
Comput. & Graphics Vol 14, No 2, pp 149-172, 1990 0097-8493/90 $3 00 + .00
Printed in Great Britain © 1990 Pergamon Press plc

Features and Geometric Reasoning

ISSUES ON FEATURE-BASED EDITING AND
INTERROGATION OF SOLID MODELS

JAROSLAW R. ROSSIGNAC
IBM, Research Division, T. J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598

Abstract-Operations that create additive or subtractive volume features, such as bosses or slots, simplify
the computer aided design of mechanical parts. Surface features, whether extracted automatically or selected
interactively, group functionally related boundary elements, and thus provide an expedient interface between
CAD systems and analysis or manufacturing applications. Despite much progress in CAD, design remains
an iterative process and involves error-prone modifications of previous solutions. Features should in principle
offer a high level vocabulary for characterizing errors and for specifying how they should be corrected. This
paper points out the semantic ambiguities of simplistic feature-based commands for editing models. It
recommends procedural models for editing volume features, and corrective volumes for editing surface
features. It shows how space decomposition techniques and CSG expressions based on active zones reduce
the cost of executing an editing command. Error detection may be automated by supporting intentional
features, which correspond to the desired characteristics of the model, and by endowing them with domain
dependent validity criteria expressed in terms of associated geometric elements. The paper demonstrates
that validity may be tested by simply interrogating a mixed-dimensional geometric structure which is used
to represent not only the model, but also the interactions between the geometric elements associated with
intentional features.

1. INTRODUCTION

Solid modelling improves the efficiency of the design

mulating validity checks that assess the compliance
of the model with the designer’s intent.

process for manufactured parts by supporting the geo-
metric representations of these parts. It provides

Expressing and performing engineering changes or
simply corrections of design errors may be eased by

graphic feedback to the designer and offers interfaces
to some analysis applications. Despite recent Progress
in computer hardware and in interactive graphics,
geometric design of three-dimensional shapes remains
a complex and time consuming task. Since geometric
representations Of complex mechanical parts tend to
be verbose, various abstractions, globally called geo-
metric features, are often used to characterize certain
types of shapes or to refer to Portions of a part model
that may be important to the designer or to an appli-
cation program.

Features are used in Computer Aided Design and
Manufacturing for a variety of purposes:

Geometric features provide a concise description of
the parts characteristics[1] and thus simplify group
technology and process planning. They also facilitate
the communication between designers and solid
modelling systems.
Features provide a mechanism for attaching product
or manufacturing information and various attributes
to specific parts of a geometric model (see for ex-
ample [2] for attaching tolerance information to
features).
The properties intuitively associated with common
feature types define many convenient shape altering
operations[3] that attempt to create features of
specified types and dimensions.
Access to the geometric elements that compose a
feature simplifies the interrogation of shape by pro-
viding a naming scheme for sets of boundary ele-
ments [2], a convenient vocabulary for expressing
relevant dimensions and positions [4] and for for-

using geometric features [5] .
This paper focuses on the last two issues, namely

the use of geometric features to automate-or at least
simplify-the editing of the solid model and the
checking of the model’s compliance with functional
requirements (validity conditions).

Most CAD models of 3D manufactured parts are
created by combining and incrementally modifying
simple models. These combinations and modifications
are often conveniently expressed in terms of Boolean
operations. The primitive shapes from which the mod-
els are constructed are often restricted to arbitrarily
positioned and sized solid primitives (blocks, cylin-
ders, spheres ...), generic volume features (holes, slots,
bosses ...), and linear or circular extrusions of 2D re-
gions. The resulting part models can thus be repre-
sented by a CSG (Constructive Solid Geometry)
tree [6], which leads to certain algorithmic advantages
(see [7-9] for examples) and to an obvious archival
conciseness.

CSG expressions may be complex, and the end-user
often prefers to interact with a boundary model, which
is algorithmically derived from CSG [10] and contains
the list of faces and their adjacency graph [11]. There-
fore, it is important to develop techniques for inter-
actively specifying validity conditions and modifica-
tions in terms of boundary elements (faces, edges, and
their incidence graphs) rather than in terms of CSG.
Domain-dependent features provide a particularly
convenient vocabulary for accessing relevant groups
of boundary elements. On the other hand, direct
boundary editing is error-prone, and editing operations,
even if specified in terms of boundary information,

149

50 JAROSLAW R. ROSSIGNAC

should be translated into mathematically well-defined
(nonambiguous) operations, such as Boolean set op-
erations or global rounding and filleting opera-
tions[12]. Besides, it is important to maintain a CSG
representation of the model and to express validity
conditions in terms of CSG so that the model can be
parameterized, easily edited, and reused.

This paper studies the translation process, which
takes validity conditions or model modifications ex-
pressed in terms of features (and thus of boundary
elements) and performs the appropriate model mod-
ifications using CSG operations. Due to a lack of for-
malism of the semantics of feature-based specification,
automatic translation remains a challenging research
goal (some pitfalls of a “naive” translation process are
pointed out in Section 3). Several new or recently de-
veloped techniques are discussed, which do not always
provide the correct translation, but at least increase
the designer’s vocabulary or can automatically generate
a tentative solution, which may have to be further ad-
justed by the designer. Furthermore, the paper ad-
dresses the issue of efficiently performing the model
modifications or the validity tests by using informa-
tionally rich geometric structures and properties of
Boolean expressions.

The paper is organized as follows:

The basic concepts and terminology are introduced
in Section 2.
Section 3 points out some of the limitations of a
straightforward use of features for editing and inter-
rogating solid models. This section focuses on con-
cepts and techniques rather than on their historical
evolution or implementation, (For a more formal
survey of the literature on features, the reader should
refer to [13, 14].)
The importance of procedural models for capturing
the designer’s intent into a flexible parameterized
sequence is emphasized in Section 4. To edit a feature
explicitly created by an operation, it may be simpler
to “ask” the feature what operation created it, change
the parameters of that operation, and reexecute the
entire sequence.
Reexecuting the entire sequence amounts to evalu-
ating the boundary of a CSG representation, and
may be very costly for large CSG models. A new
approach that reduces the reevaluation cost is pre-
sented in Section 5. It derives a CSG expression for
the regions that must be added to, or subtracted from,
the solid model. Furthermore, Section 5 also presents
a recently developed mixed-dimensional geometric
representation called SGC (Selective Geometric
Complex). Algorithms for SGCs generate a subdi-
vision of space imposed by the features. This sub-
division can be used to reduce considerably the
amount of geometric calculations and of logic
expression evaluations necessary to perform the fea-
ture-editing operations.
Some features do not correspond to a single opera-
tion, and it may be too complicated to identify all
the operations in the sequence that must be edited

in order to rectify an “invalid” feature. Section 6
demonstrates on some simple examples how correc-
tive volumes, obtained by extruding feature faces,
can be used to perform simple feature alterations
without reexecuting the design sequence. In more
complicated situations, these corrective volumes
must be trimmed before they can be added to-or
subtracted from-the model of the part. Without
the trimming step, side-effects may appear, especially
when several features interact or when compound
features incrementally created by successive oper-
ations, are edited. Trimming is best performed using
Boolean operations, but producing a timming CSG
expression may prove difficult and remains the de-
singer’s responsibility.
Section 7 addresses the problem of feature validity.
Specifically, it shows how features may be efficiently
tested by interrogating the corresponding SGC rep-
resentation.

2. BASIC CONCEPTS AND TERMINOLOGY
This section clarifies the distinction between inten-

tional features and their geometric embodiment, and
between volume features and surface features. It also
introduces the CSG notation used in this paper.

2.1. Intentional features and their geometric embod-
iment

A distinction should be made between geometric
features and intentional features. A geometric feature
is a collection of geometric elements (for example, faces
or volumes) that form a subset of the part’s interior,
boundary, and / or complement. An intentional fea-
ture [15] is an abstraction for accessing groups of geo-
metric elements and for associating with them a type
and consequently certain properties defined for all the
features of this particular type. For example, an inten-
tional feature of type slot may be associated with a part
model. This association indicates that the designer in-
tends to have a slot in the model, i.e., a void bounded
on three sides by faces of the model. The intentional
feature contains references to the corresponding faces.
However, due to model manipulations, the referred
faces may have been modified or even deleted from
the models’ boundary. Whatever remains of them and
of the associated void constitutes a geometric feature
that may no longer exhibit the properties associated
with a slot,

Inconsistencies between intentional features and the
actual geometry of the part are avoided by treating
intentional features only as hints and by relating them
to geometric elements through collections of uneval-
uated references. It is acceptable that some, or all, of
these references do not correspond to any geometric
element of the model’s boundary at some particular
stage during the design process. Even if all geometric
elements referenced in an intentional feature are pres-
ent in a geometric model, their shapes and positions
with respect to the rest of the model need not comply
with the characteristics usually associated with the
particular feature type. For example, an intentional

feature of type cylindrical hole could be associated with
geometric elements (faces) that have been removed
from the model’s boundary by some Boolean opera-
tion, and thus do not correspond to a “valid” hole. In
such situations, the intentional feature is said to be
invalid, but should not be discarded, because the de-
signer may have produced (intentionally or not) tem-
porary situations, or instances of the model, where
many previously defined intentional features are in-
valid, The overall validity may later be restored by
repositioning a subsolid or adjusting a parameter. The
designer should not be required to redefine all inten-
tional features that went through an invalid transition
stage.

Furthermore, feature validity is very subjective and
in fact depends on the role the feature plays with respect
to a particular application. To take a simplified ex-
ample, a cylindrical hole is a valid “detail feature” to
be discarded for analysis purposes only if its radius is
sufficiently small; on the other hand, it is a valid
“manufacturing feature” for process planning only if
it is empty and accessible. Feature validity criteria may
be expressed in terms of validity rules, which are logical
predicates defined in terms of the referenced geometric
elements and of their existence, shape, and relation to
other geometric elements of the model. Evaluating the
model’s geometric references is therefore necessary to
establish the validity of an intentional feature with re-
spect to any one of the instances (or stages) through
which a solid model evolves during the design process.
Consequently, the interrogation of invalid features
plays an essential role in correcting design errors [4].
Typically, the presence of an intentional feature of a
certain type, valid or not, implies some intention that
the designer has regarding the functionality of some
portion of the part. Thus, intentional features may
provide important hints for model alterations and
manufacturing process planning.

