition. The applications of 
the SGC structure to the deletion and modification of 
features within their active zones will be demonstrated. 

3.2. Limitations of simple interrogation techniques 
Detecting whether the geometry associated with an 

intentional feature satisfies the validity requirements 
explicitly associated with that particular feature-type 
is extremely convenient for validating a design and 
automatically verifying that changes produced by add- 
ing new features or modifying old ones did not create 
undesirable side effects. However, the validity of each 
individual feature may not be sufficient to assess the 
validity of a complex part, and sometimes, a relation 
between several features is also important. Most of 
these validity requirements may be explicitly attached 
as rules to single or compound features [ 4], and au- 
tomatic procedures for checking feature validity may 
be invoked, as described in Section 7. 

Some validity rules may be characterized in terms 
of topological relations between volume features and 
can be expressed in terms of Boolean operations be- 
tween a volume feature and the part it is supposed to 
modify. For instance, when a slot B is to be subtracted 
from a part model A (Fig. 17 center), one can detect 
situations where the slot is too deep and where its floor 

Fig. 13. Side effects: In the slanted top face of the model (left), a slot is created (center) by subtracting a 
block. Adding the block back (right) does not restore the original model. 
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Fig. 14. Order dependency: Modifying a solid (left) by first creating a slot (top center) and then a boss (top 
right) produces a different result than first making the boss (bottom center) and then the slot (bottom right). 

is missing in the boundary (Fig. 17 right) by 
checking whether represents the empty set or 
not (this works only if the floor is not coincident with 
the bottom face of A ) .  

When regularized Boolean operations are used, such 
simple tests are insufficient to distinguish between sig- 
nificantly different situations. For example, a distinc- 
tion between the correct situation and the unacceptable 
configuration in Fig. 18 may not be obtained as pre
viously suggested by considering because B 
- A  is empty in both cases. Clearly, in most cases, a 
more complex test involving Boolean combinations of 
auxiliary solids may be provided, but each situation 
and each test may require different types of auxiliary 
solids. For example, a “roof,” thin block   over B 
may be used: is empty in the correct situation 
of Fig. 19, but is not empty in the invalid case of the 
same figure. These tests are expensive to perform and 
may require constructing and intersecting complicated 
auxiliary volumes. Furthermore, this approach is lim- 
ited to volume features. An alternate approach is pro- 
posed in Section 7 which demonstrates that most com- 

Testing whether a Boolean combination of two or more 
solids is empty requires evaluating its boundary or performing 
a Null Object Detection test on a CSG representation[31, 
27]. 

mon validity criteria may be tested by querying the 
existence of lower-dimensional parts in an SGC rep- 
resentation of the space decomposition defined in terms 
of features. 

4. PROCEDURAL MODELS 
As pointed out in the introduction, procedural 

models are particularly convenient for trial-and-error 
geometric design, because they capture the designer’s 
specifications in a form that can be easily understood, 
edited, and repeatedly executed. This section briefly 
presents a prototype system for procedural modelling, 
called MAMOUR, which has been implemented in 
the object-oriented language AML/X [ 32] and de- 
scribed in more details in [ 4, 5]. MAMOUR supports 
intentional features with validity rules and can keep 
track of relations between different features. 

4.1. Sequences 
Such a system offers an adequate platform for in- 

tegrating the techniques presented in this paper. As the 
user of MAMOUR creates and transforms a part 
model, the system automatically constructs a proce- 
dural model composed of an ordered set of operations 
that measure geometric (or other) properties, create or 
move primitive or subsolids, define intentional features, 
or perform Boolean operations between objects. The 

Fig. 15. Unintentional feature destruction: In a model with a through-hole (a), a vertical slot (b) is created 
in a wrong position. Deleting the slot by a union creates a solid (c) in which the through-hole feature is 
partly destroyed. Making a new slot in the right position (d) produces a valid slot, but leaves the through- 

hole invalid. 
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Fig. 16. Space decomposition: In the model (a) a slot is made (b). Then two bosses are created inside the 
slot (c). Space is decomposed into 3D cells (d), so that each cell is either inside or outside the original 

model and any one of the features. 

execution of the procedural model constructs a geo- 
metric model and the associated set of intentional fea- 
tures. The procedural model can be edited by the user 
without interrupting the design session, because it is 
stored in memory as an aggregate (list) of AML/X 
objects.‡ Each object corresponds to an operation, or 
design step. Fig. 20 top illustrates one such sequence. 
Each operation has its own internal variables and ex- 
ecution methods. A whole sequence of operations may 
be captured in another AML/X object of type SE- 
QUENCE and can be edited, executed, and included 
as a parameterized macro operation into other se- 
quences. 

