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Abstract
When designing a lowpass filter to eliminate noise in a triangle mesh, the cutoff frequency is typically chosen by a
cumbersome trial-and-error process. Therefore, it is important to provide a guideline in selecting filter frequencies.
Here, we explore the relation between the frequencies in a mesh filter and the geometric measures of user-selected
features. In addition, by combining previously proposed implicit and explicit formulations, we develop a second
order filter that can act as lowpass, bandpass, highpass, notch, and band exaggeration/reduction filters. The
proposed GeoFilter framework allows the user to choose the frequencies for that filter based on the physical size
of a blob (ellipsoid) automatically fit to a user-selected feature in the mesh. For example, the size of a bump in a
noisy pattern can be used as a cutoff frequency in a lowpass filter, while the size of a nose may be used to smoothen
a face or to exaggerate its features as in a caricature.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Mesh Filtering

1. Introduction

The explicit formulation of a smoothing mesh filter intro-
duced by Taubin [Tau95] has been subsequently generalized
to a bandpass filter [TZG96]. Implicit forms of mesh filters
followed [DMSB99] and [ZF03]. We propose a generaliza-
tion of this framework that combines both explicit and im-
plicit formulations into a more flexible second order filter.
More importantly, we propose a filter, whose frequencies
can be extracted automatically from the physical dimensions
of a user-selected mesh feature. As illustrated in Fig. 1, the
user selects a feature of the mesh (such as a nose, ear or
noise bump) by spraying and diffusing paint on it. GeoFilter
computes automatically an ellipsoid approximating selected
feature. The dimensions of this ellipsoid guide the user in
adjusting the filter parameters so as to achieve the desired
result.

Filters are used profusely for audio or image signals that
are regularly sampled over time or space. Since these do-
mains are already Euclidean, regular samplings can be eas-
ily expressed in mathematical form. When constructing fil-
ters for such signals, one can directly use the property of the
analog signal. For example, when the frequency greater than
10KHz needs to be attenuated, one can use the lowpass filter
that has 10KHz as cutoff frequency.

In contrast, the quantitative relation between filter fre-

Figure 1: The user first selects a feature (left/top). The di-
mensions of the feature, shown by an approximating ellip-
soid (right/top), are computed, whose frequencies are used
to set the filter gains. In bottom images, band exaggera-
tion filters are applied to grow the ear, while the higher fre-
quency bumps may be smoothened out (bottom/let) or pre-
served (bottom/right) by varying other filter parameters. The
filter parameters are: s1 = 20,s2 = 25,G0 = 1,G1 = 2 and
G∞ = 0 (bottom/left), 0.9 (bottom/right)
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quency and size of mesh feature has been overlooked in
mesh filtering. Therefore, when one wants to attenuate a
noisy pattern of size 0.1, one cannot directly use this number
to compute the frequency of mesh filter. In previous mesh
filtering frameworks such as [Tau95, ZF03], the user must
try different cutoff frequencies until the desired result is ob-
tained. In mesh filters proposed in [DMSB99, OBB00], this
quantitative relation existed but it was not explored.

Through out this paper, we assume that the vertices of the
mesh are discrete samples on an unknown smooth surface.
To clarify the discussion, we distinguish between discrete
operators defined on the triangle mesh and continuous oper-
ators defined on the associated smooth surface.

To understand the frequencies in a mesh filter, one may
consider cutting the mesh into local patches and resampling
the surface along a regular grid, so as to obtain a piecewise
regular domain. One may apply the sampling theorem to this
regular domain together with local coordinate chart, a home-
omorphism between the patch and regular domain. This way,
one may analyze mesh filters mathematically. However, this
approach involves non-trivial processes. Therefore, we pro-
pose to follow an alternative approach. First, we assume that
the discrete triangle mesh is a close approximation of the
smooth surface it samples. We further assume that the spec-
tral properties of the smooth surface are preserved in the
mesh. With this assumption, we can ignore discretization ef-
fects. We validate this idea with several examples in section
5 and Fig. 6. We show that amplification factors of our filter
are very close to the ones predicted theoretically in various
frequencies. We also note that the choice of discrete Lapla-
cian operator is crucial for this assumption. We chose the
formulation initially proposed in [PP93] with proper weights
[OBB00, SK01] for computing the mean curvature normal
vectors.

