
Question 1: Trees (Part 2) . [280 points]
(i) [10 points] More B+Trees:

Distinguish between std::multimap and std::map.
(ii) [10 points] More B+Trees:

Distinguish between these two techniques for handling duplicate keys: (1) append
record ID and (2) overflow leaf nodes.

(iii) [10 points] More B+Trees:
What is a partitioned B+tree? Justify its utility with an example.

(iv) [10 points] More B+Trees:
List a benefit and a limitation of a partitioned B+tree.

(v) [10 points] More B+Trees:
List a benefit and a limitation of a prefix B+tree.

(vi) [10 points] More B+Trees:
Explain why prefix compression is attractive in a B+tree.

(vii) [10 points] Additional Index Magic:
Distinguish between implicit and explicit indexes.

(viii) [10 points] Additional Index Magic:
Define data integrity. Is it related to the ACID properties?

(ix) [10 points] Additional Index Magic:
Are implicit indexes automatically created for enforcing referential integrity con-
straints? Justify your answer.

(x) [10 points] Additional Index Magic:
Define a partial index. Illustrate its utility with an example.

(xi) [10 points] Additional Index Magic:
Define a covering index. Illustrate its utility with an example.

(xii) [10 points] Additional Index Magic:
Define an index with include columns. Illustrate its utility with an example.

(xiii) [10 points] Additional Index Magic:
Distinguish between a covering index and an index with include columns.

(xiv) [10 points] Additional Index Magic:
Define a functional index. Illustrate its utility with an example.

(xv) [10 points] Tries:
Define a trie. Illustrate its utility with an example.

(xvi) [10 points] Tries:
Distinguish between a trie and a B+tree.

(xvii) [10 points] Tries:
What is the time complexity of operations in a trie? Is it dependent or independent
of the length of the key? Is it dependent or independent of the number of keys?

Question 1 continues. . .

CS 4420/6422 (Fall 2020) Problem Set Page 2 of 2

(xviii) [10 points] Tries:
Does a trie require rebalancing operations?

(xix) [10 points] Tries:
Define the span of a trie level. How does it affect the fan-out of each node? How
does it affect the physical heightof the tree?

(xx) [10 points] Radix Tree:
Distinguish between a trie and a Radix tree.

(xxi) [10 points] Radix Tree:
Can a radix tree return false positives? Justify your answer.

(xxii) [10 points] Radix Tree:
Explain how INSERT operation works in a Radix Tree.

(xxiii) [10 points] Radix Tree:
Explain the necessity for binary comparable keys in a Radix Tree.

(xxiv) [10 points] Radix Tree:
What will happen if we do not flip the byte order for an unsigned integer key in a
radix tree?

(xxv) [10 points] Radix Tree:
Distinguish between 1-bit Span and 8-bit Span Radix Trees with an example.

(xxvi) [10 points] Inverted Index:
Define an inverted index. When is it used?

(xxvii) [10 points] Inverted Index:
List three types of quries supported by an inverted index.

(xxviii) [10 points] Inverted Index:
How would you construct an inverted index that supports phrase searches with
atmost three words?

End of Problem Set