4.2. Unevaluated parameter expressions 
To provide a greater flexibility and multiple appli- 

cations of the same sequence, each operation and 

An object is an entity that has a type (for example, “Drill 
operation”), a set of internal variables (for example, expres- 
sions that define the radius and position of the hole), and a 
set of procedures, called methods (for example, the one that 
modifies a CSG representation of a part by subtracting a cyl- 
inder of the appropriate radius). 

therefore each sequence is parameterized. When several 
sequences are pieced together in different ways or when 
an early part of a sequence is edited, an individual 
operation may be executed on a model different from 
the model that has been used to specify that operation. 
For example, a make-rib operation may have been used 
to make a rib in the center of the boss in the original 
model. The parameters locating the rib were derived 
from the position of the boss. If operations that con- 
struct or modify the boss have been edited so that the 
shape of the boss is changed, the execution of the make- 
rib operation will produce a rib that is no longer in the 
center of a boss, unless make-rib can adapt its execution 
to the new geometry. This adaptability is possible in 
MAMOUR, because parameters of operations may be 
stored in an unevaluated form, thus capturing the de- 
signer’s intents (for example, to position the rib in the 
center of the boss). To simplify the formulation of this 
constraint, an intentional feature is associated with the 
boss. Intentional features in MAMOUR are also AML/ 
X objects with internal variables and methods. The 
internal variables typically contain sets of unevaluated 
references to boundary elements of the model (for ex- 

Fig. 17. Validity test: The position of a volume feature B in relation to the part A is shown in (a). Subtracting 
B from A fails to produce the desired slot feature (b) because the depth of B is too large. Sometimes, such 

situations may be detected by testing if the difference is an empty solid or not (c). 
CAG 14:2-B 
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Fig. 18. Inadequate validity test: Subtracting from a part A (left) a correctly positioned slot volume feature 
B produces a valid geometric feature of type slot (center). Subtracting an ill-positioned slot B creates an 
invalid geometric feature (right). The difference may not be detected by considering a regularized Boolean 

combination of A and B. 

ample, references to the faces of the boss). The methods 
can be used to evaluate these references and obtain a 
geometric description of the appropriate elements (for 
instance, of the floor face of the boss). These geometric 
elements are also AML/X objects with methods for 
computing their geometric properties (for example, 
the center of a face). Thus, if boss1 is the name of 
the intentional feature that corresponds to the geo- 
metric feature of type boss, the position of the rib 
may have been specified in make-rib using 
boss1 .floor().center(), which defines the correct posi- 
tion, as long as the geometry referenced in boss1 is a 
valid boss, or at least has a floor face. 

Until now, MAMOUR has been interfaced with only 
a 2D geometric modeller, and therefore intentional 
features contain only edge-references. Such an edge- 
reference is an unevaluated AML/X expression defined 
in terms of: 

the structure of a CSG representation of the partic- 
ular model (if available), 
the adjacency information typically available in a 
boundary representation, and 
the names of operations that created or modified the 
edge. 

Tools for automating the construction of expression 
that consistently identify faces in various versions of 
a model are currently under ivestigation by Paul Bor- 
rel and by the author.

4.3. Validity tests 
The validity of intentional features, and thus of the 

produced model, may be tested automatically using 
validity rules attached to features. To a particular fea- 
ture may be associated several rules (predicates), which 
measure geometric and topological properties of 
boundary elements. If, for example, any rule evaluates 
to FALSE, the feature is considered invalid. Note that 

the same feature may be valid for another application 
with different validity criteria. A rule can be any 
expression in AML/X that returns a Boolean value. 
Typically such expressions involve references to inten- 
tional features, and therefore indirectly to correspond- 
ing geometric entities, and also calls to methods applied 
to these entities for computing their properties or de- 
riving specific measures. 

4.4. Editing features 
4.4.1. Volume features. Intentional features can be 

created in MAMOUR by executing a shape-modifying 
operation, which attempts to produce a geometric fea- 
ture through a Boolean operation and at the same time 
creates an object that represents the intentional feature 
and contains, in its internal variable, references to the 
corresponding geometric entities. Note that these en- 
tities need not always exist in the boundary represen- 
tation of the model as it evolves. Since a volume rep 
resentation of the geometric feature is used to the 
Boolean operation, these features correspond to the 
volume features discussed above. Such volume features 
may easily be used for editing the. model. To each 
boundary element and to each intentional feature in 
MAMOUR is associated a history attribute, which in- 
dicates what operation created the entity. After a face 
is graphically selected, its history may be accessed by 
the designer and the parameters* of the corresponding 

In particular, it can combine through an OR operation 
several Boolean subexpressions, and thus provides a simple 
mechanism for expressing validity rules as conjunctive forms 
or even more complex Boolean combinations. 

It is the designer's responsibility to decide which param- 
eters should be edited and how. The systems could provide 
some help by maintaining a dependency graph that relates 
faces to parameter expression. Often these relations are simple, 
and we have not investigated such facilities for further assisting 
the designer. 

Fig. 19. Auxiliary volumes: A thin block B' over the slot B may be used to test whether the slot B is made 
in the block A (left) is accessible from the top. In the valid configuration (center) the set is empty. 

In the incorrect configuration (right) is not empty. 
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Fig. 20. Sequence of operations: The sequence (top) contains two slot-making operations, which subtract 
two volume features, followed by a feature-selection operation which identifies a surface feature of type boss 
used in the last operation to position a rib volume feature. The execution of the sequence produces a model 
(center). Editing one of the slot-making operations and reexecuting the sequence applying it to a different 
starting object produces a different result (bottom), which still reflects the designer’s intent to center the rib 

on the boss. 

operation edited so that the correct feature is created 
by reexecuting the whole sequence. This reevaluation 
may be computationally expensive. Therefore, alter- 
nate techniques for editing the model are discussed 
below. 

4.4.2. Surface features. Intentional features may 
also be created without geometric modifications by a 
select operation which takes as parameters a feature 
type and a list of references to existing boundary ele- 
ments.§ Typically there is no single shape modifying 
operation responsible for creating such a surface feature 
and thus no explicit volume representation. Techniques 
for editing such surface features by adding another op- 
eration to the sequence are addressed in the next sec- 
tion. They complement facilities for editing operations 
already in the sequence, which are well suited for mod- 
ifying volume features when the cost of reevaluating 
the entire sequence is not prohibitive. 