The transfer functions proposed so far in
[Tau95, ZF03, DMSB99, OBB00, SK01] are limited to
lowpass filtering. We propose to broaden it to other filtering
applications such as exaggeration, which is explored in a
multi-resolution framework in [GSS99]. To achieve this, we
propose to combine explicit [Tau95, OBB00] and implicit
[ZF03, DMSB99, SK01] forms together to have more
flexibility in designing the mesh filter. In our construction of
a second order filter, we show that the resulting framework
allows band pass, notch, band exaggeration with optional
high frequency reduction and high pass filters as well as
lowpass filters.

2. Surface Smoothing

2.1. Choice of Discrete Laplacian Operator

The algorithms for smoothing triangle meshes have been
studied extensively. In Taubin’s work [Tau95], the low fre-
quency modes in a mesh are preserved, while high frequency
modes are attenuated. The underlying theory is that the
eigenvector of the negative Laplacian operator of a surface

represents different frequency modes of the surface, i.e., the
larger the associated eigenvalue is, the higher the frequency
mode it represents. However, the quantitative relation be-
tween the eigenvalues of the discrete Laplacian matrix and
the frequency of the noise on the surface is not known. Fur-
thermore, the discrete Laplacian operator does not approxi-
mate the continuous Laplacian and hence one cannot expect
that the eigenvalue/eigenvector pair approximates the eigen-
value/eigenfunction pair of the smooth surface. Indeed, all
the eigenvalues of the discrete Laplacian operator fall into
the interval [0,2], whereas the eigenvalue of the smooth sur-
face can be infinitely large. In the discrete mesh, the finer
the mesh, the larger the frequency the mesh can represent
and therefore eigenvalue associated with such a high fre-
quency mode can be very large. In [ZF03], the discrete op-
erator used for filtering is the affinity matrix, which does not
have a known corresponding continuous operator for smooth
mesh.

Hence, we have decided to use a discrete Laplacian op-
erator that is convergent to the continuous one, as the mesh
is refined. A popular formulation of the discrete Laplacian
operator is based on the cotangent weights, originally pro-
posed in [PP93] and used for mesh filtering in [DMSB99]. It
can be shown by Taylor series expansion [Xu04] that when
the cotangent weights are divided by one third of the area of
neighboring triangle this formulation approximates the con-
tinuous Laplace-Beltrami operator if the mesh is regular. We
show that, when this operator is used, the cutoff frequency
can be selected using a more intuitive measure such as the
geometric dimension of a feature.

Let L ∈ R
nv×nv be the discrete Laplacian operator defined

as

(−L)i j =

⎧
⎪⎪⎨

⎪⎪⎩

1

Ãi/3 ∑
k∈Ni

(cotαik + cotβik) , i = j

− 1

Ãi/3

(
cotαi j + cotβi j

)
, i �= j

(1)
where (L)i j is the i, j-component of L, nv is the number of
vertices, Ãi is the sum of area of triangles around i th vertex,
Ni is the set of indices of vertices around the i th vertex and
αik,βik are angles of the corners facing the edge connecting
i th and k th vertices.

2.2. Decomposition of the Operator

The matrix L is not symmetric, but it can be decomposed
into a multiplication of a diagonal matrix M with a symmet-
ric matrix K defined as

−L = M−1K , where

(M)ii = Ãi/3

(K)i j =
{

∑k∈Ni
(cotαik + cotβik) , i = j

−(
cotαi j + cotβi j

)
, i �= j

(2)
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Note that the matrices M and K appear when one constructs
a linear finite element formulation of the PDE φ̇ −∆φ = 0 of
a scalar filed φ over the triangle mesh. The finite element for-
mulation yields M{φ̇}+ K{φ} = 0, where {φ} is the long
vector of φ sampled at the vertices, where K is the stiffness
matrix corresponding to the negative Laplacian term, and M
is the lumped mass matrix often preferred to the full linear
formulation, not only because it gives a diagonal mass ma-
trix, but also because it satisfies the maximum principle and
hence provides stability.