2.2. Constructive Solid Geometry (CSG)
CSG (Constructive Solid Geometry)[6] refers to an

unevaluated representation scheme for solids obtained
by combining, in Boolean expressions, simple primitive
shapes of arbitrary dimensions and positions. Solids
specified in that way may conveniently be represented
by a binary tree whose leaves correspond to primitive
shapes, whose internal nodes correspond to Boolean
operations and represent subvolumes, and whose root
represents the final solid. Often, the primitive shapes

are expressed as the intersection of closed half-spaces.
Commonly used half-spaces (planar, cylindrical,
spherical) are mathematically defined as the set of
points for which the value of a simple linear or qua-
dratic function is negative or null. For practical im-
plementation reasons, solid models are often restricted
to be r-sets (a subclass of closed, bounded three-di-
mensional sets with no dangling boundary elements
and with a finite number of faces and edges) [16]. They
are often represented in terms of their boundary, i.e.,
a list of their faces (in turn defined in term of their
bounding edges) often structured in an adjacency
graph [11]. To guarantee that results of Boolean op-
erations are r-sets, a regularized version of these op-
erations is used. It performs the standard operations
and then removes the dangling and interior faces and
edges and makes sure that a valid boundary is part of
the pointset. Theoretically, this cleaning operation
amounts to taking the topological interior of the point-
sets produced by the Boolean operation (this eliminates
the exterior dangling faces, edges, and vertices), and
then the topological closure of the result (which
amounts to putting a tight boundary around the point-
set). These transformations are illustrated in Figure 1.
In practice, the faces and edges of the model are clas-
sified using neighborhoods[10]. Only the elements that
play the appropriate role in the boundary of the solid
are kept. Throughout this paper, all Boolean operations
are regularized, unless explicitly specified otherwise.

The regularized Boolean operations will be denoted
U for the union, for the intersection, - for the dif
ference, and for the symmetric difference. Futher-
more, the regularized complement of any solid X will
be denoted For simplicity of notation, it is assumed
that the Boolean operators in Boolean expression are
ranked by decreasing priority as follows: complement,
intersection, difference, symmetric difference, and fi-
nally union.

Throughout this paper it is assumed that the part
models, or solids, are created by a sequence of oper-
ations that add or subtract material or move and com-
bine subsolids through Boolean operations. Therefore,
a CSG representation of such a model always exists,
even though the explicit construction and use of the
CSG tree may be avoided in certain cases.

2.3. Volume and surface features
An important distinction pointed out in[13] sepa-

rates surface features, which are collections of faces of

Feature-based editing and interrogation 51

Fig. I . Regularization: Three blocks, A, B, and C, shown in (a) are combined through a nonregularized
Boolean expression to produce the pointset shown in (b), which has a dangling face
and a missing face A regularized version of the pointset can be obtained by taking its interior, which is
an open set depicted in (c) that does not contain any of its faces, and then taking the closure of the result

and thus adding to the model all its faces, shown in (d).

52 JAROSLAW R. ROSSIGNAC

Fig. 2. Surface feature: Adding two bosses (volume features) to the part (left) creates a slot (geometric
feature) that can be recognized by the user and interactively associated with an intentional surface feature

for later references.

a part model[17-19], such as the walls and the floor
of a slot, from volume features, which are full-dimen-
sional pointsets of the part or of its complement, such
as bosses and holes [20,2 1]. Very rarely are both types
simultaneously supported in the same modelling sys-
tem (as they are in the prototype system MA-
MOUR [4]). Pratt [1 3] provides a detailed discussion
of the historical motivations, current merits, and
drawbacks of both types of features and concludes that
all surface features should be converted to volume fea-
tures, which, although slightly more complex to sup-
port, offer greater flexibility for interactive editing and
more information for driving analysis and application
programs. The author believes that both volume and
surface features are useful for editing and that a volume
representation of a surface feature need not always be
derived.

2.3.1. Volume features. Design is often done in an
incremental manner, by first laying out the overall
shape, and then adding or modifying details by creating
or editing features. The creation of a geometric feature
is necessarily accompanied by a modification of the
volume occupied by the part and io practice always
corresponds to either an addition or a subtraction of
material. This transformation may be expressed as the
union or difference between the part and the volume
feature. Because the volume feature may be viewed as
a sophisticated parameterized primitive shape, this ap-
proach is particularly effective in dual modellers which
derive a boundary representation from a CSG tree.

The computational expense of explicitly deriving the
effect of a Boolean operation [10] has discouraged cer-
tain developers of solid modellers from evaluating the
boundary of the part obtained by subtracting or adding
a volume feature. Instead, implicit features (also called
unevaluated) have been recommended [19].

A boundary representation of the feature is directly
derived from the designer’s specification without
checking if this representation is geometrically correct.

For example, an implicit feature of type slot may have
been defined by mistake as hanging in air, away from
the part, or buried inside the part and not accessible
from any side. This incompatibility problem does not
occur when intentional features are used instead of
implicit features because intentional features, although
unevaluated, carry no assumption as to their corre-
sponding geometry embodiment.

2.3.2. Surface features. The volume features re-
sulting from shape modifying operations do not always
provide a sufficient set of abstraction tools for inter-
acting with the model. For example, a slot feature of
interest for manufacturing applications may have been
created as a side effect of adding two parallel boss fea-
tures (Fig. 2). The slot may provide a convenient ab-
straction for expressing engineering changes (which,
for example, modify its width) and thus should be made
accessible to the designer through an intentional fea-
ture. The use of such a posteriori identified features
requires the association of intentional features with a
subset of an existing geometry. Often such association
is done by interactively selecting a collection of faces
of the part model and treating it as a surface feature.

Information provided by surface features may be
sufficient for some applications, such as planning for
surface finishing operations or as specifying and ana-
lyzing dimensions and tolerances [2]. Other applica-
tions, such as assembly or manufacturing planning,
heavily rely on the manipulation of volume fea-
tures [22]. Except for simple cases, the derivation of a
volume feature that corresponds to a surface feature
remains an open issue [13], because there is no unique
mapping from surface features to volume features.
Typically a selected set of closing faces is added to a
surface feature in order to produce a valid two-dimen-
sional shell that unambiguously defines a volume (Fig.
3). Desirable, or even correct, closing faces may not
always be obtained by extending existing adjacent faces
(Fig. 4). Methods or heuristics for automatically con-

Fig. 3. The volume of a surface feature: By adding a closing face (center) to the faces of a surface feature
(left), one obtains a valid boundary of a corresponding volume feature (right).

Feature-based editing and interrogation 53

Fig. 4. Complex closing faces: No simple set of closing faces
exists for the pocket surface feature.

structing such faces are currently limited to simple sit-
uations, and the designer’s intervention may sometimes
be required to generate acceptable solutions.

2.4. Compound features
Several volume or surface features may overlap. For

example, two orthogonal slots (volume features) may
have a common intersection volume (Fig. 5).

Similarly, a boss and the adjacent slot may share a
common vertical wall (Fig. 6) . Furthermore, interior
features, such as a boss on the floor of a slot (Fig. 7),
may be used as modifiers of other features. It is not
always necessary to capture such feature interactions
explicitly in the data structure. For example, a geo-
metric element (face or volume) may be shared by
several intentional features that are independently used
by different applications. On the other hand, a hier-
archical organization of intentional features may be
useful to represent explicitly compound features (Fig.
8) and also patterns of features (Fig. 9) when such
situations reflect the designer’s intentions or are im-
portant for applications such as process planning. The
nature of the geometric and topological interaction be-
tween the individual features of a compound feature
should be derived, when needed, from the actual ge-
ometry of the faces referenced by the individual fea-
tures.

3. Pitfalls
Because they provide an intuitive, domain depen-

dent, high-level vocabulary, both volume and surface
features are good candidates for facilitating the speci-

fication of shape modifying operations and the expres-
sion of validity Conditions, provided that one can make
the specification convenient and unambiguous.

For the designer’s convenience, these specifications
have to be unambiguous, so that the effect of shape
editing commands can be clearly understood and easily
predictable, and the validity rules must precisely char-
acterize invalid situations independently of the veri-
fication procedures employed. They also must be con-
venient, so that the specifications correspond to pow-
erful high-level operations that produce the desired
effect and so that validity rules are simple to formulate
and powerful enough to trap common design errors.
Furthermore, procedures for executing the shape
modifying commands and for evaluating validity rules
must be available.

This paper shows how extensions of several tech-
niques may be integrated to improve the specification
and the execution of unambiguous shape modifications
using compound or isolated volume or surface features.
It also shows how a rich geometric representation
scheme can be used to simplify the expression and
evaluation of validity rules. Most of these techniques
have been made possible by recent developments in
geometric modelling, which must now be integrated.
These developments will be briefly summarized, and
their potential applications to feature-based editing of
solid models will be demonstrated.

3.1. Limitations of simple shape modifying techniques
To stress the need for the approaches such as those

proposed in this paper, this section discusses the lim-
itations of several simple schemes that come to mind
as possible ways of using features to modify and test
solid models.

3.1.1. Implicit features. Formerly mentioned im-
plicit features may be trivially edited by modifying their
parameters. For example, an implicit slot can be moved
and enlarged by changing its position and its width.
However, as pointed out earlier, the existence of an
implicit feature with specified dimensions and position
does not guarantee that the corresponding geometric
feature with the expected characteristics is to be found
on the part. Thus, to produce a reliable description of
a part, implicit features should be treated as intentional
features, and the corresponding geometric features
should be constructed (if possible) and their validity
(i.e., compliance with functional requirements) as-
sessed.

Fig. 5. Two interfering features: Subtracting a slot (volume feature) from the model (left) that already has
a slot feature creates a model (center) in which the volumes of the two features interfere (right).

54 JAROSLAW R. ROSSIGNAC

Fig. 6. Shared face: Adding a boss (volume feature) to the model (left) and then subtracting a slot feature
(center) creates a model in which the boundaries of two adjacent features overlap along a portion of a face

(right).

3.1.2. Procedural models. To further automate the
generation of models and allow the designer to con-
centrate on high-level design decisions, it is suitable to
support the automatic derivation of CAD models from
a set of functional constraints specified by the designer.
The functional requirements specifying the geometric
characteristics of intentional features could be consid-
ered as constraints and combined with the geometric
constraints describing the part. A constraint solving
system would converge to a valid solution, if such a
solution exists, or declare that the specification (i.e.,
set of constraints) is invalid. Such a scheme would
have the considerable advantage of supporting incom-
plete specifications of features. For example, an inten-
tional feature of type slot could be defined and its di-
mensions specified, but its position would not be pro-
vided by the designer, except for one constraint: The
slot should be abutting on a given face of the object.