5. EFFICIENT EDITING OF VOLUME FEATURES 
Active zones were introduced by Voelcker and the 

author in [ 27] to speed up certain geometric compu- 
tations over Constructive Solid Geometry (CSG) rep- 
resentations. The active zone associated with a CSG 
node is the region in which the shape of the set rep- 
resented by the node is important. An active zone is 
defined algebraically as the intersection of certain nodes 
of the whole CSG tree, and thus its CSG expression is 
always available. The concept of active zones is applied 
in this paper to deal with editing feature. In this section, 

from the properties of active zones, a CSG expression 
is derived, which, in conjunction with spatial localiza- 
tion techniques, may be used to improve the perfor- 
mance of algorithms that update the boundary rep- 
resentation of a model when a volume feature is altered. 
These improvements are particularly interesting when 
a spatial decomposition scheme is used for the bound- 
ary representation. 

5.1. Active zones 
Let S be a CSG representation of a solid encoded 

in a binary tree. (For simplicity, we shall use the same 
symbol for the solid and its CSG tree.) Let A be any 
primitive (or any internal node) of S. The active zone 
of A in S, denoted is equal to the Boolean differ- 
ence where      and are respectively the 
I-zone and the U-zone of A in S. Let A be a primitive 
or internal node of a subtree N in S, and let F be the 
parent node of N of another node B. The following 
properties provide a recursive formulation for incre- 
mentally constructing       and 

is the universe (Euclidean three-dimensional 

When then I,’ = I,”, 

When then I,’ = I,” 

When then 

When then 

space) and is the empty set. 

and 

and 

and 

and 

Automatic extraction of existing 3D features is a difficult 
and expensive process[ 33], especially when loose conditions 
are used to identify features. For example, a slot with a filleted 
bottom edge may still be a slot, although the floor face is not 
directly connected to the wall. In MAMOUR, references to 
edges of features may be specified in a semiautomatic way 
using graphic interaction. These references are then integrated 
into unevaluated expressions, stored with the model, that will 
identify the corresponding feature in a family of part models 
generated by reexecuting a modified version of the sequence. 

It follows that CSG expressions for and and 
thus for may be computed by traversing the path¶ 
in the tree from A to S, and constructing the Boolean 
expressions for I-zones and U-zones using intersections 

¶
 The path is defined as the set of nodes traversed by moving 

from S to A in the CSG tree, following the parent-to-child 
links. 
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Fig. 2 1. Changes are confined to the active zone: Replacing the primitive A by X in the CSG definition of 
S (left) can only affect S in the active zone of A (center). The result is show (right). 

with other branching nodes" or with their complements. 
On the other hand, these expressions need not be ex- 
plicitly constructed, nor stored, for most applications, 
since efficient algorithms presented in [ 27] can perform 
calculations with respect to  and using the ap- 
propriate branching nodes in the original tree S. 

Several applications of Active Zones are discussed 
in details in [27]. For instance, it is shown that if a 
node A does not intersect its active zone, it can be 
replaced by the empty set. Similarly, if a node A con- 
tains its active zone, it can be replaced by the universe 
without affecting the set represented by the whole tree. 
(These results provide a new algorithm for testing 
whether any particular node is redundant .) Algorithms 
for the detection of interferences among solids defined 
in CSG and for the generation of shaded pictures di- 
rectly from CSG by ray-casting[ 34] or depth-buffer- 
ing[ 9] are based on fac es for classifying subsets of 
the boundary of primitives against the CSG tree, The 
performance of these algorithms may be improved us- 
ing only the I-zones of the primitives, and not the whole 
CSG tree for the classification. 

5.2. Editing volume features 
5.2.1. Localization to the active zone. Because a 

volume feature corresponds to an internal node of the 
CSG tree, it has an active zone, an I-zone, and a U- 
zone. It was established in [27] that all changes to a 
primitive or node A inside its active zone in Swill 
affect the shape of S and conversely that changes to A 
outside of will leave S unchanged. This property 
and related properties are used in this section to pro- 
duce trimming expressions for localizing changes that 
implement a volume feature modification. For ex- 
ample, let A be a volume feature subtracted in the se- 
quence defining a solid S (see Fig. 2 I ); (B - A )  - C 
its active zone is B - C. Only changes to A inside 
B - C need to be taken into account. 

5.2.2. Localization to the altered portion of the fea- 
ture. When a volume feature A is edited and replaced 
by X in a CSG representation of the solid S, a new 
boundary may be obtained without reevaluating the 

The symbol B in the above properties refers to what is 
formally called a branching node of A in S, i.e., a node that 
does not lie in the path from A to S, but whose parent node 
does. and are defined as intersections of such branching 
nodes or of their complements. 

entire boundary of the solid because changes are re- 
stricted to A x, the symmetric difference + between 
A and X [ 35], Consequently, in the example Fig. 21, 
only alterations in are needed in 
order to compute the boundary of the solid obtained 
by replacing A by X in the CSG tree of S. 

5.2.3. Combined localization. Let o and w represent 
respectively the empty set and the universe. Let 
denote the set represented by the tree of S in which A 
was replaced by X. The two previous results may be 
combined to yield: A proof 
of this equation may be derived from Equation (4)  
in [ 36], given that holds 
for any three sets, X, Y, and Z .  

