Quest	ion 1: Compression[400 points]
(i)	[10 points] Bottlenecks: Distinguish between I/O bound and CPU bound programs.
(ii)	[10 points] Bottlenecks: Explain the CPU-DRAM performance gap. Is it growing or shrinking?
(iii)	[10 points] Compression: Explain the trade-off between decompression speed and compression ratio.
(iv)	[10 points] Compression: Why does a disk-centric DBMS optimize for compression ratio? Why does an in-memory DBMS optimize for decompression speed?
(v)	[10 points] Compression: Distinguish between DRAM bandwidth and disk bandwidth.
(vi)	[10 points] Real-World Data Characteristics: Define skew in real-world distribution of data. Illustrate with an example.
(vii)	[10 points] Real-World Data Characteristics: Define correlation in real-world distribution of data. Illustrate with an example.
(viii)	[10 points] Real-World Data Characteristics: How can a compression scheme leverage: (1) skew, and (2) correlation?
(ix)	[10 points] Database Compression: Why do we seek for a compression scheme to produce fixed-length values?
(x)	[10 points] Database Compression: Distinguish between early and late materialization from a query execution standpoint.
(xi)	[10 points] Database Compression: Distinguish between lossy and lossless compression.
(xii)	[20 points] Data Skipping: Define approximate query processing. Explain with an illustrative query.
(xiii)	[20 points] Data Skipping: Define zone maps. Explain with an illustrative query.
(xiv)	[10 points] Compression Granularity: Is compression better suited for NSM or DSM storage model? Justify your answer.
(xv)	[10 points] Naive Compression: What is the entropy of a data distribution? How is it related to thermodynamics?
(xvi)	[10 points] Naive Compression: What is entropy encoding?
(xvii)	[10 points] Naive Compression: What is dictionary encoding?

(xviii)	[10 points] Naive Compression: How is entropy encoding related to dictionary encoding?
(xix)	[10 points] InnoDB Compression: Briefly explain how compression is done in MySQL InnoDB storage engine?
(xx)	[10 points] Naive Compression: Illustrate how we could execute point queries on compressed data.
(xxi)	[10 points] Naive Compression: Illustrate how we could execute range queries on compressed data.
(xxii)	[10 points] Compression Schemes: Define Null Suppression. Illustrate with an example.
(xxiii)	[10 points] Compression Schemes: Define Run Length Encoding. Illustrate with an example.
(xxiv)	[10 points] Compression Schemes: Define Bitmap Encoding. Illustrate with an example.
(xxv)	[10 points] Compression Schemes: Why is the efficacy of bitmap encoding dependent on the cardinality of the at- tribute?
(xxvi)	[10 points] Compression Schemes: Is it effective to compress zip codes using bitmap encoding?
(xxvii)	[10 points] Compression Schemes: Is it effective to compress zip codes using bitmap encoding?
(xxviii)	[10 points] Compression Schemes: How is Byte-Aligned Bitmap Code (BBC) "byte-aligned"?
(xxix)	[10 points] Compression Schemes: Do these schemes support random access to a given value? Justify your answer.
(xxx)	[10 points] Compression Schemes: Define Delta Encoding. Illustrate with an example.
(xxxi)	[10 points] Compression Schemes: Define Incremental Encoding. Illustrate with an example.
(xxxii)	[10 points] Compression Schemes: Define Mostly Encoding. Illustrate with an example.
(xxxiii)	[10 points] Compression Schemes: Illustrate how you could combine two compression schemes to get an even better compression ratio.
(xxxiv)	[10 points] Dictionary Compression: Why does this scheme not require pre-sorting?
(xxxv)	[10 points] Dictionary Compression: Why do we need to re-encode existing values with incremental construction?

(xxxvi) [10 points] Order-Preserving Encoding:

Define an order-preserving encoding. Illustrate with an example.

(xxxvii) **[10 points] Order-Preserving Encoding:** Can we short-circuit query execution using a dictionary?s Illustrate with an example.

(xxxviii) [10 points] Dictionary Data Structures:

Why is a B+Tree better suited for building a dictionary?