Such an automated approach has been given a se-
rious consideration [23,24], but it carries a high com-
putational cost and requires that designers provide a
complete set of consistent constraints before the CAD
system can create a model and return some useful
feedback. Deriving and maintaining such systems of
constraints, especially when additive (bosses) and sub-
tractive (pockets, slots, holes) features interfere is a
considerable endeavor, as pointed out in [25]. Fur-
thermore, a simple indication that the set of constraints
is incompatible does not provide useful hints as to what
part of the specification should be modified to produce
the correct result. A more practical approach is to build
models incrementally by transforming and combining
simpler models. A procedural rather than declarative
approach, in which the designers specify a sequence of

operations that transform a model in attempt to satisfy
constraints, has been described by Rossignac in [26].
It relies on the designer’s ability to decompose the
problem into an ordered set of subproblems that can
be solved one at a time. The procedural specification
(i.e., the sequence of operations that solve the individ-
ual problems) is saved and can be edited by the designer
and reexecuted on demand. This technique could be
used for feature-based editing by considering the im-
plicit features as intentional features to be created in
a predefined order. Reexecuting the specification would
attempt to create the geometric counterpart of the in-
tentional features at specified positions and would re-
port whether the creation was successful (i.e., whether
valid features have been produced).

Considering that a procedural model can be obtained
simply by storing the designer’s commands into a log
file and making the file available for modification and
reexecution fails to address three important problems:

1. Features successfully created during an execution
of the procedural model can be invalidated by the
subsequent creation of other features. Therefore, to
assess the validity of a design, intentional features
created at an early stage of the specification must
be preserved and methods for accessing the corre-
sponding geometric elements (whenever they exist)
and for testing the compliance of these elements
with feature validity rules should be available.

2. Feature parameters may be defined in terms of other
features. For example, a boss may be intended to
lie at the center of the floor of a rectangular pocket.
Although this relation may have been established
at the creation of the boss, subsequent editing of

Fig. 7. Nested features: Adding a boss feature in the middle of a slot feature (left) creates a model (center)
with a nested feature (right): The boss is inside the volume of the slot.

Feature-based editing and interrogation 55

Fig. 8. Compound features: A hierarchical organization of features may be used to represent a compound
feature made of a slot that contains two bosses, one of which has a hole (left). These relations can be
captured by creating additional intentional features of type compound that refer to other features instead of

referring to geometric elements (right).

the procedural model may alter the position of the
pocket. To preserve the relation between the posi-
tions of the two features, this relation must be cap-
tured in the procedural model and used to position
the boss at each execution.

3. Surface features are typically selected by the user
in an interactive mode, preferably using a graphic
cursor to pick the appropriate geometric elements
from a picture of the model on a computer screen.
Surface features in a model may be used to attach
tolerances or other manufacturing attributes to
particular portions of the model and to serve as
clues for process planning [5] , or simply to provide
constraints on the position and size of volume fea-
tures to be created later by the procedural model.
It is therefore essential that surface features, once
selected by the designer on one instance of a model,
be selected automatically when a new instance of
the model-is created. To support automatic rese-
lection, operations that select surface features must
be captured in the procedural model in such a
manner that their execution produces the desired
result, even when earlier parts of the procedural
model are modified.

Techniques for supporting procedural models to-
gether with intentional surface features and for cap-
turing relations between such features have been de-
veloped and implemented by Borrel, Nackman, and
the author, and are described in [4]. They will be briefly
reviewed in Section 4 and their applications to feature-
based editing will be discussed.

3.1.3. Local boundary modifications. If no proce-
dural model is available for editing and reexecuting,
or if the execution of the procedural model is costly,
the part model may sometimes have to be directly ed-
ited, or “patched.” Since a valid solid model is un-
ambiguously described by its boundary, boundary
“tweaking” seems an attractive technique for editing.
For example, the four vertices of the floor of the slot
in Fig. 10 could be raised to change the depth of the
slot. A new boundary representation would be readily
available if the floor and the adjacent faces were im-
plicitly defined by their vertices. However, such
boundary tweaking techniques may require major al-
terations of the boundary structure of the object. If
polyhedral modellers, if the geometry of the edges and
faces of the model are implicitly represented in terms
of vertex coordinates, a face (for example, the floor of

Fig. 9. Patterns of features: A pattern of hole features (left) may be represented by a compound feature
referencing the intentional features of each hole (center). The compound feature has a description of the

pattern parameters (right) and can be used to access and interrogate the entire pattern.

56 JAROSLAW R. ROSSIGNAC

Fig. 10. Boundary tweaking: The floor of a slot (left) may be
raised by moving up its vertices (right).

a pocket) may be moved simply by displacing its ver-
tices. However, the vertices of each face must remain
coplanar. Coplanarity is guaranteed by forcing the ver-
tices of the face being moved to remain coplanar and
to move along extensions of the edges they bound.

The situation is more complicated when vertices
correspond to intersections of curved surfaces. Suppose
that the designer wishes to move only one face of the
feature and wants to express this modification in terms
of vertex displacement. Then vertices are constrained
to move along extensions of abutting (curved) edges
while simultaneously remaining on the edited surface
as it evolves. The number of degrees of freedom, which
specifies how many of the vertices may be moved in-
dependently, is dictated by the nature of that surface
and its acceptable deformations (scaling, rotations ...).

In addition, the validity domain, which specifies the
maximum amount of vertex displacement along each
edge so that the boundary structure (adjacency graph
between faces) remains constant, is defined by the ge-
ometries and relative positions of the faces. Restricting
the displacement of each vertex along the extension of
an edge so that it does not exceed the intersection of
this extension with other faces is not sufficient to guar-
antee that the resulting boundary will not be self-in-
tersecting (as is the case in Fig. 1 1).

An alternate approach is to modify the boundary
structure or to alter several faces simultaneously. A
simple example may be found in Fig. 1 1, where a ver-
tical left wall is added to connect the lowered floor to
the abutting cylindrical face, but in general it is difficult
to devise procedures for specifying these modifications.
Furthermore, detecting self-intersecting boundaries is

computationally difficult, and no unambiguous and
useful semantics has been defined for specifying how
self-intersecting boundary representations should be
corrected.

In conclusion, the semantics of boundary tweaking
operations is not well defined and the results may be
invalid. This paper thus proposes techniques that use
mathematically well-defined set theoretic operations
to alter features.

A possible approach would be to convert incorrect
surface features into volume features (by the insertion
of closing faces) and then delete these volume features
and create new correct ones. As pointed out earlier,
the set of closing faces is not unique for any surface
feature, and even a single suitable set may be hard to
produce. To overcome the “closing face problem,” a
technique based on corrective volumes, previously em-
ployed by Requicha and the author for local blending
operations[12], will be proposed in Section 6. Here,
it uses a generalization of sweeps or extrusions to create
solids that can be added to-or subtracted from-the
part in order to change the dimensions or positions of
geometric features,

3.1.4. Order dependency of volumetric alterations
A volume feature, whether directly created by a Boo-
lean operation or derived by closing a surface feature,
could in principle be modified by deleting it and, if
necessary, by creating a new volume feature with the
desired characteristics (Fig. 12).

Deletion of a volume feature may be obtained by
using the inverse of the Boolean operation that could
have been used to create it. For example, a subtractive
feature of type slot could have been created by sub-
tracting the corresponding slot volume from some pre-
vious representation of the part. Therefore, adding the
volume back, using a Boolean union, would delete the
feature. Unfortunately, this approach suffers from three
major problems, which could be qualified as “unde-
sirable side effects.”

1. As demonstrated in Fig. 13, the lack of associativity
properties of set theoretic Boolean operations do
not in general permit to undo the effect of sub-
tracting (respectively adding) a feature by adding
(respectively subtracting) it back. Specifically:

unless B C A , and similarly
unless

Fig. 11 . Validity problems: The depth of the slot (left) is altered by lowering its floor face. In the resulting
model, the boundary is disconnected and self-intersecting. To connect the boundary on the right side of the
slot, the right wall can naturally be extended to follow the vertices. On the left side, however, the wall is
cylindrical and the lowered vertices do not lie on its extension. They either have to be moved horizontally,
or a new vertical face must be created. In any case, the boundary is self-intersecting on the right side of the

slot, and therefore portions of it must be eliminated, which involves geometric calculations.

Feature-based editing and interrogation 57

Fig. 12. Editing by deletion and creation: A hole volume feature (left) may be moved by deleting it (center)
and by creating a new hole in the right position (right).

2. When additive and subtractive features interfere,
the order in which they have been created is im-
portant and in general cannot be altered without
producing undesirable side effects, such as the one
illustrated in Fig. 14.

3. Modifying features by deleting them and creating
new ones could modify or destroy other features
(see Fig. 15).

For solids created by combining simpler solids and
volume features through Boolean operations, correct
results may be obtained, without reevaluating the whole
Boolean expression, by confining the deletion of the
old feature and the creation of the new correct one to
the active zone of the old feature. Active zones have
been introduced by Voelcker and the author in [27],
and would correspond here to the portion of space
where the shape of the feature is important. A formal
definition and relevant properties of active zones will
be summarized in Section 5, and new properties for
applications to feature-based editing will be derived.

Instead of computing the active portions of all fea-
tures (i.e., their intersection with their active zones),
space decomposition techniques [28-30] may be used
to precompute and store the geometry of the active
portions of all features simultaneously, and thus to im-
prove the performance of algorithms that execute the
editing operations. Then, each editing operation may
be confined to the appropriate regions without re-
peating expensive geometric calculations each time.
Such an approach has been proposed by Pratt [13] using
an extension of the radial edge structure developed by
Weiler[28]. Section 5 briefly presents a different, more
general, and slightly simpler structure called Selective
Geometric Complex (abbreviated SGC) described by
O’Connor and the author in [29]. Algorithms for sub-

dividing SGCs may be used to decompose space into
cells of dimension three or less, such that given any
cell C and any volume (or even surface) feature F, C
either lies entirely in the interior of F, entirely in its
complement, or entirely in the boundary of F (when
C is a face and F is a volume feature). Each cell of an
SGC “remembers” what features it belongs to and is
associated with an attribute which defines whether the
cell is part of the represented solid or not. Fig. 16 il-
lustrates such a decomposition. The applications of
the SGC structure to the deletion and modification of
features within their active zones will be demonstrated.

3.2. Limitations of simple interrogation techniques
Detecting whether the geometry associated with an

intentional feature satisfies the validity requirements
explicitly associated with that particular feature-type
is extremely convenient for validating a design and
automatically verifying that changes produced by add-
ing new features or modifying old ones did not create
undesirable side effects. However, the validity of each
individual feature may not be sufficient to assess the
validity of a complex part, and sometimes, a relation
between several features is also important. Most of
these validity requirements may be explicitly attached
as rules to single or compound features [4], and au-
tomatic procedures for checking feature validity may
be invoked, as described in Section 7.

Some validity rules may be characterized in terms
of topological relations between volume features and
can be expressed in terms of Boolean operations be-
tween a volume feature and the part it is supposed to
modify. For instance, when a slot B is to be subtracted
from a part model A (Fig. 17 center), one can detect
situations where the slot is too deep and where its floor

Fig. 13. Side effects: In the slanted top face of the model (left), a slot is created (center) by subtracting a
block. Adding the block back (right) does not restore the original model.