5.2.4. Classifying additive and subtractive parts. The 
symmetric difference A X may be decomposed into 
two disjoint sets,‡ A - X and X - A ,  which can be 
treated separately. For example, when a negative (sub- 
tractive) volume feature A is replaced by X ,  a subset 
of A - X must be added to S and a subset of X - A  
must be subtracted (see Fig. 22 for an example). This 
section derives new CSG expressions that characterize 
these subsets and are simpler than the CSG expression 
of s§. 

Although is the smallest region where changes 
to A affect S, the classification of A - X and X - A 
against the CSG expression of in general contains 
unnecessary steps which can be eliminated using the 
following property; 

where is the portion of material added to A and 
where is the portion of material subtracted from 
A during the same operation. 

First consider the case of an additive feature A .  We 
have: = X - A and = A - X. For a proof, first 
we establish the following: 

The symmetric difference between A and X is defined as: 

‡ The term disjoint is used here for three-dimensional vol- 
umes whose intersection is empty or of lower dimension. 

§ Note that each one of these CSG expressions may be fur- 
ther trimmed down by removing all primitives that are disjoint 
from A - X( respectively X - A )  by using techniques discussed 
in [ 37]. 
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Fig. 22. Changes are confined to the symmetric difference: The solid S (left) is represented by a CSG tree 
defined in terms of a subtractive volume feature A .  Replacing A by X in the CSG tree of S may change the 
shape of S (center) only in the symmetric difference A X (right). Note that A - X is added and that 

X - A is subtracted. 

Since the interiors of and of are disjoint, 
the interiors of and are also disjoint. 
Therefore, since U and - are regularized, we also have: 

Consequently, subsets of need only be classified 
against subsets inside should be added to S, 
while subsets outside          may be discarded.’ Similarly, 
subsets of need only be classified against sub- 
sets outside should be subtracted from S, while 
subsets inside may be discarded.” 

The CSG expression of defined as is 
a complex as the combination of the CSG expressions 
for         and for and classifyingt a point with respect 
to may often require classifying it against I,” and 
against and then combining the result. The above 
result suggests that A needs only be classified against 
     and not against both and Similarly, 
needs only be classified against and not against 
both     and Significant improvements for algo- 
rithms that perform feature modification result. To 
further improve the performance of these algorithms, 
tree pruning and other space subdivision tech- 
niques[39, 40, 35, 41] may be used in conjunction 
with classification against     and Note, however, 
that this speed-up may suggest to add to S portions of 

that are already included in S, or to subtract from 
Sportions of that are not in S. These unnecessary 
additions do not invalidate the result but may corre- 
spond to redundant geometric calculations unless the 
representation scheme presented below is used. 

5.3. Mixed-dimensional geometric model 
To represent a solid part together with its additive 

and subtractive volume features, one needs to extend 
the boundary representation scheme and to provide 
support for representing decompositions of solids and 
of their complements in terms of boundaries of poten- 
tially overlapping features (Fig. 16). Furthermore, the 
construction of closing faces for surface features may 

Now note that for a subtractive feature, one may 
consider the complements of A and X to be additive 
features, and the same proof holds. 

¶ See Property 13 in [ 27]. 
See Property 12 in [ 27 ]. 
“Classifying” a point against a set consists of determining 

whether the point lies inside or outside of the set[ 38]. 
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Fig. 23. Space decomposition for editing a surface feature: The slot surface feature in the solid B U C U D 
(left) may be modified by creating the corresponding volume feature A and its modified version X, by 
constructing an SGC representation of the resulting space subdivision (center) and by setting the status of 

cells of A - X to IN, and of cells of X - A to OUT (right). 

involve splitting faces of the part model and inserting 
internal faces in the part or creating external faces in 
its complement. Objects with internal structures and 
external dangling edges and faces are not supported by 
conventional solid modellers, and thus richer schemes 
for geometric representations must be used. 

Several data structures that support representations 
of unions of quasi-disjoint subvolumes have been pro- 
posed (see [28-30, 42] for examples). Such schemes 
may be used to decompose a volume feature B into its 
active and inactive portions with respect to various 
Boolean combinations of other features. The Selective 
Geometric Complex (abbreviated SGC) data structure 
permits representation of such decompositions together 
with the modelled part, whether the feature has been 
added or subtracted [ 29], 

SGCs provide a common framework for represent- 
ing objects of mixed dimensionality, possibly with in- 
ternal structures and incomplete boundaries. SGCs are 
composed of finite collections of mutually disjoint cells, 
which are open connected subsets of n-dimensional 
manifolds and generalize the concepts of edges, faces, 
and vertices used in most solid modellers. The con- 
nectivity between such cells is captured in a very simple 
incidence graph, whose links indicate “is-a-boundary- 
of” relations between cells. By setting the status (at- 
tribute) of certain cells to IN and others to OUT, one 
can associate various pointsets with a single collection 
of cells. When a cell’s status is IN, the cell is called 
“active,” and the pointset spanned by the cell is con- 
sidered as part of the object; otherwise it is considered 
as part of the complement of the object. Consequently, 
the pointset of an SGC object needs not be homoge- 
neous in dimension, nor even be closed or bounded. 
To support useful operations on SGCs. Boolean and 
other set-theoretical operations (closure, interior, 
boundary) have been decomposed into combinations 
of three fundamental steps for which dimension-in- 
dependent algorithms have been developed [ 29] : 

a subdivision step, which makes two objects “com- 
patible” by subdividing the cells of each object at 
their intersections with cells of the other object; 
a selection step, which defines “active” cells, i.e., cells 
whose status is IN; and 
a simplification step, which, by deleting or merging 
certain cells, reduces the complexity of an object’s 

representation without changing the represented 
pointset and without destroying decompositions that 
are marked as important for applications. 

