
Question 1: Parallel Sort-Merge Join . [240 points]
(i) [10 points] Parallel Join Algorithms:

Explain how to parallelize a sort-merge join.
(ii) [10 points] SIMD:

Distinguish between: SIMD and SISD.
(iii) [10 points] SIMD:

List a benefit and a drawback of SIMD.
(iv) [10 points] Parallel Sort-Merge Join:

List the phases of a sort-merge join.
(v) [10 points] Parallel Sort-Merge Join:

Explain why merge sort is used for sorting data instead of quicksort.
(vi) [10 points] Partition Phase:

Why is the partition phase optional?
(vii) [10 points] Partition Phase:

List two types of partitioning. When ismore advantageous to perform a sort-merge
join?

(viii) [10 points] Sort Phase:
Explain why quicksort is good enough in a disk-centric DBMS.

(ix) [10 points] Sort Phase:
List the levels in cache-conscious sorting.

(x) [10 points] Sort Phase:
Define a sorting network.

(xi) [10 points] Sort Phase:
Distinguish between a bitonic merge network and a sorting network.

(xii) [10 points] Sort Phase:
Define multi-way merging. Explain the purpose of using a cache-sized FIFO
queue.

(xiii) [10 points] Merge Phase:
Explain when backtracking is done during the merge phase.

(xiv) [10 points] Merge Phase:
List the types of sort-merge join.

(xv) [10 points] Merge Phase:
Distinguish between: (1) Multi-Way, (2) Multi-Pass, and (3) Massively Parallel
Sort-Merge algorithms.

(xvi) [10 points] Merge Phase:
When can the hardware prefetcher mask the latency penalty of going over NUMA
regions?

(xvii) [10 points] Merge Phase:
List the rules for parallelization.

Question 1 continues. . .

CS 4420/6422 (Fall 2020) Problem Set Page 2 of 2

(xviii) [10 points] Merge Phase:
Distinguish between: (1) merge sort, (2) quick sort, and (3) heap sort.

(xix) [10 points] Evaluation:
Explain why the multi-way sort-merge join algorithm outperforms other algo-
rithms.

(xx) [10 points] Evaluation:
Explain why the massively parallel sort-merge join algorithm does not work well
in practice.

(xxi) [10 points] Evaluation:
Compare the performance of sort-merge join and hash join algorithms.

(xxii) [10 points] Evaluation:
When is sort-merge join useful as opposed to hash join?

(xxiii) [10 points] Evaluation:
Which DBMS component chooses between sort-merge join and hash join algo-
rithms?

(xxiv) [10 points] Evaluation:
How does the optimizer choose between sort-merge join and hash join algorithms?

End of Problem Set