58 JAROSLAW R. ROSSIGNAC

Fig. 14. Order dependency: Modifying a solid (left) by first creating a slot (top center) and then a boss (top
right) produces a different result than first making the boss (bottom center) and then the slot (bottom right).

is missing in the boundary (Fig. 17 right) by
checking whether represents the empty set or
not (this works only if the floor is not coincident with
the bottom face of A) .

When regularized Boolean operations are used, such
simple tests are insufficient to distinguish between sig-
nificantly different situations. For example, a distinc-
tion between the correct situation and the unacceptable
configuration in Fig. 18 may not be obtained as pre
viously suggested by considering because B
- A is empty in both cases. Clearly, in most cases, a
more complex test involving Boolean combinations of
auxiliary solids may be provided, but each situation
and each test may require different types of auxiliary
solids. For example, a “roof,” thin block over B
may be used: is empty in the correct situation
of Fig. 19, but is not empty in the invalid case of the
same figure. These tests are expensive to perform and
may require constructing and intersecting complicated
auxiliary volumes. Furthermore, this approach is lim-
ited to volume features. An alternate approach is pro-
posed in Section 7 which demonstrates that most com-

Testing whether a Boolean combination of two or more
solids is empty requires evaluating its boundary or performing
a Null Object Detection test on a CSG representation[31,
27].

mon validity criteria may be tested by querying the
existence of lower-dimensional parts in an SGC rep-
resentation of the space decomposition defined in terms
of features.

4. PROCEDURAL MODELS
As pointed out in the introduction, procedural

models are particularly convenient for trial-and-error
geometric design, because they capture the designer’s
specifications in a form that can be easily understood,
edited, and repeatedly executed. This section briefly
presents a prototype system for procedural modelling,
called MAMOUR, which has been implemented in
the object-oriented language AML/X [32] and de-
scribed in more details in [4, 5]. MAMOUR supports
intentional features with validity rules and can keep
track of relations between different features.

4.1. Sequences
Such a system offers an adequate platform for in-

tegrating the techniques presented in this paper. As the
user of MAMOUR creates and transforms a part
model, the system automatically constructs a proce-
dural model composed of an ordered set of operations
that measure geometric (or other) properties, create or
move primitive or subsolids, define intentional features,
or perform Boolean operations between objects. The

Fig. 15. Unintentional feature destruction: In a model with a through-hole (a), a vertical slot (b) is created
in a wrong position. Deleting the slot by a union creates a solid (c) in which the through-hole feature is
partly destroyed. Making a new slot in the right position (d) produces a valid slot, but leaves the through-

hole invalid.

Feature-based editing and interrogation 59

Fig. 16. Space decomposition: In the model (a) a slot is made (b). Then two bosses are created inside the
slot (c). Space is decomposed into 3D cells (d), so that each cell is either inside or outside the original

model and any one of the features.

execution of the procedural model constructs a geo-
metric model and the associated set of intentional fea-
tures. The procedural model can be edited by the user
without interrupting the design session, because it is
stored in memory as an aggregate (list) of AML/X
objects.‡ Each object corresponds to an operation, or
design step. Fig. 20 top illustrates one such sequence.
Each operation has its own internal variables and ex-
ecution methods. A whole sequence of operations may
be captured in another AML/X object of type SE-
QUENCE and can be edited, executed, and included
as a parameterized macro operation into other se-
quences.

4.2. Unevaluated parameter expressions
To provide a greater flexibility and multiple appli-

cations of the same sequence, each operation and

An object is an entity that has a type (for example, “Drill
operation”), a set of internal variables (for example, expres-
sions that define the radius and position of the hole), and a
set of procedures, called methods (for example, the one that
modifies a CSG representation of a part by subtracting a cyl-
inder of the appropriate radius).

therefore each sequence is parameterized. When several
sequences are pieced together in different ways or when
an early part of a sequence is edited, an individual
operation may be executed on a model different from
the model that has been used to specify that operation.
For example, a make-rib operation may have been used
to make a rib in the center of the boss in the original
model. The parameters locating the rib were derived
from the position of the boss. If operations that con-
struct or modify the boss have been edited so that the
shape of the boss is changed, the execution of the make-
rib operation will produce a rib that is no longer in the
center of a boss, unless make-rib can adapt its execution
to the new geometry. This adaptability is possible in
MAMOUR, because parameters of operations may be
stored in an unevaluated form, thus capturing the de-
signer’s intents (for example, to position the rib in the
center of the boss). To simplify the formulation of this
constraint, an intentional feature is associated with the
boss. Intentional features in MAMOUR are also AML/
X objects with internal variables and methods. The
internal variables typically contain sets of unevaluated
references to boundary elements of the model (for ex-

Fig. 17. Validity test: The position of a volume feature B in relation to the part A is shown in (a). Subtracting
B from A fails to produce the desired slot feature (b) because the depth of B is too large. Sometimes, such

situations may be detected by testing if the difference is an empty solid or not (c).
CAG 14:2-B

60 JAROSLAW R. ROSSIGNAC

Fig. 18. Inadequate validity test: Subtracting from a part A (left) a correctly positioned slot volume feature
B produces a valid geometric feature of type slot (center). Subtracting an ill-positioned slot B creates an
invalid geometric feature (right). The difference may not be detected by considering a regularized Boolean

combination of A and B.

ample, references to the faces of the boss). The methods
can be used to evaluate these references and obtain a
geometric description of the appropriate elements (for
instance, of the floor face of the boss). These geometric
elements are also AML/X objects with methods for
computing their geometric properties (for example,
the center of a face). Thus, if boss1 is the name of
the intentional feature that corresponds to the geo-
metric feature of type boss, the position of the rib
may have been specified in make-rib using
boss1 .floor().center(), which defines the correct posi-
tion, as long as the geometry referenced in boss1 is a
valid boss, or at least has a floor face.

Until now, MAMOUR has been interfaced with only
a 2D geometric modeller, and therefore intentional
features contain only edge-references. Such an edge-
reference is an unevaluated AML/X expression defined
in terms of:

the structure of a CSG representation of the partic-
ular model (if available),
the adjacency information typically available in a
boundary representation, and
the names of operations that created or modified the
edge.

Tools for automating the construction of expression
that consistently identify faces in various versions of
a model are currently under ivestigation by Paul Bor-
rel and by the author.

4.3. Validity tests
The validity of intentional features, and thus of the

produced model, may be tested automatically using
validity rules attached to features. To a particular fea-
ture may be associated several rules (predicates), which
measure geometric and topological properties of
boundary elements. If, for example, any rule evaluates
to FALSE, the feature is considered invalid. Note that

the same feature may be valid for another application
with different validity criteria. A rule can be any
expression in AML/X that returns a Boolean value.
Typically such expressions involve references to inten-
tional features, and therefore indirectly to correspond-
ing geometric entities, and also calls to methods applied
to these entities for computing their properties or de-
riving specific measures.

4.4. Editing features
4.4.1. Volume features. Intentional features can be

created in MAMOUR by executing a shape-modifying
operation, which attempts to produce a geometric fea-
ture through a Boolean operation and at the same time
creates an object that represents the intentional feature
and contains, in its internal variable, references to the
corresponding geometric entities. Note that these en-
tities need not always exist in the boundary represen-
tation of the model as it evolves. Since a volume rep
resentation of the geometric feature is used to the
Boolean operation, these features correspond to the
volume features discussed above. Such volume features
may easily be used for editing the. model. To each
boundary element and to each intentional feature in
MAMOUR is associated a history attribute, which in-
dicates what operation created the entity. After a face
is graphically selected, its history may be accessed by
the designer and the parameters* of the corresponding

In particular, it can combine through an OR operation
several Boolean subexpressions, and thus provides a simple
mechanism for expressing validity rules as conjunctive forms
or even more complex Boolean combinations.

It is the designer's responsibility to decide which param-
eters should be edited and how. The systems could provide
some help by maintaining a dependency graph that relates
faces to parameter expression. Often these relations are simple,
and we have not investigated such facilities for further assisting
the designer.

Fig. 19. Auxiliary volumes: A thin block B' over the slot B may be used to test whether the slot B is made
in the block A (left) is accessible from the top. In the valid configuration (center) the set is empty.

In the incorrect configuration (right) is not empty.

Feature-based editing and interrogation 61

Fig. 20. Sequence of operations: The sequence (top) contains two slot-making operations, which subtract
two volume features, followed by a feature-selection operation which identifies a surface feature of type boss
used in the last operation to position a rib volume feature. The execution of the sequence produces a model
(center). Editing one of the slot-making operations and reexecuting the sequence applying it to a different
starting object produces a different result (bottom), which still reflects the designer’s intent to center the rib

on the boss.

operation edited so that the correct feature is created
by reexecuting the whole sequence. This reevaluation
may be computationally expensive. Therefore, alter-
nate techniques for editing the model are discussed
below.

4.4.2. Surface features. Intentional features may
also be created without geometric modifications by a
select operation which takes as parameters a feature
type and a list of references to existing boundary ele-
ments.§ Typically there is no single shape modifying
operation responsible for creating such a surface feature
and thus no explicit volume representation. Techniques
for editing such surface features by adding another op-
eration to the sequence are addressed in the next sec-
tion. They complement facilities for editing operations
already in the sequence, which are well suited for mod-
ifying volume features when the cost of reevaluating
the entire sequence is not prohibitive.

5. EFFICIENT EDITING OF VOLUME FEATURES
Active zones were introduced by Voelcker and the

author in [27] to speed up certain geometric compu-
tations over Constructive Solid Geometry (CSG) rep-
resentations. The active zone associated with a CSG
node is the region in which the shape of the set rep-
resented by the node is important. An active zone is
defined algebraically as the intersection of certain nodes
of the whole CSG tree, and thus its CSG expression is
always available. The concept of active zones is applied
in this paper to deal with editing feature. In this section,

from the properties of active zones, a CSG expression
is derived, which, in conjunction with spatial localiza-
tion techniques, may be used to improve the perfor-
mance of algorithms that update the boundary rep-
resentation of a model when a volume feature is altered.
These improvements are particularly interesting when
a spatial decomposition scheme is used for the bound-
ary representation.