Furthermore, combinations of these steps may pro- 
duce a variety of special-purpose operations whose ef- 
fect is controlled by simple predicates, or filters, for 
cell selection. 

The subdivision step may be used to create a space 
decomposition that reflects the geometry of the part 
and of all its volume and surface features. Then, feature 
modifications may be performed by modifying the sta- 
tus of cells that belong to the appropriate volume fea- 
tures and the associated  I or U zones. Fig. 23 illustrates 
how the result of a sequence of operations may be 
modified by selecting a surface feature and modifying 
it by replacing the volume feature A with X. 

5.3.1. Application to model updating. A space de- 
composition technique may be used to split A X 
into connected cells that are entirely inside or entirely 
outside of both        and . Adding these cells to S or 
subtracting them from S only requires setting their sta- 
tus to IN our OUT. If such an approach is used, the 
main cost lies in the insertion of X in the space decom- 
position and in the classification of each cell of A X. 
The classification may simply be obtained by evalu- 
ating a Boolean expression. Using or instead of 
the expression for considerably reduces the cost of 
updating the model to reflect a feature modification 
(see Fig. 24). 

5.3.2. Volume feature deletion. A particular case of 
editing is deletion. A volume feature could be deleted 
by altering a specification stored in a procedural model 
and by reexecuting the procedural model to create a 
new geometric model without the undesirable feature 
The same result could be obtained directly by changing 
the status of all cells that lie in the intersection of that 
volume feature with its active zone. 

For example, to delete a feature A in (B U A) - C. 
it suffices to change the status of cells in A - (B U C). 
the active portion of A (Fig. 25). These changes can 
be done by traversing’ all the cells in A and classifying 

We assume that each feature has a reference to all the  
cells that it includes or that these cells may be efficiently iden- 
tified in the SGC. If no provision is made for such a direct 
access, all cells of specific dimensions may have to be traversed 
to see if they belong to the appropriate feature. 



Feature-based editing and interrogation 65 

Fig. 24. Active zone in feature modification: S defined as (B U A )  - Cis shown (left) superimposed on the 
space decomposition obtained by using the boundaries of the primitives A ,  B, C, and X. The primitive A 
is a misplaced additive volume feature in Sand must be replaced with a similar feature X slightly shifted to 
the left and upwards. To obtain the correct object, first cells that belong to A - X are classified against 
(here = B). The status of cells of A - X outside of is set to OUT. Note that one of these cells was 
already OUT (center left). Then, cells of X - A are classified against I," (here = The status of the 
cells of X - A inside is set to IN (center right). Note that one of these cells was already IN. The result 

(cells whose attributes are IN) is shown (right). 

each one against B U C. Since each cell contains (in 
its history) a list of the features to which it belongs, 
this classification amounts simply to evaluating a 
Boolean expression. 

As discussed earlier, instead of changing the status 
of only the cells of A that lie in its active zone, one 
could simply set to OUT the status of cells of A that 
lie in its U-zone when A is an additive volume feature, 
or set to IN the status of cells of A that lie in its I-zone 
when A is a subtractive volume feature. 

For example, in the solid (B U A )  - C (Fig. 25), 
the U-zone, = B, is simpler than the active zone, 

and thus a saving in classification time 
is achieved. This simplistic example does not reflect 
the importance of such savings, and one should con- 
sider that classification has to be performed for a large 
number of cells and that it may involve large Boolean 
expressions for both and    . 

6. CORRECTIVE VOLUMES 
If a CSG tree representing the model is available, 

surface features could in principle be corrected by ed- 
iting the tree. Suppose that no single node of the tree 
represents the appropriate volume feature. Each face 
of the feature may still be associated with one or more 
half-spaces of the CSG tree, so that modifying the po- 
sition or shape of these half-spaces will affect the face, 
and thus the feature. 

Editing half-spaces directly in the original CSG tree 
has the following drawbacks: 

1. It may be difficult to recognize which half-space 
should be edited. Typically the boundary of more 
than one half-space coincides with each face, and 
techniques proposed in [ 27] for classifying half- 
spaces against their active zones (to predict which 
half-spaces will affect which portion of a particular 
face) may not be sufficient. 

2. Editing half-spaces in a CSG tree to alter a particular 
portion of space will often produce undesired side- 
effects in other locations. 

3. Editing half-spaces and not solid primitives can 
produce unbounded subsolids and makes it very 
difficult to implement popular performance-im- 
proving techniques for CSG algorithms that use 
bounding boxes around CSG primitives. 

4. Designers' intentions expressed in a posteriori al- 
terations of half-spaces are difficult to specify and 
to capture in the sequence of a procedural model. 
Consequently, the edited specification is not well 
suited for reparameterization or reuse in a different 
context. It is not even suited for further editing that 
involves a reevaluation of the sequence. 