Notice that if all triangles are properly oriented and there
is no triangle with negative or zero area, the element stiffness
matrix Ke ∈ R

3×3 is positive semi-definite with one dimen-
sional null space of constant. Since xT Kx = ∑∀e xT

e Kexe,
where xe ∈ R

3 is the collection of entries in x that belong
to the e th triangle, xT Kx ≥ 0 (xT Kx = 0 if and only if all
entries of x are the same when the mesh has one connected
component). Consequently, K is (symmetric) positive semi-
definite with one zero eigenvalue and M is a diagonal matrix
with positive elements. Consider the eigen decomposition of

the positive semi-definite matrix M−1/2KM−1/2 = ṼΛṼT
,

where Ṽ is orthogonal and Λ is diagonal. By multiplying it
by M−1/2 to the left and M1/2 to the right, we obtain an
eigen decomposition of −L

−L = M−1/2
(

M−1/2KM−1/2
)

M1/2

= M−1/2Ṽ Λ
(

M−1/2Ṽ
)−1

= M−1/2Ṽ Λ Ṽ
T

M1/2
(3)

If we define V ≡ M−1/2Ṽ, then V−1 = ṼT M1/2 = VT M
and we have

−L = M−1K = VΛV−1 = VΛVT M (4)

Obviously, V is an eigenvector matrix of −L.

2.3. Construction of Filter

Let p ∈ R
nv×3 be the matrix whose columns are the x,y and

z coordinates of vertices. Then, −Lp is the normal vector
whose magnitude is twice the mean curvature at each ver-
tex, and hence −L is the discrete Laplace-Beltrami operator
[Bus92].

If we can compute V exactly, we can drop high frequency
vi, yielding an ideal filtering. However, in a large mesh, it
is not practical to compute more than the first few eigen-
vectors. Moreover, even if possible, ideal filtering often cre-
ates ripples and hence not always ideal in practice. Thus, the
approach in [Tau95] is very efficient, since a carefully de-
signed filter can keep the low frequency while reducing high
frequency without having to compute the eigenvector V.

We propose the following filtering formula inspired by the
linear discrete system used in DSP and control fields.
(

a0I−a1L+a2L2 − ...
)

p′ =
(

b0I−b1L+b2L2 − ...
)

p

Applying the eigen decomposition of −L in (3) yields

(a0I+a1Λ+ ...)V
−1

p′ = (b0I+b1Λ+ ...)V
−1

p (5)

Let si be the i th diagonal element of Λ. Then, the i th row of
(5) is

V−1p′ = diag [G(si)] V−1p (6)

where diag [G(si)] is a diagonal matrix with G(si) in its di-
agonal. The function G(s) is called the transfer function and
is the amplification factor for the eigenmode associated with
the eigenvalue s. One can see that G(s) is in the following
form

G(s) =
b0 +b1s+b2s2 + ...

a0 +a1s+a2s2 +a3s3 + ...
(7)

Finally, we have

p′ = V diag [G(si)] V−1p (8)

which shows that p′ = p if G(s) = 1 for all s. If G(s) is small
(large) for some s, then p′ will have small (large) contribu-
tion from the mode associated with it. Thus, if −L is the
discrete Laplacian operator that approximates the continu-
ous one, one can assume that the eigenvectors in V and the
associated eigenvalues approximate the physical frequen-
cies in the surface. Hence, one can design G(s) to exagger-
ate/attenuate certain frequency pattern in the surface.