5.1. Active zones
Let S be a CSG representation of a solid encoded

in a binary tree. (For simplicity, we shall use the same
symbol for the solid and its CSG tree.) Let A be any
primitive (or any internal node) of S. The active zone
of A in S, denoted is equal to the Boolean differ-
ence where and are respectively the
I-zone and the U-zone of A in S. Let A be a primitive
or internal node of a subtree N in S, and let F be the
parent node of N of another node B. The following
properties provide a recursive formulation for incre-
mentally constructing and

is the universe (Euclidean three-dimensional

When then I,’ = I,”,

When then I,’ = I,”

When then

When then

space) and is the empty set.

and

and

and

and

Automatic extraction of existing 3D features is a difficult
and expensive process[33], especially when loose conditions
are used to identify features. For example, a slot with a filleted
bottom edge may still be a slot, although the floor face is not
directly connected to the wall. In MAMOUR, references to
edges of features may be specified in a semiautomatic way
using graphic interaction. These references are then integrated
into unevaluated expressions, stored with the model, that will
identify the corresponding feature in a family of part models
generated by reexecuting a modified version of the sequence.

It follows that CSG expressions for and and
thus for may be computed by traversing the path¶
in the tree from A to S, and constructing the Boolean
expressions for I-zones and U-zones using intersections

¶
 The path is defined as the set of nodes traversed by moving

from S to A in the CSG tree, following the parent-to-child
links.

62 JAROSLAW R. ROSSIGNAC

Fig. 2 1. Changes are confined to the active zone: Replacing the primitive A by X in the CSG definition of
S (left) can only affect S in the active zone of A (center). The result is show (right).

with other branching nodes" or with their complements.
On the other hand, these expressions need not be ex-
plicitly constructed, nor stored, for most applications,
since efficient algorithms presented in [27] can perform
calculations with respect to and using the ap-
propriate branching nodes in the original tree S.

Several applications of Active Zones are discussed
in details in [27]. For instance, it is shown that if a
node A does not intersect its active zone, it can be
replaced by the empty set. Similarly, if a node A con-
tains its active zone, it can be replaced by the universe
without affecting the set represented by the whole tree.
(These results provide a new algorithm for testing
whether any particular node is redundant .) Algorithms
for the detection of interferences among solids defined
in CSG and for the generation of shaded pictures di-
rectly from CSG by ray-casting[34] or depth-buffer-
ing[9] are based on fac es for classifying subsets of
the boundary of primitives against the CSG tree, The
performance of these algorithms may be improved us-
ing only the I-zones of the primitives, and not the whole
CSG tree for the classification.

5.2. Editing volume features
5.2.1. Localization to the active zone. Because a

volume feature corresponds to an internal node of the
CSG tree, it has an active zone, an I-zone, and a U-
zone. It was established in [27] that all changes to a
primitive or node A inside its active zone in Swill
affect the shape of S and conversely that changes to A
outside of will leave S unchanged. This property
and related properties are used in this section to pro-
duce trimming expressions for localizing changes that
implement a volume feature modification. For ex-
ample, let A be a volume feature subtracted in the se-
quence defining a solid S (see Fig. 2 I); (B - A) - C
its active zone is B - C. Only changes to A inside
B - C need to be taken into account.

5.2.2. Localization to the altered portion of the fea-
ture. When a volume feature A is edited and replaced
by X in a CSG representation of the solid S, a new
boundary may be obtained without reevaluating the

The symbol B in the above properties refers to what is
formally called a branching node of A in S, i.e., a node that
does not lie in the path from A to S, but whose parent node
does. and are defined as intersections of such branching
nodes or of their complements.

entire boundary of the solid because changes are re-
stricted to A x, the symmetric difference + between
A and X [35], Consequently, in the example Fig. 21,
only alterations in are needed in
order to compute the boundary of the solid obtained
by replacing A by X in the CSG tree of S.

5.2.3. Combined localization. Let o and w represent
respectively the empty set and the universe. Let
denote the set represented by the tree of S in which A
was replaced by X. The two previous results may be
combined to yield: A proof
of this equation may be derived from Equation (4)
in [36], given that holds
for any three sets, X, Y, and Z .

5.2.4. Classifying additive and subtractive parts. The
symmetric difference A X may be decomposed into
two disjoint sets,‡ A - X and X - A , which can be
treated separately. For example, when a negative (sub-
tractive) volume feature A is replaced by X , a subset
of A - X must be added to S and a subset of X - A
must be subtracted (see Fig. 22 for an example). This
section derives new CSG expressions that characterize
these subsets and are simpler than the CSG expression
of s§.

Although is the smallest region where changes
to A affect S, the classification of A - X and X - A
against the CSG expression of in general contains
unnecessary steps which can be eliminated using the
following property;

where is the portion of material added to A and
where is the portion of material subtracted from
A during the same operation.

First consider the case of an additive feature A . We
have: = X - A and = A - X. For a proof, first
we establish the following:

The symmetric difference between A and X is defined as:

‡ The term disjoint is used here for three-dimensional vol-
umes whose intersection is empty or of lower dimension.

§ Note that each one of these CSG expressions may be fur-
ther trimmed down by removing all primitives that are disjoint
from A - X(respectively X - A) by using techniques discussed
in [37].

Feature-based editing and interrogation 63

Fig. 22. Changes are confined to the symmetric difference: The solid S (left) is represented by a CSG tree
defined in terms of a subtractive volume feature A . Replacing A by X in the CSG tree of S may change the
shape of S (center) only in the symmetric difference A X (right). Note that A - X is added and that

X - A is subtracted.

Since the interiors of and of are disjoint,
the interiors of and are also disjoint.
Therefore, since U and - are regularized, we also have:

Consequently, subsets of need only be classified
against subsets inside should be added to S,
while subsets outside may be discarded.’ Similarly,
subsets of need only be classified against sub-
sets outside should be subtracted from S, while
subsets inside may be discarded.”

The CSG expression of defined as is
a complex as the combination of the CSG expressions
for and for and classifyingt a point with respect
to may often require classifying it against I,” and
against and then combining the result. The above
result suggests that A needs only be classified against
 and not against both and Similarly,
needs only be classified against and not against
both and Significant improvements for algo-
rithms that perform feature modification result. To
further improve the performance of these algorithms,
tree pruning and other space subdivision tech-
niques[39, 40, 35, 41] may be used in conjunction
with classification against and Note, however,
that this speed-up may suggest to add to S portions of

that are already included in S, or to subtract from
Sportions of that are not in S. These unnecessary
additions do not invalidate the result but may corre-
spond to redundant geometric calculations unless the
representation scheme presented below is used.

5.3. Mixed-dimensional geometric model
To represent a solid part together with its additive

and subtractive volume features, one needs to extend
the boundary representation scheme and to provide
support for representing decompositions of solids and
of their complements in terms of boundaries of poten-
tially overlapping features (Fig. 16). Furthermore, the
construction of closing faces for surface features may

Now note that for a subtractive feature, one may
consider the complements of A and X to be additive
features, and the same proof holds.

¶ See Property 13 in [27].
See Property 12 in [27].
“Classifying” a point against a set consists of determining

whether the point lies inside or outside of the set[38].

64 JAROSLAW R. ROSSIGNAC

Fig. 23. Space decomposition for editing a surface feature: The slot surface feature in the solid B U C U D
(left) may be modified by creating the corresponding volume feature A and its modified version X, by
constructing an SGC representation of the resulting space subdivision (center) and by setting the status of

cells of A - X to IN, and of cells of X - A to OUT (right).

involve splitting faces of the part model and inserting
internal faces in the part or creating external faces in
its complement. Objects with internal structures and
external dangling edges and faces are not supported by
conventional solid modellers, and thus richer schemes
for geometric representations must be used.

Several data structures that support representations
of unions of quasi-disjoint subvolumes have been pro-
posed (see [28-30, 42] for examples). Such schemes
may be used to decompose a volume feature B into its
active and inactive portions with respect to various
Boolean combinations of other features. The Selective
Geometric Complex (abbreviated SGC) data structure
permits representation of such decompositions together
with the modelled part, whether the feature has been
added or subtracted [29],

SGCs provide a common framework for represent-
ing objects of mixed dimensionality, possibly with in-
ternal structures and incomplete boundaries. SGCs are
composed of finite collections of mutually disjoint cells,
which are open connected subsets of n-dimensional
manifolds and generalize the concepts of edges, faces,
and vertices used in most solid modellers. The con-
nectivity between such cells is captured in a very simple
incidence graph, whose links indicate “is-a-boundary-
of” relations between cells. By setting the status (at-
tribute) of certain cells to IN and others to OUT, one
can associate various pointsets with a single collection
of cells. When a cell’s status is IN, the cell is called
“active,” and the pointset spanned by the cell is con-
sidered as part of the object; otherwise it is considered
as part of the complement of the object. Consequently,
the pointset of an SGC object needs not be homoge-
neous in dimension, nor even be closed or bounded.
To support useful operations on SGCs. Boolean and
other set-theoretical operations (closure, interior,
boundary) have been decomposed into combinations
of three fundamental steps for which dimension-in-
dependent algorithms have been developed [29] :

a subdivision step, which makes two objects “com-
patible” by subdividing the cells of each object at
their intersections with cells of the other object;
a selection step, which defines “active” cells, i.e., cells
whose status is IN; and
a simplification step, which, by deleting or merging
certain cells, reduces the complexity of an object’s

representation without changing the represented
pointset and without destroying decompositions that
are marked as important for applications.

Furthermore, combinations of these steps may pro-
duce a variety of special-purpose operations whose ef-
fect is controlled by simple predicates, or filters, for
cell selection.

The subdivision step may be used to create a space
decomposition that reflects the geometry of the part
and of all its volume and surface features. Then, feature
modifications may be performed by modifying the sta-
tus of cells that belong to the appropriate volume fea-
tures and the associated I or U zones. Fig. 23 illustrates
how the result of a sequence of operations may be
modified by selecting a surface feature and modifying
it by replacing the volume feature A with X.

5.3.1. Application to model updating. A space de-
composition technique may be used to split A X
into connected cells that are entirely inside or entirely
outside of both and . Adding these cells to S or
subtracting them from S only requires setting their sta-
tus to IN our OUT. If such an approach is used, the
main cost lies in the insertion of X in the space decom-
position and in the classification of each cell of A X.
The classification may simply be obtained by evalu-
ating a Boolean expression. Using or instead of
the expression for considerably reduces the cost of
updating the model to reflect a feature modification
(see Fig. 24).

5.3.2. Volume feature deletion. A particular case of
editing is deletion. A volume feature could be deleted
by altering a specification stored in a procedural model
and by reexecuting the procedural model to create a
new geometric model without the undesirable feature
The same result could be obtained directly by changing
the status of all cells that lie in the intersection of that
volume feature with its active zone.

For example, to delete a feature A in (B U A) - C.
it suffices to change the status of cells in A - (B U C).
the active portion of A (Fig. 25). These changes can
be done by traversing’ all the cells in A and classifying

We assume that each feature has a reference to all the
cells that it includes or that these cells may be efficiently iden-
tified in the SGC. If no provision is made for such a direct
access, all cells of specific dimensions may have to be traversed
to see if they belong to the appropriate feature.