Reorganizing the CSG tree to regroup the relevant 
half-spaces of the feature into a single node that can 
be edited as a feature is not always possible since the 
result of evaluating a general Boolean expression is 
order-dependent. Consequently, this section proposes 
to use Boolean operations to edit surface features (the 
previous section dealt with volume features), These 

Fig. 25. Deletion using the Active Zone: Given the set S defined by (B U A )  - C (left) the additive volume 
feature A may be deleted by changing the active attribute of all the cells that lie in the active portion of A 

(center), which i s  A  - (B U C). The result is shown (right). 
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Fig. 26. Face extrusions: Extruding a planar base face (left) produces a volume (right) that is bounded by 
the base face and its offset by r, and by side faces obtained by sweeping the edges of the base face. 

operations involve corrective volumes which are added 
to-or subtracted from-a solid model to alter a par- 
ticular feature. These corrective volumes could be de- 
rived from volume features themselves derived from 
surface features by generating closing faces, but, as 
pointed out in Section 2, the derivation of closing faces 
remains a research issue. Furthermore, once a volume 
feature A is derived from the surface feature, it is not 
easy to produce a modified volume feature X so that 
A - X and X - A may be used as corrective volumes 
and added to-or subtracted from-the model to alter 
the surface feature without side-effects. Instead, the 
author proposes to construct corrective volumes by 
extruding appropriate faces of the surface feature, Ex- 
amples of these extrusions are provided in the following 
part of this section. 

Once corrective volumes are computed, whether 
through closing faces and volume features or through 
face extrusions, they must often be trimmed to avoid 
undesirable side-effects before they can be combined 
with the solid. Automatically computing the correct 
trimming expression is impossible unless the expression 
“undesirable side-effect” is formally defined. Indeed, 
the correctness of a feature editing operation depends 
on the function of the edited feature and on the func- 
tion of its geometric relation with other features. 

6.1. Extrusion of faces 
A simplest corrective volume may be obtained by 

extruding a planar face called the base face along the 
normal to its supporting plane (see Fig. 26 for an ex- 
ample). Such a corrective volume may often be ade- 
quate to change the width or depth of features that 
have orthogonally oriented planar faces. 

The extrusion of a planar face F by a distance 
r is a volume formally defined by † The interior of a face is the face minus its bounding edges, 

‡ The normal to a cone is not defined as its apex. 
cusps, or singular points. 

where is the normal unit vector to the surface con- 
taining F. ‘ 

For faces on curved surfaces, a normal extrusion 
will be used (Fig. 27).  It is simple extension of the 
above extrusion. The normal extrusion of a 
curved base face F by a distance r is a volume formally 
defined as: 

where is the normal unit vector to F a t  point p 
and where iF is the relative interiort of F with respect 
to its supporting surface. The orientation of the normal 
is chosen in a consistent manner throughout F. Note 
that, for the semialgebraic surfaces popular in solid 
modelling, is well defined for the smooth portions 
of F (the relative interior of the base face), but needs 
not be well defined for the bounding edges of F, its 
cusps, or singulanties.† Therefore, is obtained 
by extruding a nonclosed face and thus does not neces- 
sarily contain all its boundary; it needs to be regular- 
ized. can often be computed from the cross 
product of partial derivatives when F is defined in 
parametric form, or from a gradient when F is defined 
by an implicit equation. Such extrusion volumes are 
very simple to obtain for natural surfaces (see [43]). 

Applications of extrusions and normal extrusions to 
feature modification are illustrated in Figs. 28 and 29, 
where the extrusions are used as corrective volumes 
and added to the part to modify a feature. 

Such applications are clearly limited to simple cases 
where, for example, the extruded base face and the 
abutting faces meet at a right angle. Fig. 30 shows a 

Fig. 27. Normal extrusion for curved base faces: A normal extrusion of a curved face that lies on a cylinder 
(left) is a volume (right) bounded by the original face, its offset by r, and by side faces that are subsets of 
ruled surfaces sustained by the edges of the original face. Note that the side faces are in the closure of 

but are not in 



Feature-based editing and interrogation 67 

Fig. 28. Application of extrusion: To change the depth of the slot feature (left), a corrective volume (center) 
may be generated by extruding the floor of the slot and subtracted from the part (right). 

counterexample for which a corrective volume gen- 
erated by extruding a base face is inadequate. 

To circumvent such limitations, an extended cor- 
rective volume may be generated and then trimmed 
using the abutting faces (see Fig. 31). 

The extended corrective volume may be obtained 
by extruding an extension of the base face. A good 
candidate to use as base face extension is the entire 
surface that contains the base face, but in certain cases, 
to avoid side-effects in distant areas, it may be pref- 
erable to consider only a simple subset of that surface. 
This technique has been proposed by Requicha and 
the author in [ 12 ] for generating local fillets and blends 
by ( 1 ) growing and shrinking Boolean combinations 
of appropriate half-spaces, by (2) subtracting the result 
from the original combination to obtain an extended 
blend, by (3) trimming the blend to the desired shape 
near its ends, and by (4)  adding the resulting corrective 
volume to the part or subtracting it. 