By choosing different coefficients, we can design a variety
of filters, such as lowpass, high pass, bandpass, notch filters,
etc. Other filters or transfer functions design methods such
as classical pole-zero placements, butterworth, Chebyshev
and other filters in analog/digital controls and DSP litera-
tures can be used with slight modifications as needed.

2.4. Converting to Symmetric Matrix Equation

Since L = −M−1K is not symmetric, a bi-conjugate gradi-
ent method has been used [DMSB99]. Instead, we propose
to left-multiply the equation by the diagonal M, yielding

(
a0M+a1K+a2KM−1K+ ...

)
p′ = (b0M+b1K+ ...)p (9)

Now, we have a symmetric matrix and the equation can be
solved by the simpler conjugate gradient methods. We use a
simple Jacobi preconditioner. Notice that the sparse matrix
M + a1K + a2KM−1K + ... does not have to be computed.
The CG iteration only requires matrix vector multiplications.
Thus,

(
M+a1K+a2KM−1K+ ...

)
p can be conveniently

computed as the sum of a cascaded series of simpler oper-
ations, such as Mp, Kp. The efficient computation of the
Jacobi preconditioner is not trivial but it can be performed in
linear time by taking advantage of the sparsity information
that is available from the connectivity of the mesh.

3. Previous Works

The λ/µ filter [Tau95] is in the following form.

p′ =
(

I+b1(−L)+b2(−L)2
)n

p (10)

Thus, the transfer function is

G(s) =
(

1+b1s+b2s2
)n

(11)

c© The Eurographics Association and Blackwell Publishing 2005.
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Figure 2: Lowpass filter and its variations constructed from (15) with 0 < s1 < s2,G∞ < 1 < G1,G0 < G1
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Figure 3: Highpass filter and its variations constructed from (15) with 0 < s2 < s1,G0 < 1 < G1,G∞ < G1

Since the operator −L chosen in [Tau95] has eigenvalue less
than two, a proper choice of b1,b2 will keep G(s) small on
the interval [0,2]. However, when one uses the Laplacian op-
erator in (1), its eigenvalues are large, yielding large G(s) for
large eigenvalue s. Thus, the explicit filter formulation will
not suffice for any operator that approximates the continuous
Laplace-Beltrami operator. Hence, Desbrun et al used an im-
plicit formula [DMSB99] using an operator nearly similar to
(1).

(I+a1(−L))n p′ = p (12)

We can see that the transfer function is

G(s) =
1

(1+a1s)n (13)

They used a simple rescaling factor S to preserve the vol-
ume. In implicit form, G(s) is safe for very large s since it
will result in a very small value of G, attenuating the high
frequency mode associated with it. The drawback is the lack
of a flat lowpass band, which may yield an annoying shrink-
age of features that one may want to preserve. Even though
the operator chosen was close to (1), the quantitative mean-
ing of the filter frequencies was not studied.

Another implicit filter is the butterworth filter found in
[ZF03]. In this work, the transfer function is in the form

G(s) =
1

1+a2s2 (14)

Again, the gain is a monotonically decreasing function of s
and hence the attenuation of the low frequency is inevitable.
A typical example is the shrinkage of the bunny ear. A higher
order butterworth filter will provide more flatness at low fre-
quencies [Cun92], since the filter is designed to have max-
imal flatness at zero frequency. However, to maintain a flat
lowpass band, the order of the filter needs to be high and

hence the cutoff rate will be very steep, approaching the
ideal filtering, which can cause ripples, known as ringing.
This phenomenon can happen even in the second order fil-
ter, whose maximum cutoff rate is -40db. However, in our
filter construction, it can be easily reduced by choosing a
larger s2, which is defined in section 4.1.