Feature-based editing and interrogation 65

Fig. 24. Active zone in feature modification: S defined as (B U A) - Cis shown (left) superimposed on the
space decomposition obtained by using the boundaries of the primitives A , B, C, and X. The primitive A
is a misplaced additive volume feature in Sand must be replaced with a similar feature X slightly shifted to
the left and upwards. To obtain the correct object, first cells that belong to A - X are classified against
(here = B). The status of cells of A - X outside of is set to OUT. Note that one of these cells was
already OUT (center left). Then, cells of X - A are classified against I," (here = The status of the
cells of X - A inside is set to IN (center right). Note that one of these cells was already IN. The result

(cells whose attributes are IN) is shown (right).

each one against B U C. Since each cell contains (in
its history) a list of the features to which it belongs,
this classification amounts simply to evaluating a
Boolean expression.

As discussed earlier, instead of changing the status
of only the cells of A that lie in its active zone, one
could simply set to OUT the status of cells of A that
lie in its U-zone when A is an additive volume feature,
or set to IN the status of cells of A that lie in its I-zone
when A is a subtractive volume feature.

For example, in the solid (B U A) - C (Fig. 25),
the U-zone, = B, is simpler than the active zone,

and thus a saving in classification time
is achieved. This simplistic example does not reflect
the importance of such savings, and one should con-
sider that classification has to be performed for a large
number of cells and that it may involve large Boolean
expressions for both and .

6. CORRECTIVE VOLUMES
If a CSG tree representing the model is available,

surface features could in principle be corrected by ed-
iting the tree. Suppose that no single node of the tree
represents the appropriate volume feature. Each face
of the feature may still be associated with one or more
half-spaces of the CSG tree, so that modifying the po-
sition or shape of these half-spaces will affect the face,
and thus the feature.

Editing half-spaces directly in the original CSG tree
has the following drawbacks:

1. It may be difficult to recognize which half-space
should be edited. Typically the boundary of more
than one half-space coincides with each face, and
techniques proposed in [27] for classifying half-
spaces against their active zones (to predict which
half-spaces will affect which portion of a particular
face) may not be sufficient.

2. Editing half-spaces in a CSG tree to alter a particular
portion of space will often produce undesired side-
effects in other locations.

3. Editing half-spaces and not solid primitives can
produce unbounded subsolids and makes it very
difficult to implement popular performance-im-
proving techniques for CSG algorithms that use
bounding boxes around CSG primitives.

4. Designers' intentions expressed in a posteriori al-
terations of half-spaces are difficult to specify and
to capture in the sequence of a procedural model.
Consequently, the edited specification is not well
suited for reparameterization or reuse in a different
context. It is not even suited for further editing that
involves a reevaluation of the sequence.

Reorganizing the CSG tree to regroup the relevant
half-spaces of the feature into a single node that can
be edited as a feature is not always possible since the
result of evaluating a general Boolean expression is
order-dependent. Consequently, this section proposes
to use Boolean operations to edit surface features (the
previous section dealt with volume features), These

Fig. 25. Deletion using the Active Zone: Given the set S defined by (B U A) - C (left) the additive volume
feature A may be deleted by changing the active attribute of all the cells that lie in the active portion of A

(center), which i s A - (B U C). The result is shown (right).

66 JAROSLAW R. ROSSIGNAC

Fig. 26. Face extrusions: Extruding a planar base face (left) produces a volume (right) that is bounded by
the base face and its offset by r, and by side faces obtained by sweeping the edges of the base face.

operations involve corrective volumes which are added
to-or subtracted from-a solid model to alter a par-
ticular feature. These corrective volumes could be de-
rived from volume features themselves derived from
surface features by generating closing faces, but, as
pointed out in Section 2, the derivation of closing faces
remains a research issue. Furthermore, once a volume
feature A is derived from the surface feature, it is not
easy to produce a modified volume feature X so that
A - X and X - A may be used as corrective volumes
and added to-or subtracted from-the model to alter
the surface feature without side-effects. Instead, the
author proposes to construct corrective volumes by
extruding appropriate faces of the surface feature, Ex-
amples of these extrusions are provided in the following
part of this section.

Once corrective volumes are computed, whether
through closing faces and volume features or through
face extrusions, they must often be trimmed to avoid
undesirable side-effects before they can be combined
with the solid. Automatically computing the correct
trimming expression is impossible unless the expression
“undesirable side-effect” is formally defined. Indeed,
the correctness of a feature editing operation depends
on the function of the edited feature and on the func-
tion of its geometric relation with other features.

6.1. Extrusion of faces
A simplest corrective volume may be obtained by

extruding a planar face called the base face along the
normal to its supporting plane (see Fig. 26 for an ex-
ample). Such a corrective volume may often be ade-
quate to change the width or depth of features that
have orthogonally oriented planar faces.

The extrusion of a planar face F by a distance
r is a volume formally defined by † The interior of a face is the face minus its bounding edges,

‡ The normal to a cone is not defined as its apex.
cusps, or singular points.

where is the normal unit vector to the surface con-
taining F. ‘

For faces on curved surfaces, a normal extrusion
will be used (Fig. 27). It is simple extension of the
above extrusion. The normal extrusion of a
curved base face F by a distance r is a volume formally
defined as:

where is the normal unit vector to F a t point p
and where iF is the relative interiort of F with respect
to its supporting surface. The orientation of the normal
is chosen in a consistent manner throughout F. Note
that, for the semialgebraic surfaces popular in solid
modelling, is well defined for the smooth portions
of F (the relative interior of the base face), but needs
not be well defined for the bounding edges of F, its
cusps, or singulanties.† Therefore, is obtained
by extruding a nonclosed face and thus does not neces-
sarily contain all its boundary; it needs to be regular-
ized. can often be computed from the cross
product of partial derivatives when F is defined in
parametric form, or from a gradient when F is defined
by an implicit equation. Such extrusion volumes are
very simple to obtain for natural surfaces (see [43]).

Applications of extrusions and normal extrusions to
feature modification are illustrated in Figs. 28 and 29,
where the extrusions are used as corrective volumes
and added to the part to modify a feature.

Such applications are clearly limited to simple cases
where, for example, the extruded base face and the
abutting faces meet at a right angle. Fig. 30 shows a

Fig. 27. Normal extrusion for curved base faces: A normal extrusion of a curved face that lies on a cylinder
(left) is a volume (right) bounded by the original face, its offset by r, and by side faces that are subsets of
ruled surfaces sustained by the edges of the original face. Note that the side faces are in the closure of

but are not in

Feature-based editing and interrogation 67

Fig. 28. Application of extrusion: To change the depth of the slot feature (left), a corrective volume (center)
may be generated by extruding the floor of the slot and subtracted from the part (right).

counterexample for which a corrective volume gen-
erated by extruding a base face is inadequate.

To circumvent such limitations, an extended cor-
rective volume may be generated and then trimmed
using the abutting faces (see Fig. 31).

The extended corrective volume may be obtained
by extruding an extension of the base face. A good
candidate to use as base face extension is the entire
surface that contains the base face, but in certain cases,
to avoid side-effects in distant areas, it may be pref-
erable to consider only a simple subset of that surface.
This technique has been proposed by Requicha and
the author in [12] for generating local fillets and blends
by (1) growing and shrinking Boolean combinations
of appropriate half-spaces, by (2) subtracting the result
from the original combination to obtain an extended
blend, by (3) trimming the blend to the desired shape
near its ends, and by (4) adding the resulting corrective
volume to the part or subtracting it.

Extended corrective volumes derived from a single
base face are convenient for modifying a single di-
mension of a simpler feature (e.g., the width of a slot
or the radius of a hole). In general, however a corrective
volume involves more than one base face (for example,
when the depth of a pocket with an uneven floor is to
be changed). For such cases, instead of combining sev-
eral corrective volumes, a single extended corrective
volume may be obtained by extruding several faces
along a common direction (Fig. 32). Such a generalized
extrusion, of a set of faces F along a direction
u, may be formally defined as the Minkowski sum [44]
of F with the line segment joining the origin 0 with
the point 0 + u. And thus:

6.2. Automatic derivation of a default trimming
expression

Picking the base face and providing an offset distance
does not in general provide an unambiguous specifi-
cation for the corrective volume. It is thus necessary
to provide facilities for automatically creating supersets
of the desired corrective volumes and trimming
expressions that produce the desired subsets. Trimming
operations may involve nontrivial Boolean combina-
tions of the half-spaces bounded by the abutting faces.
This Boolean combination may, in principle, be de-
rived from the entire CSG tree, if available, but this
derivation may be difficult and will often require hu-
man intervention. A possible approach to assist the
designer and suggest a default trimming CSG expres-
sion is to consider only half-spaces bounded by the
faces of the solid that share edges with the base face
and to eliminate other half-spaces from the tree. The
correct Boolean combination of these half-spaces may
be hard to derive, and the results may still be incorrect
(see Fig. 33). The designer may have to provide an
auxiliary trimming expression, but the system should
be able to suggest a good default trimming expression.

Clearly, corrective volumes should be confined to a
region where they do not destroy the effects of other
features. For example, they may be trimmed by some
other (but not necessarily all other) volume features.

Unfortunately, a surface feature, F, typically does
not correspond to any individual node in the CSG tree
and therefore is not associated with an active zone; the
results derived in Section 5 may not be directly applied
here.

To provide an often reasonable default trimming
expression, the concept of a virtual active zone may be
used, The virtual active zone of a surface feature F is
defined as the active zone of the lowest node Tin the

Fig. 29. Application of normal extrusion: To change the radius of a cylindrical hole (left), a corrective
volume (center) may be generated through a normal extrusion of the cylindrical base face and added to the

part (right).
CAC 14:2-C

68 JAROSLAW R. ROSSIGNAC

Fig. 30. Limitation of face extrusion: The geometric feature (left) has been edited by adding to the solid the
corrective volume generated by extruding one of its faces (center). The result (right) is not correct.

CSG tree of S at which the surface feature F appears.
This technique may be automated, but is only effective
if at T one could delete and create again the corre-
sponding volume feature without changing the final
result. In other cases, fine tuning “by hand” the au-
tomatically generated virtual active zone may be nec-
essary.

of a rich data structure that captures various geometric
entities and their relations.

Filters for cell selection in SGCs may be used for
validity testing. The next section introduces the query
operators, which provide the vocabulary necessary for
expressing the filters. The subsequent section dem-
onstrates their application on a few simple examples.

7. VALIDITY TESTS 7.1. Interrogation operators for SGCs
Previous sections dealt with techniques for assisting Filters will be expressed in terms of the following

the designer in performing object modifications using queries that can be made to an SGC, O, or to a par-
a feature-oriented syntax. It has been assumed that no ticular cell, C, of O. A list of typical filters, expressed
automated solution exists and that human intervention as methods of cell or SGC objects, follows.
is necessary to correct the side-effect of these editing
operations. To further assist the designer, the system O.cells(k) returns the collection of cells of dimension
should support facilities for interrogating important
properties of features. We shall refer to these properties O.skeleton(k) returns the collection of cells of di-
using the global term of validity.