Extended corrective volumes derived from a single 
base face are convenient for modifying a single di- 
mension of a simpler feature (e.g., the width of a slot 
or the radius of a hole). In general, however a corrective 
volume involves more than one base face (for example, 
when the depth of a pocket with an uneven floor is to 
be changed). For such cases, instead of combining sev- 
eral corrective volumes, a single extended corrective 
volume may be obtained by extruding several faces 
along a common direction (Fig. 32). Such a generalized 
extrusion, of a set of faces F along a direction 
u, may be formally defined as the Minkowski sum [ 44] 
of F with the line segment joining the origin 0 with 
the point 0 + u. And thus: 

6.2. Automatic derivation of a default trimming 
expression 

Picking the base face and providing an offset distance 
does not in general provide an unambiguous specifi- 
cation for the corrective volume. It is thus necessary 
to provide facilities for automatically creating supersets 
of the desired corrective volumes and trimming 
expressions that produce the desired subsets. Trimming 
operations may involve nontrivial Boolean combina- 
tions of the half-spaces bounded by the abutting faces. 
This Boolean combination may, in principle, be de- 
rived from the entire CSG tree, if available, but this 
derivation may be difficult and will often require hu- 
man intervention. A possible approach to assist the 
designer and suggest a default trimming CSG expres- 
sion is to consider only half-spaces bounded by the 
faces of the solid that share edges with the base face 
and to eliminate other half-spaces from the tree. The 
correct Boolean combination of these half-spaces may 
be hard to derive, and the results may still be incorrect 
(see Fig. 33). The designer may have to provide an 
auxiliary trimming expression, but the system should 
be able to suggest a good default trimming expression. 

Clearly, corrective volumes should be confined to a 
region where they do not destroy the effects of other 
features. For example, they may be trimmed by some 
other (but not necessarily all other) volume features. 

Unfortunately, a surface feature, F, typically does 
not correspond to any individual node in the CSG tree 
and therefore is not associated with an active zone; the 
results derived in Section 5 may not be directly applied 
here. 

To provide an often reasonable default trimming 
expression, the concept of a virtual active zone may be 
used, The virtual active zone of a surface feature F is 
defined as the active zone of the lowest node Tin  the 

Fig. 29. Application of normal extrusion: To change the radius of a cylindrical hole (left), a corrective 
volume (center) may be generated through a normal extrusion of the cylindrical base face and added to the 

part (right). 
CAC 14:2-C 
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Fig. 30. Limitation of face extrusion: The geometric feature (left) has been edited by adding to the solid the 
corrective volume generated by extruding one of its faces (center). The result (right) is not correct. 

CSG tree of S at which the surface feature F appears. 
This technique may be automated, but is only effective 
if at T one could delete and create again the corre- 
sponding volume feature without changing the final 
result. In other cases, fine tuning “by hand” the au- 
tomatically generated virtual active zone may be nec- 
essary. 

of a rich data structure that captures various geometric 
entities and their relations. 

Filters for cell selection in SGCs may be used for 
validity testing. The next section introduces the query 
operators, which provide the vocabulary necessary for 
expressing the filters. The subsequent section dem- 
onstrates their application on a few simple examples. 

7. VALIDITY TESTS 7.1. Interrogation operators for SGCs 
Previous sections dealt with techniques for assisting Filters will be expressed in terms of the following 

the designer in performing object modifications using queries that can be made to an SGC, O, or to a par- 
a feature-oriented syntax. It has been assumed that no ticular cell, C, of O. A list of typical filters, expressed 
automated solution exists and that human intervention as methods of cell or SGC objects, follows. 
is necessary to correct the side-effect of these editing 
operations. To further assist the designer, the system O.cells( k )  returns the collection of cells of dimension 
should support facilities for interrogating important 
properties of features. We shall refer to these properties O.skeleton( k )  returns the collection of cells of di- 
using the global term of validity. 

The validity of a feature or of a compound feature C.boundary returns the collection of cells that 
greatly depends on the nature of the feature and on 
the function played by the feature in a particular ap- C.star returns the collection of cells bounded by C. 
plication. Addressed here are only the qualitative (or C.dimension returns the dimension of C. 
discrete) validity issues that can be expressed id terms Given a cell D of C.star such that D.dimension 
of the presence or absence of specific cells in SGC = C.dimension + 1, C.nbhd(D) returns leftdir, 
structures. (Many other quantitative criteria may be rightdir, or bothdirs. The value leftdir means that, 
easily addressed through geometric measures, derived given the definition of “left” and “right” with respect 
from features, as described in [4].) Cells of in terest to an orientation of C in the manifold containing D 
have a specified dimension and belong to the appro- as an open subset, D lies on the “left” of C. Similarly, 
priate combination of features. Note that this approach when C.nbhd( D )  returns rightdir, C bounds D on 
is not based on matching subsets of the adjacency graph the “right.” bothdirs means that C is an interior 
of a boundary representation, but on the interogation boundary “surrounded” by D, or more precisely that 

k in O. 

mension less or equal to k in O. 

bound C. 

Fig. 3 1. Extended corrective volumes: To raise the floor of the slot (left) without modifying the position of 
its walls, an extended corrective volume is generated and trimmed (center). The result is added to the part 

(right). 
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Fig. 32. Corrective swept volumes: To raise a slot in the model (left) without changing the shape of its floor, 
a corrective volume is obtained by sweeping upwards all the faces of the slot (center left), and then by 
trimming the result (center right) and adding it to the model (right). The dimensions of the floor remain 

unchanged and therefore the swept volumes of the different faces have different thickness. 

C is contained in the topological interior (with re- 
spect to the manifold containing D) of the topological 
closure of D. 
C.history returns the set of features to which C be- 
longs. 
Finally, C.status returns IN or OUT depending 
whether the cell is considered as actively contributing 
to the pointset of O or not. 

For more formal definitions of these operators, the 
reader should consult [ 29]. 