It should be mentioned that the Laplacian operators found
in [Tau95, KCVS98, KG00] regularize the mesh while per-
forming filtering operation. The reason is complex. An intu-
itive understanding may be gained by deriving the Laplacian
operator in [KCVS98] from the finite element framework,
where edges correspond to string elements with nominal
length zero, and their stiffnesses are proportional to lengths.
This yields long edges pull harder and shrink, while stretch-
ing short edges, which yields mesh regularization. Unfor-
tunately, (1) does not have a similar effect. A remedy was
proposed by [OBB00]. They constructed a hybrid operator
that uses (1) for normal displacement of the vertex and the
umbrella operator in [KCVS98] for tangential motion with
some adaptation. In contrast, our approach applies the mesh
filter only once and hence the mesh regularity deteriorates
little. Therefore, we do not need to embed mesh regulariza-
tion.

An alternative filtering approach is to build a multi-
resolution hierarchy that contains different level of detail and
then selectively reduce or amplify various detail levels. In
[GSS99], the progressive mesh is used to build the multi-
resolution and then different refinement steps are zeroed,
kept or amplified. Again, the mesh refinement step n and
size of feature are not explicitly related and hence the user
need to choose n by trial and error. Exaggeration of mesh
feature can also be found in [ZG04], where they picked a
feature using a geodesic fan and then searching the mesh for
similar feature to exaggerate.

c© The Eurographics Association and Blackwell Publishing 2005.
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4. Filter Design

4.1. Exaggeration Filter Design

In this section, we explain how we designed a filter that
exaggerates certain frequencies. We may also remove high
frequencies and keep low frequencies, or vice versa. We
use a second order polynomial for both the numerator and
denominator, which gives us choices for six coefficients:
a0,a1,a2,b0,b1,b2. A higher order polynomial would afford
more flexibility and sharper cutoffs, but would considerably
slow down computation. Therefore, in order to support inter-
active design, we have opted for second order polynomials.

As is shown in the far left image of Fig. 2, we allow the
user to specify the DC gain G(0) = G0 and the high fre-
quency gain G(∞) = G∞, which should be zero if one wants
to attenuate the high frequencies. The user can also select
the location of the maximum gain such that G(s1) = G1 to
design the frequency and amplification factor. We also allow
the user to specify another frequency s2, such that G(s2) = 1,
to specify when the gain falls off to one. Then, given the five
parameter s1,s2,G0,G1,G∞, the filter coefficients are com-
puted as

a0 = 1 , b0 = G0 , a2 = − G0 −G1

G1 −G∞

1

s2
1

, b2 = a2G∞

a1 = −G0 −G1

1−G1

2
s1

− 1−G0

1−G1

1
s2

−a2
1−G∞
1−G1

s2

b1 =
G0 −G1

1−G1

s2 −2s1

s2
1

− 1−G0

1−G1

G1

s2
−a2G∞ s2

(15)

where G1 �= 1.

If s2 > s1 > 0,G1 > G0 and G1 > G∞, one obtain a set
of filters shown in Fig. 2 that includes lowpass, band exag-
geration filters with the option of high frequency reduction.
In lowpass filter design, when stronger attenuation in high
frequency is needed, one may choose G∞ = 0. In this case,
b2 = 0 and the high frequency cutoff of 20db is achieved.
This can be increased to 40db if G0 = 1 and s2 = 2s1 since
b1 = b2 = 0. The example of this steep cutoff can be found in
the second image in Fig. 12, where the high frequency noise
in the chin, shoulder and ear have disappeared. When we
choose G0 = G∞ = 0, we obtain a bandpass filter as is shown
in red in the last image of Fig. 2. If s1 > s2 > 0,G1 > G∞ and
G1 > G0, one obtain the highpass filter with options of var-
ious exaggerations and bandpass filter as illustrated in Fig.
3. Notice that those highpass filters will collapse the mesh
since they remove low frequencies and hence are less use-
ful than lowpass filters. However, they may still be used
in some application that needs to compute the strength of
high frequency signal or transfers high frequency details of
a mesh to other mesh. One can also obtain a notch filter by
G0 > 1,G∞ > 1 and assigning small value to G1, as is shown
in Fig. 4. An example of this notch filter can be found in the
third image of Fig. 9. Also, when one increase G∞ > 1 and
G1 close to one, a high frequency exaggeration filter is ob-
tained, as is shown in Fig. 5.
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Figure 5: High frequency amplification filter applied to a
rabbit model(33,519 vertices), which took 26 seconds in
2.4GHz Pentium4.