The validity of a feature or of a compound feature C.boundary returns the collection of cells that
greatly depends on the nature of the feature and on
the function played by the feature in a particular ap- C.star returns the collection of cells bounded by C.
plication. Addressed here are only the qualitative (or C.dimension returns the dimension of C.
discrete) validity issues that can be expressed id terms Given a cell D of C.star such that D.dimension
of the presence or absence of specific cells in SGC = C.dimension + 1, C.nbhd(D) returns leftdir,
structures. (Many other quantitative criteria may be rightdir, or bothdirs. The value leftdir means that,
easily addressed through geometric measures, derived given the definition of “left” and “right” with respect
from features, as described in [4].) Cells of in terest to an orientation of C in the manifold containing D
have a specified dimension and belong to the appro- as an open subset, D lies on the “left” of C. Similarly,
priate combination of features. Note that this approach when C.nbhd(D) returns rightdir, C bounds D on
is not based on matching subsets of the adjacency graph the “right.” bothdirs means that C is an interior
of a boundary representation, but on the interogation boundary “surrounded” by D, or more precisely that

k in O.

mension less or equal to k in O.

bound C.

Fig. 3 1. Extended corrective volumes: To raise the floor of the slot (left) without modifying the position of
its walls, an extended corrective volume is generated and trimmed (center). The result is added to the part

(right).

Feature-based editing and interrogation 69

Fig. 32. Corrective swept volumes: To raise a slot in the model (left) without changing the shape of its floor,
a corrective volume is obtained by sweeping upwards all the faces of the slot (center left), and then by
trimming the result (center right) and adding it to the model (right). The dimensions of the floor remain

unchanged and therefore the swept volumes of the different faces have different thickness.

C is contained in the topological interior (with re-
spect to the manifold containing D) of the topological
closure of D.
C.history returns the set of features to which C be-
longs.
Finally, C.status returns IN or OUT depending
whether the cell is considered as actively contributing
to the pointset of O or not.

For more formal definitions of these operators, the
reader should consult [29].

7.2. Examples of application
Validity criteria are domain dependent, and the goal

of this paper is not to derive them but to illustrate a
technique for expressing them. Three simple examples
involving a block of material and two volume features
will be used. Simple tests that characterize each situ-
ation are proposed. These tests do not involve any geo-
metric calculations, but simply search the SGC struc-
ture for cells that satisfy appropriate selection criteria.
In fact, to improve the interrogation performance, ref-
erences to cells of the SGC could be organized in a
data base and accessed using their history, dimension,
or other characteristics by standard data base queries.

The local inaccessibility from the top of a slot volume
feature A in a part B may be detected by checking
whether the “roof” face, F1, of A is connected on the
outside (with respect to A) to a full-dimensional cell
of B (Fig. 34). The test may be performed by selecting

cells D of F1 .star that contains B in their history and
such that F1.nbhd(D) = leftdir. (For simplicity, we
assume that F1 is oriented so that the leftdir direction
points toward the outside of A.)

Of course, the foregoing filter is not adequate for
global accessibility, which may require performing
Boolean operations on auxiliary volumes, such as the
volume swept by the portion of the feature that is visible
from the direction from which the feature is to be ac-
cessed.

To find whether two slots A and Care adjacent along
a common face or not (Fig. 35), it suffices to inquire
whether a 2D cell, or face, F2 exists such that it bounds
a 3D cell of A on one side and a 3D cell of C on the
other side.

The search may be confined to the common 2D
cells of the boundaries of A and C, which may be ac-
cessed directly if a directory of cells that belong to each
feature is maintained.

To test whether a slot Cis contained in a slot A (Fig.
36), or more generally whether A and C interfere, it
suffices to query if there is a three-dimensional cell
whose history contains both A and C as well as B.
Again, the selection may be efficiently performed by
standard data base queries on the directories of cells
that belong to A, B, and C organized by dimension.

8. CONCLUSION
Interactive editing of CAD models may be simplified

by the use of volume and surface features. Surface fea-

Fig. 33. Incorrect trimming CSG: To raise the floor of the slit in the model (left), an extended corrective
volume is computed (center left). CSG expressions defined only in terms of half-spaces bounded by the
faces of the original model are not adequate for trimming the corrective volume. An example of an incorrectly

trimmed corrective volume is shown (center right), and the resulting model is shown (right).

70 JAROSLAW R. ROSSIGNAC

Fig. 34. Testing top accessibility: To distinguish between the correct positioning of the slot feature (left) and
the incorrect one (right), one can simply inquire whether, in the corresponding SGC that represents the
space decomposition, the roof face El of slot A is connected on its outside to full-dimensional cells of B.

tures are interactively selected by the user from existing
faces of a model. Volume features may be created by
addition or subtraction of material, or derived from
surface features by defining the necessary closing faces.
This paper addresses the issue of interrogating such
volume and surface features as to their validity and
their relation to each other and to the final part. It also
proposes techniques for editing the model by modifying
or deleting its features.

Interrogation techniques are based on a scheme for
representing mixed-dimensional pointsets with internal
structures. In that scheme, space, i.e., the modelled
part and its complement, is subdivided into connected
cells (volumes, faces, edges, and vertices) such that all
points of any given cell belong to the same set of fea-
tures. Feature validity and particular relations among
features may be easily characterized by the existence
or the absence of cells of specific dimensions associated
with specific sets of features.

Model editing to alter or delete a volume feature
may be performed by using a procedural representation
of the designer's specification, locating in it the com-
mand that created a particular volume feature to be
modified, editing this command, and reexecuting the
entire proceduraI model. Reexecuting means comput-
ing the boundary of the geometric model, which may
be an expensive process. When a CSG expression for
the part is available, the reexecution may be limited
to a particular domain defined by the intersection of
the volume feature with its active zone. This technique

may be adapted to surface features by providing closing
faces which define corresponding volume features and
by considering the role these volume features play with
respect to the CSG tree. On the other hand, surface
features may be directly modified by constructing cor-
rective volumes and by combining them to the part
model through addition or subtraction. The use of ex-
tended geometric representations of sets with internal
and external structures permits calculation of the effect
of feature deletion without further geometric calcula-
tions.

Global access to the geometric elements of a partic-
ular feature is provided through intentional features,
to which may be associated validity rules and methods
for evaluating these rules or for measuring important
properties of the feature. Intentional features may be
created automatically when feature-based shape-mod-
ifying operations are used or by interactively selecting
existing faces. Intentional features do not directly point
to any geometric entity, but carry an unevaluated
expression, constructed at feature creation or selection,
which, when evaluated, returns appropriate geometric
elements, if they exist. This indirect approach prevents
inconsistencies between an abstract list of assumed
features that could characterize some important aspects
of a part and the actual presence and geometry of these
features in the part. This point is essential if further
shape modifications, done either by editing and re-
playing the designer's specification or by creating new
features, can alter the geometry of a previously defined

Fig. 35. Testing adjacency: For process planning, the two adjacent slots A and C (left) must be treated
differently from the two disconnected slots (right).

Feature-based editing and interrogation 71

Fig. 36. Testing containment: Machining a slot C that lies inside a slot A may result in suboptimal manu-
facturing processes. Therefore, such a situation (left) must be distinguished from a normal situation where

the two slots are disjoint (right).

feature to the point that it no longer exhibits the ex-
pected geometric characteristics.

Acknowledgments-The original motivation for a significant
part of this work has been provided by Professor Michael
Pratt’s suggestion to use nonmanifold geometry for repre-
senting volume features and their interrelations. It became
clear that the concepts and data structures for Selective Geo-
metric Complexes, which have been designed at IBM by Mi-
chael O’Connor and the author, can be used to facilitate the
explicit representation and interrogation of the geometric re-
lations between features. The use of intentional features as a
means for interrogating and editing a design has been inves-
tigated by Paul Borrel, Lee Nackman, and the author, as part
of the development of the MAMOUR prototype system, and
also by Franklin Gracer and the author, while attempting to
incorporate “persistent” features in the GDP solid modeller.
Furthermore, techniques for using in intentional features the
unevaluated references to boundary elements and for ensuring
that these references remain meaningful, even when the spec-
ification has been edited, have been studied by Paul Borrel
and the author. The idea of using trimmed corrective volumes
to edit solids defined in CSG was proposed by Professor Ar-
istides Requicha and the author at the University of Rochester.
The original concepts of Active Zones in CSG were introduced
by Professor Herbert Voelcker and the author at the University
of Rochester. The author thus wishes to thank Michael Pratt
for his inspiration and Paul Borrel, Franklin Gracer, Michael
O’Conner, Aristides Requicha, and Herbert Voelcker for their
contributions to certain aspects of this work. The author is
also grateful to Vijay Srinivasan and Michael Wesley for sup-
porting this work, to Professors Fahrad Arbab and Tetsuo
Tomiyama for encouraging its publication, and to Erik Jansen,
Martti Mäntylä, and several other colleagues and friends for
their constructive comments.

ber 1982)

I . T. Tomiyama and H. Yoshikawa, Extended general design
theory, In Design Theory for CAD, H. Yoshikawa and
E. A. Warman (Eds.), North-Holland, The Netherlands,

2. A. A. G. Requicha and S. C. Chan, Representation of
geometric features, tolerances and attributes in solid
modellers based on constructive geometry. IEEE Journal
of Robotics and Automation 2(3), 156-166 (September
1986).

3. J. R. Dixon, J. C. Cunningham and M. K. Simmons,
Research in designing with features, IFIP Working Group
5.2 Conference on Intelligent CAD, Boston, October 5-
8, 1987.

4. J. R. Rossignac, P. Borrel and L. R. Nackman, Interactive
design with sequences of parameterized transformations.
Proceedings ofthe Second Eurographics Workshop on In-
telligent CAD Systems: Implementation Issues, April 1 I-

95-130 (1987).

15, 1988, Veldhoven, The Netherlands, 97-127. Also
available as IBM Research Report RC 13740, IBM Re-
search Division, T. J. Watson Research Center, Yorktown
Heights, NY, May 1988.

5. J. R. Rossignac, P. Borrel and L. R. Nackman, Procedural
models for design and fabrication. Proceedings of the MIT
Sea Grant Symposium, Cambridge, MA, October 24-26,
1988. Also available as IBM Research Report RC 14056,
IBM Research Division, T. J. Watson Research Center,
Yorktown Heights, NY, October 1988.