7.2. Examples of application 
Validity criteria are domain dependent, and the goal 

of this paper is not to derive them but to illustrate a 
technique for expressing them. Three simple examples 
involving a block of material and two volume features 
will be used. Simple tests that characterize each situ- 
ation are proposed. These tests do not involve any geo- 
metric calculations, but simply search the SGC struc- 
ture for cells that satisfy appropriate selection criteria. 
In fact, to improve the interrogation performance, ref- 
erences to cells of the SGC could be organized in a 
data base and accessed using their history, dimension, 
or other characteristics by standard data base queries. 

The local inaccessibility from the top of a slot volume 
feature A in a part B may be detected by checking 
whether the “roof” face, F1, of A is connected on the 
outside (with respect to A )  to a full-dimensional cell 
of B (Fig. 34). The test may be performed by selecting 

cells D of F1 .star that contains B in their history and 
such that F1.nbhd(D) = leftdir. (For simplicity, we 
assume that F1 is oriented so that the leftdir direction 
points toward the outside of A.) 

Of course, the foregoing filter is not adequate for 
global accessibility, which may require performing 
Boolean operations on auxiliary volumes, such as the 
volume swept by the portion of the feature that is visible 
from the direction from which the feature is to be ac- 
cessed. 

To find whether two slots A and Care adjacent along 
a common face or not (Fig. 35), it suffices to inquire 
whether a 2D cell, or face, F2 exists such that it bounds 
a 3D cell of A on one side and a 3D cell of C on the 
other side. 

The search may be confined to the common 2D 
cells of the boundaries of A and C, which may be ac- 
cessed directly if a directory of cells that belong to each 
feature is maintained. 

To test whether a slot Cis contained in a slot A (Fig. 
36), or more generally whether A and C interfere, it 
suffices to query if there is a three-dimensional cell 
whose history contains both A and C as well as B. 
Again, the selection may be efficiently performed by 
standard data base queries on the directories of cells 
that belong to A, B, and C organized by dimension. 

8. CONCLUSION 
Interactive editing of CAD models may be simplified 

by the use of volume and surface features. Surface fea- 

Fig. 33. Incorrect trimming CSG: To raise the floor of the slit in the model (left), an extended corrective 
volume is computed (center left). CSG expressions defined only in terms of half-spaces bounded by the 
faces of the original model are not adequate for trimming the corrective volume. An example of an incorrectly 

trimmed corrective volume is shown (center right), and the resulting model is shown (right). 
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Fig. 34. Testing top accessibility: To distinguish between the correct positioning of the slot feature (left) and 
the incorrect one (right), one can simply inquire whether, in the corresponding SGC that represents the 
space decomposition, the roof face El of slot A is connected on its outside to full-dimensional cells of B. 

tures are interactively selected by the user from existing 
faces of a model. Volume features may be created by 
addition or subtraction of material, or derived from 
surface features by defining the necessary closing faces. 
This paper addresses the issue of interrogating such 
volume and surface features as to their validity and 
their relation to each other and to the final part. It also 
proposes techniques for editing the model by modifying 
or deleting its features. 

Interrogation techniques are based on a scheme for 
representing mixed-dimensional pointsets with internal 
structures. In that scheme, space, i.e., the modelled 
part and its complement, is subdivided into connected 
cells (volumes, faces, edges, and vertices) such that all 
points of any given cell belong to the same set of fea- 
tures. Feature validity and particular relations among 
features may be easily characterized by the existence 
or the absence of cells of specific dimensions associated 
with specific sets of features. 

Model editing to alter or delete a volume feature 
may be performed by using a procedural representation 
of the designer's specification, locating in it the com- 
mand that created a particular volume feature to be 
modified, editing this command, and reexecuting the 
entire proceduraI model. Reexecuting means comput- 
ing the boundary of the geometric model, which may 
be an expensive process. When a CSG expression for 
the part is available, the reexecution may be limited 
to a particular domain defined by the intersection of 
the volume feature with its active zone. This technique 

may be adapted to surface features by providing closing 
faces which define corresponding volume features and 
by considering the role these volume features play with 
respect to the CSG tree. On the other hand, surface 
features may be directly modified by constructing cor- 
rective volumes and by combining them to the part 
model through addition or subtraction. The use of ex- 
tended geometric representations of sets with internal 
and external structures permits calculation of the effect 
of feature deletion without further geometric calcula- 
tions. 

Global access to the geometric elements of a partic- 
ular feature is provided through intentional features, 
to which may be associated validity rules and methods 
for evaluating these rules or for measuring important 
properties of the feature. Intentional features may be 
created automatically when feature-based shape-mod- 
ifying operations are used or by interactively selecting 
existing faces. Intentional features do not directly point 
to any geometric entity, but carry an unevaluated 
expression, constructed at feature creation or selection, 
which, when evaluated, returns appropriate geometric 
elements, if they exist. This indirect approach prevents 
inconsistencies between an abstract list of assumed 
features that could characterize some important aspects 
of a part and the actual presence and geometry of these 
features in the part. This point is essential if further 
shape modifications, done either by editing and re- 
playing the designer's specification or by creating new 
features, can alter the geometry of a previously defined 

Fig. 35. Testing adjacency: For process planning, the two adjacent slots A and C (left) must be treated 
differently from the two disconnected slots (right). 
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Fig. 36. Testing containment: Machining a slot C that lies inside a slot A may result in suboptimal manu- 
facturing processes. Therefore, such a situation (left) must be distinguished from a normal situation where 

the two slots are disjoint (right). 

feature to the point that it no longer exhibits the ex- 
pected geometric characteristics. 
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