In conclusion, our filter formulation in (9) and (15) can be
used in variety of mesh processing applications.

Note on Computation Time and Higher Order Filters

Our filter (15) is second order. The higher order filter can
provide more freedom in designing G(s). For example,
Chebyshev filter can keep the pass band to have minimum
ripple. However, as the order of the filter grows, the condi-
tion number of the matrix in the left hand side of (9) will
grow exponentially and hence applying it will be very slow.
[ZF03] suggest an idea that can possibly remedy this by fac-
toring high order polynomials into a product of quadratic or
linear polynomials. Zhang et al. even factored the denomina-
tor of (14) into

(
1+

√
a2s

)(
1+ j

√
a2s

)
, j =

√−1 and then
solved the two first order complex matrix equations.

Our filter process takes a few seconds for a model with
3,291 vertices. For the dinosaur model with 28,098 vertices,
it requires 14∼17 seconds for high frequency filters in Fig.
9 and a few minutes for low-frequency filtering as is shown
in Fig. 10. Note that low frequency filtering is much slower
than high frequency one. We provide timing results for all
models measured in 2.4GHz Pentium4 PC with 512MB of
main memory. Notice that this computation time could be
significantly improved by using complex valued conjugate
gradient solver [ZF03] or the multigrid solver [NGH04].

4.2. Filters Decomposable to First Order Ones

We explore the idea of constructing a filter that can be fac-
tored into real polynomials of degree one, since such an ap-
proach allows the left hand side of (9) to be factored into

c© The Eurographics Association and Blackwell Publishing 2005.
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Figure 6: Exaggeration filter(s1 = 10, s2 = 25, G0 = 1.0, G1 = 30, G∞ = 0) applied to sphere meshes of various radii and
connectivities. The solid blue line is G(s) computed from (7), while red dots are samples of experimental gains rO/rI , where
rI ,rO are the average radii of input and output spheres, respectively. Notice that y-axes are in log scale.

products of M−1(K + piM), which can be solved much
faster.

G(s) =
(

G0
p1 p2 p3...

z1z2z3...

)
(s+ z1)(s+ z2)(s+ z3)...
(s+ p1)(s+ p2)(s+ p3)...

(16)

where pi and zi are real numbers. A classical control the-
ory [Shi78], pages 213–226, provides an easy guideline in
choosing zi and pi using the asymptotic lines that turns 20db
at zi and -20db at pi as is illustrated in Fig. 8. As is shown
in Fig. 7, it can be set to approximate the exaggeration filter
too. However, it is difficult to make the exaggeration band
narrow. In low pass filtering, it is hard to obtain a sharp cut-
off rate while maintaining flat pass band. Thus, filters de-
composable to first order ones can be intuitively designed by
asymptotic lines and faster than the second order filters but
they provide limited filtering operations.
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Figure 7: Comparsion of exaggeration filter(blue) to a filter
designed by asymptotic lines(green).
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Figure 8: Designing a band stop filter by choosing four fre-
quencies. G(s) tends to turn 20db(-20db) at each zi(pi).

5. Tests of Filtering Framework

We now evaluate the assumption made in section 1 under
the proposed filtering framework. Since the curvature of a
sphere is unique, we can predict the shrinkage ratio theoret-
ically. We apply the filter to sphere models of various radii
and then measure their shrinkage/expansion ratios and com-
pare them to the theoretically predicted ones.

