Question 1: Buffer Management.....[390 points]

(i) [10 points] Buffer Management:

Distinguish between disk management and buffer management.

(ii) [10 points] Locality of Reference:

Define locality of reference: (1) spatial and (2) temporal.

(iii) [10 points] Buffer Manager:

Define the input and output of a page table.

(iv) [10 points] Buffer Manager:

List the purpose of these meta-data: (1) dirty flage, and (2) reference counter.

(v) [30 points] Locks vs Latches:

List three differences between locks and latches.

(vi) [10 points] Locks vs Latches:

With latches, we do not need to be able to rollback changes. Why?

(vii) [10 points] Page Table vs. Page Directory:

Distinguish between page table and page directory.

(viii) [10 points] Page Table vs. Page Directory:

Distinguish between page table and page directory.

(ix) [10 points] Buffer Manager Interface:

List the two key functions supported by the buffer manager.

(x) [10 points] Buffer Manager:

What data structure is used to implement a page table inside the buffer manager?

(xi) [10 points] Buffer Manager:

What is the purpose of page-level latch?

(xii) [10 points] Logging:

What is the log sequence number (LSN) of a page?

(xiii) [10 points] Logging:

What is write-ahead logging (WAL)? Justify its name.

(xiv) [30 points] Logging:

To update a tuple in a table, list the three operations done in a DBMS that uses write-ahead logging. Why are these operations needed?

(xv) [10 points] Multiple Buffer Pools:

List a benefit and a limitation of maintaining multiple buffer pools.

(xvi) [10 points] Pre-fetching:

Explain pre-fetching in the context of sequential heap scan with an example.

(xvii) [10 points] Pre-fetching:

Explain pre-fetching in the context of index scan with an example.

(xviii) [10 points] Scan Sharing:

Define scan sharing. Does it require spatial locality or temporal locality or both?

(xix) [10 points] Buffer Pool Bypass:

Define buffer pool bypass optimization. How is it related to scan-resistant buffer replacement policies?

(xx) [10 points] Direct I/O:

Define direct I/O.

(xxi) [10 points] OS Page Cache:

List two limitations of relying on the OS for moving data between memory and disk.

(xxii) [10 points] Background Writing:

Define background writing optimization. How does the DBMS ensure the atomicity property?

(xxiii) [10 points] ACID:

Define the ACID properties. Which two properties are guaranteed by the WAL protocol?

(xxiv) [10 points] Other Memory Pools:

What is anonymous mapping? Distinguish it from file-backed mapping. What are the flags passed to mmap for these two types of memory mapping?

(xxv) [10 points] Buffer Replacement Policies:

Define the buffer replacement problem. What is the optimal policy?

(xxvi) [10 points] Buffer Replacement Policies:

What is a page fault? How does it vary with buffer size?

(xxvii) [10 points] Policy vs Mechanism:

Distinguish between policy and mechanism with an example.

(xxviii) [10 points] FIFO:

List a limitation of the FIFO policy.

(xxix) [10 points] LRU vs LFU:

When does LRU outperform LFU? When does LFU outperform LRU?

(xxx) [10 points] CLOCK:

Why does the CLOCK policy approximate LRU?

(xxxi) [10 points] Sequential Flooding:

Define the sequential flooding problem.

(xxxii) [10 points] Sequential Flooding:

Why is LRU-K resistant to the sequential flooding problem?

(xxxiii) [10 points] Sequential Flooding:

Why is 2Q resistant to the sequential flooding problem?

(xxxiv) [10 points] 2Q vs LRU-K:

How is 2Q related to LRU-K?

(xxxv) [10 points] Priority Hints:

Define priority hints. Illustrate with an example.