
Question 1: Trees (Part 1) . [330 points]
(i) [10 points] Table Indexes:

Define a table index. List the key and value of an in-memory hash index. List the
key and value of an on-disk tree index.

(ii) [10 points] Table Indexes:
Are indexes base or derived data structures? Why?

(iii) [10 points] Table Indexes:
List a benefit and a limitation of building an index.

(iv) [10 points] Table Indexes:
Do indices accelerate read-intensive workloads or write-intensive workloads?
Why?

(v) [10 points] Table Indexes:
Do indices benefit OLTP workloads or OLAP workloads more? Why?

(vi) [10 points] B+Tree:
How is a B+Tree optimized for disk storage as opposed to a hash table?

(vii) [10 points] B+Tree:
List the keys and values of a leaf node. List the keys and values of an inner node.

(viii) [10 points] B+Tree:
Explain the purpose of: (1) child pointers, (2) parent pointers, and (3) sibling
pointers.

(ix) [10 points] B+Tree:
Are the pointers in a B+Tree node logical or physical pointers? Justify your answer.

(x) [10 points] B+Tree:
Distinguish between primary and secondary indexes with respect to the values
stored in the leaf nodes.

(xi) [10 points] B+Tree:
Distinguish between BTree and B+Tree.

(xii) [10 points] Node Split:
Explain the node split operation in a B+Tree with an example.

(xiii) [10 points] Node Merge:
Explain the node merge operation in a B+Tree with an example.

(xiv) [10 points] Operations:
Explain how FIND operation works in a B+Tree.

(xv) [10 points] Operations:
Explain how INSERT operation works in a B+Tree.

(xvi) [10 points] Operations:
Explain how DELETE operation works in a B+Tree.

(xvii) [10 points] Data Organization:
Distinguish between heap-organized and index-organized storage.

Question 1 continues. . .

CS 4420/6422 (Fall 2020) Problem Set Page 2 of 2

(xviii) [10 points] Data Organization:
Distinguish between clustered and unclustered indexes. How are they connected
to heap-organized storage? How are they connected to index-organized storage?

(xix) [10 points] Unclustered Index:
Distinguish between storing a clustered index pointer or a tuple pointer as the
value in an unclustered index.

(xx) [10 points] Filtering Tuples:
When can a B+Tree index be used for filtering tuples? Illustrate with an example.

(xxi) [10 points] Filtering Tuples:
When can a B+Tree index not be used for filtering tuples? Illustrate with an
example.

(xxii) [10 points] B+Tree Design Decisions:
How does the node size vary based on the device latency? Why?

(xxiii) [10 points] B+Tree Design Decisions:
How does the node size vary based on the workload? Why?

(xxiv) [10 points] B+Tree Design Decisions:
Distinguish between eager and lazy merge operations.

(xxv) [10 points] B+Tree Design Decisions:
Distinguish between these two techniques for storing variable length keys: (1)
pointers and (2) key map.

(xxvi) [10 points] B+Tree Design Decisions:
Distinguish between these two techniques for handling duplicate keys: (1) dupli-
cate keys and (2) value lists.

(xxvii) [10 points] B+Tree Design Decisions:
Distinguish between these three techniques for intra-node search: (1) linear search,
(2) binary search, and (3) interpolation search.

(xxviii) [10 points] B+Tree Design Decisions:
Explain how interpolation search works with an example.

(xxix) [10 points] B+Tree Design Decisions:
When is interpolation search faster than binary search?

(xxx) [10 points] B+Tree Optimizations:
Explain the prefix compression optimization with an example.

(xxxi) [10 points] B+Tree Optimizations:
Explain the suffix truncation optimization with an example.

(xxxii) [10 points] B+Tree Optimizations:
Explain the bulk insert optimization with an example.

(xxxiii) [10 points] B+Tree Optimizations:
Explain the pointer swizzling optimization with an example. How is this opti-
mization used in Leanstore?

End of Problem Set