Consider a sphere equation p ·p = r2. Since −L computes
the normal vector whose length is twice the mean curvature,
−L computes

−Lp =
2
r

p
|p| =

2
r2 p (17)

Thus, the eigenfunction is the sphere itself and the eigen-
value is 2/r2, which implies that if we apply the filter to
spheres of radius r, it should shrink or expand by the ratio of
G

(
2/r2

)
.
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Figure 9: Various filtering results for a dinosaur model. Far left is the initial model with 28,098 vertices and 56,192 triangles.
The next two are produced by a band exaggeration and a band stop filter for s1 = 630 (frequency of back-bone marked in red
circle), s2 = 1260,G0 = 1 and G1 = 3,G∞ = 0.9 (second), and G1 = 0.01,G∞ = 1.1(third). The computation times are 17 and
14 seconds, respectively.

We apply the filters for a sphere mesh obtained from three
different tessellation methods: longitude-latitude model and
subdividing tetrahedron and lcosahedron. As is shown in
Fig. 6, the filter output and the theoretical gain matches well
in the mesh obtained from lcosahedron since the triangula-
tion is near regular. In other models, the mesh includes ver-
tices whose valence is significantly different from six. This
leads to some imprecise results for certain frequencies. How-
ever, in most frequency, the expected frequency and filter
throughput match well.

6. Selecting Feature and Computing Filter Frequency

In the proposed GeoFilter framework, the filter frequencies
are chosen from the physical size of a user selected mesh
feature. For example, a sphere like feature can be consid-
ered to have frequency of approximately 2/r2 and a cylinder
like feature has 1/r2. Thus, if the user knows the size of the
feature, the filter frequency can be easily computed.

To facilitate this process, we first allow the user to select
a portion of mesh by picking a triangle graphically and then
by automatically expanding the selection to neighboring tri-
angles as long as the user keep pressing the mouse button.
The operation may be repeated to extend the selection ar-
eas in a less regular fashion. The feature size is computed
automatically by fitting a bounding box around optimally
aligned principal axes computed as the eigenvectors of the
covariance matrix [GLM96]. The bounding box is shown
as a transparent ellipsoid in Fig. 1. The dimensions of the
bounding box are used to derive the desired filter frequen-
cies.

In Fig. 9, the bump of the back bone has the radius of
0.0563, which corresponds to the frequency of 2/0.05632 ≈
630. This frequency is exaggerated in the center image and
reduced in the right image. We apply similar strategy in var-
ious examples. In Fig 11, we pick the horse shoe that gives
frequency of approximately 60. In Fig. 12, we pick nose
that has frequency of approximately 25. Thus, the filter fre-

quency can be computed from the sizes of features rather
than via a time consuming trial-and-error process.

7. Results and Discussion

We apply our filters for various models in Fig. 1, 5, 9, 10,
11, and 12. All discussions as well as filter parameters and
timing results on 2.4GHz Pentium4 PC are provided with
figures.

Figure 10: A band exaggeration filter applied to the di-
nosaur model(far left in Fig. 9) with and without high fre-
quency attenuation. s1 = 25 is chosen as the frequency of
the leg: s2 = 60,G0 = 1,G1 = 3 G∞ = 0.0 (left), and G∞ =
0.9(right). The computation times are 142 and 337 seconds,
respectively

Figure 11: Exaggeration of the legs of a horse model with
48,485 vertices. Left image is original model. Right image
is obtained with exaggeration filter (s1 = 60,s2 = 120,G0 =
1,G1 = 2,G∞ = 0.9,182sec.).
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Figure 12: Various filtering results for a human model (75,948 vertices, 151,474 triangles). Far left is the original model. The
next image shows a lowpass filtered model (s1 = 25,s2 = 50,G0 = 1,G1 = 1.1,G∞ = 0, 366 sec.). The last two are exaggerated
models that look older (s1 = 200,s2 = 1000,G0 = 0.5,G1 = 1.1,G∞ = 0,70 sec.) or like a cartoon character (s1 = 25,s2 =
400,G0 = 0.5,G1 = 1.8,G∞ = 0, 481 sec.). Since the last two models have G0 = 0.5, the filtered models are about half the size
of the initial model. In this figure, we zoomed them in.