6. A. A. G. Requicha and H. B. Voelcker, Constructive solid
geometry. Tech. Memo. No. 25, Production Automation
Project, Univ. of Rochester, November 1977. (Reports
of the Production Automation Project are no longer
available from the University of Rochester, but may be
obtained from CPA, 304 Kimball Hall, Cornell Univer-
sity, Ithaca, NY 14853.)

7. Y. T. Lee and A. A. G. Requicha, Algorithms for com-
puting the volume and other integral properties of solids:
I-Known methods and open issues, 11-A family of al-
gorithms based on representation conversion and cellular
approximation. Comm ACM25(9), 635-641 (Septem-

8. J. E. Bobrow, NC machine tool path generations from
CSG part representations. Computer Aided Design 17(2),
69-76 (March 1985).

9. J. R. Rossignac and A. A. G. Requicha, Depth buffering
display techniques for constructive solid geometry. IEEE,
Computer Graphics and Applications 6(9), 29-39 (Sep-
tember 1986).

10. A. A. G. Requicha and H. B. Voelcker, Boolean operations
in solid modelling: Boundary evaluation and merging al-
gorithms. Proceedings of the IEEE 73(l), 30-44 (January
1985).

11. K. J. Weiler, Edge-based data structure for solid modelling
in curved surface environments. IEEE Computer Graph-
ics and Applications 5(1), 21-40 (January 1985).

12. J. R. Rossignac and A. A. G. Requicha, Constant radius
blending in Solid Modelling. Computers in Mechanical
Engineering 3(1), 65-73 (July 1984).

13. M. J. Pratt, Synthesis of an optimal approach to form
feature modelling. ASME Computer and Engineering
Conference, San Francisco, California, August 1-3, 1988.

14. J. J. Shah, P. Sreevalsan, M. T. Rogers, R. Billo and A.
Mathew, Current Status of Features Technology, Report
R-88-GM-04.1, CAM-I Inc., Arlington, TX, November
1988.

15. T. Tomiyama and P. J. W. ten Hagen, Representing
Knowledge in Two Distinct Descriptions, Extensional vs
Intensional. Report CS-R8728, Center for Mathematics
and Computer Science, P.O. Box 4079, 1009 AB Am-
sterdam, The Netherlands, June 1987.

16. A. A. G. Requicha, Mathematical models of rigid solid
objects. Tech. Memo. No. 28, Production Automation

REFERENCES

72 JAROSLAW R. ROSSIGNAC

Project, Univ. of Rochester, November 1977. (Reports Manufacturing at the ASME Winter Annual Meeting,

available from the University of Rochester, but may be 3 1. R. B. Tilove, A null-object detection algorithm for Con-
obtained from CPA, 304 Kimball Hall, Cornell Univer- structive Solid Geometry. COMM ACM 27(7), 684-
sity, Ithaca, NY 14853.) 694, (July 1984).

17. L. K. Kyprianou, Shape classification in computer aided 32. L. R. Nackman, M. A. Lavin, R. H. Taylor, W. C. Dietrich
design Ph.D. dissertation, Christ’s College, University of and D. D. Grossman, AML/X: a programming language
Cambridge, U.K., July 1980. for design and manufacturing. Proceedings of the IEEE

18. A. A. G. Requicha, Representation of tolerances in solid Fall Joint Computer Conference, Dallas, TX, pp, 145-
modeling: Issues and alternative approaches. In Solid 159, November 2-6, 1986.
Modelling by Computers, M. S. Pickett and J. W. Boyse 33. A. A. G. Requicha and J. Vandenbrande, Form features
(Eds.), Plenum Press, New York, 3-22 (1984). for mechanical design and manufacturing. Report

19. M. J. Pratt and P. R. Wilson, Requirements for the support IRIS#244, Computer Science Department, University of
of Form Features in a Solid Modelling System. Report Southern California, Los Angeles, CA 90089-0782, Oc-
No. R-85-ASPP-01, CAM-I Inc., Arlington, TX, 1985. tober, 1988.

20. M. R. Henderson, Extraction offeature information from 34. S. D. Roth, Ray casting for modeling solids. Computer
three dimensional CAD data. Ph.D. Dissertation, Purdue Graphics and Image Processing 18(2), 109-144 (Feb-
University, May 1984. ruary 1982).

21. J. R. Dixon and C. L. Dym, Artificial intelligence and 35. R. B. Tilove, A. A. G. Requicha and M. R. Hopkins,
geometric reasoning in manufacturing technology. Ap- Efficient editing of solid models by exploiting structural
plied Mechanics Reviews 39(10), (October 1986). and spatial locality. Tech. Memo. N. 46, Production Au-

22. A. A. G. Requicha and J. Vandenbrande, Automatic pro- tomation Project, Univ. of Rochester, May 1984. (Reports
cess planning and part programming. Institute for Ro- of the Production Automation Project are no longer
botics and Intelligent Systems, Report IRIS 2 17, Univer- available from the University of Rochester, but may be
sity of Southern California, Los Angeles, April 1987. obtained from CPA, 304 Kimball Hall, Cornell Univer-

23. V. C. Lin, D. C. Gossard, and R. A. Light, Variational sity, Ithaca, NY 14853.)
geometry in computer aided design. ACM Computer 36. A. R. Halbert, S. J. P. Todd, and J. R. Woodwark, Gen-
Graphics 15(3), 171-177, (August 1981). eralizing active zones for set-theoretic solid models.

24. A. P. Ambler and R. J. Poppelstone, Inferring the positions Computer Journal (UK)32(I) , 86-89 (February 1989).
of bodies from specified spatial relationships. Artificial 37. R. B. Tilove, Exploiting spatial and structural locality in

Intelligence 6, 157-174 (1975). geometric modelling. Tech. Memo. No. 38, Production
25. D. Gossard, R. P. Zuffante and H. Sakurai, Representing Automation Project, University of Rochester, October

dimensions, tolerances, and features in MCAE systems. 198 1. (Reports of the Production Automation Project
IEEE Computer Graphics and Applications 8(2), 5 1-59 are no longer available from the University of Rochester,
(March 1988). but may be obtained from CPA, 304 Kimball Hall, Cor-

26. J. R. Rossignac, Constraints in Constructive Solid Ge- nell University, Ithaca, NY 14853.)
ometry. Proceedings 1986 Workshop on Interactive 3D 38. R. B. Tilove, Set membership classification: A unified
Graphics, University of North Carolina, Chapel Hill, NC approach to geometric intersection problems. IEEE
27514, F. Crow and S. M. Pizer, Eds., ACM Press, pp. Trans. on Computers C-29(10), 874-883 (October 1980).
93-1 10, October 23-24, 1986. Also available as IBM Re- 39. J. R. Woodwark and K. M. Quinlan, Reducing the effect
search Report RC 12356, IBM Research Division, T. J. of complexity on volume model evaluation. Computer-
Watson Research Center, Yorktown Heights, NY, Sep- Aided Design 14(2), 89-95 (1982).
tember 1986. 40. J. R. Woodwark, Eliminating redundant primitives from

27. J. R. Rossignac and H. B. Voelcker, Active zones in CSG set-theoretic solid models by a consideration of constit-
for accelerating boundary evaluations, redundancy elim-
ination, interference detection, and shading algorithms.

1989).
28. K. J. Weiler, The radial edge structure: A topological rep-

Geometric Modeling for CAD Applications, M. Wozny,
H. McLaughlin and J. Encarnacao (Eds.), Springer-Ver-
lag, 37-68, (May 1986).

29. J. R. Rossignac and M. A. O’Connor, SGC: A dimension-
independent model for pointsets with internal structures
and incomplete boundaries, IBM Research Report
RC14340, IBM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY, January 89.
Also in “Geometric Modeling for Product Engineering,”
Proceedings of the 1988 IFIP/NSF Workshop on Geo-
metric Modelling, Rensselaerville, NY, September 18-
22, 1988. M. Wozny, J. Turner and K. Preiss, (Eds.),
North-Holland, The Netherlands, 145-180 (1989).

30. G. Vanecek and D. Nau, Non-regular decomposition: An
efficient approach for solving the polygon intersecting
problem. Proc. Symposium on Integrated and Intelligent

of the Production Automation Project are no longer 271-279, 1987.

uents. IEEE CG&A, 38-47 (May 1988).
41. S. A, Cameron and J. R. Rossignac, Relationship between

ometry. IBM Research Report PC14246, T. J. Watson
Research Center, Yorktown Heights, NY, December

Conference on the Theory and Practice of Geometric
Modelling, FRG, October 3-7, 1988.
F. Arbab. Set models and Boolean operationsfor solids
and assemblies. Technical Report CS-88-52, Computer
Science Department, University of Southern California,
Los Angeles, CA, 90089-0782, July 1985.

43. J. R. Rossignac, Blending and Offsetting Solid Models.
Tech. Memo. No. 54 (Ph.D. Dissertation), Production
Automation Project, Univ. of Rochester, June 1985.
(Reports of the Production Automation Project are no
longer available from the University of Rochester, but
may be obtained from CPA, 304 Kimball Hall, Cornell
University, Ithaca, NY 14853.)

44. J. Serra, Image analysis and mathematical morphology
Academic Press, New York (1982).

ACM Transactions on Graphics 8(1), 51-87 (January S-bounds and Active Zones In Constructive Solid Ge-

resentation for non-manifold geometric modeling. In 1988. To appear in the proceedings of the International

42.

	1. INTRODUCTION
	2. BASIC CONCEPTS AND TERMINOLOGY
	2.1. Intentional features and their geometric embodiment
	2.2. Constructive Solid Geometry (CSG)
	2.3. Volume and surface features
	2.3.1. Volume features
	2.3.2. Surface features

	2.4. Compound features

	3. Pitfalls
	3.1. Limitations of simple shape modifying techniques
	3.1.1. Implicit features
	3.1.2. Procedural models
	3.1.3. Local boundary modifications
	3.1.4. Order dependency of volumetric alterations

	3.2. Limitations of simple interrogation techniques

	4. PROCEDURAL MODELS
	4.1. Sequences
	4.2. Unevaluated parameter expressions
	4.3. Validity tests
	4.4. Editing features
	4.4.1. Volume features
	4.4.2. Surface features

	5. EFFICIENT EDITING OF VOLUME FEATURES
	5.1. Active zones
	5.2. Editing volume features
	5.2.1. Localization to the active zone
	5.2.2. Localization to the altered portion of the feature
	5.2.3. Combined localization
	5.2.4. Classifying additive and subtractive parts

	5.3. Mixed-dimensional geometric model
	5.3.1. Application to model updating
	5.3.2. Volume feature deletion

	6. CORRECTIVE VOLUMES
	6.1. Extrusion of faces

	7. VALIDITY TESTS
	7.1. Interrogation operators for SGCs
	7.2. Examples of application

	8. CONCLUSION
	REFERENCES