8. Conclusion

We propose a mesh filtering framework that has physically
meaningful parameters. A discrete Laplacian operator that
approximates operator for smooth surfaces allows the user
to compute filter parameters from the physical property of
the surface such as feature size. We also propose to combine
the explicit and implicit filter forms. Using this generaliza-
tion, we have built a new filter that can be used for lowpass,
highpass, bandpass, notch filters with various exaggeration
and attenuation options that create a variety of effects on the
mesh.

References

[Bus92] BUSHER P.: Geometry and Spectra of Compact Riemann
Surfaces. Birkhauser Boston, 1992. 3

[Cun92] CUNNINGHAM E. P.: Digital Filtering: An Introduction.
Houghton Mifflin, 1992. 4

[DMSB99] DESBRUN M., MEYER M., SCHRÖDER P., BARR

A. H.: Implicit fairing of irregular meshes using diffusion and
curvature flow. In Proceedings of ACM SIGGRAPH (1999),
pp. 317–324. 1, 2, 3, 4

[GLM96] GOTTSCHALK S., LIN M. C., MANOCHA D.: Obb-
tree: A hierarchical structure for rapid interference detection. In
Proceedings of ACM Siggraph (1996). 7

[GSS99] GUSKOV I., SWELDENS W., SCHRÖDER P.: Multires-
olution signal processing for meshes. In SIGGRAPH (1999). 2,
4

[KCVS98] KOBBELT L., CAMPAGNA S., VORSATZ J., SEIDEL

H.-P.: Interactive multi-resolution modeling on arbitrary meshes.
In Proceedings of ACM SIGGRAPH (1998), pp. 105–114. 4

[KG00] KARNI Z., GOTSMAN C.: Spectral compression of mesh
geometry. In Proceedings of ACM SIGGRAPH (2000), pp. 279–
286. 4

[NGH04] NI X., GARLAND M., HART J. C.: Fair morse func-
tions for extracting the topological structure of a surface mesh.
In Proceedings of ACM SIGGRAPH (2004), pp. 613–622. 5

[OBB00] OHTAKE Y., BELYAEV A. G., BOGAEVSKI I. A.:
Polyhedral surface smoothing with simultaneous mesh regular-
ization. In Proceedings of the Geometric Modeling and Process-
ing (2000), pp. 229–237. 2, 4

[PP93] PINKALL U., POLTHIER K.: Computing discrete minimal
surfaces and their conjugates. Experimental Mathematics 2, 1
(1993), 15–36. 2

[Shi78] SHINNERS S. M.: Modern Control System Theory and
Application. Addison Wesley, 1978. 6

[SK01] SCHNEIDER R., KOBBELT L.: Geometric fairing of ir-
regular meshes for free-form surface design. Computer Aided
Geometric Design 18, 4 (2001), 359–379. 2

[Tau95] TAUBIN G.: Signal processing approach to fair surface
design. In Proceedings of ACM SIGGRAPH (1995), pp. 351–
358. 1, 2, 3, 4

[TZG96] TAUBIN G., ZHANG T., GOLUB G.: Optimal surface
smoothing as filter design. In Fourth European Conference on
Computer Vision (ECCV’96) and IBM Research Technical Re-
port RC-20404 (March 1996). 1

[Xu04] XU G.: The convergent discrete laplace-beltrami operator
over triangular surfaces. In Proceedings of Geometric Modelling
and Processing (GMP2004) (2004), pp. 195–204. 2

[ZF03] ZHANG H., FIUME E.: Butterworth filtering and implicit
fairing of irregular meshes. In Proceedings of Pacific Graphics
(2003), pp. 502–506. 1, 2, 4, 5

[ZG04] ZELINKA S., GARLAND M.: Similarity-based surface
modelling using geodesic fans. In Proceedings of the 2nd Euro-
graphics Symposium on Geometry Processing (2004). 4

c© The Eurographics Association and Blackwell Publishing 2005.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


