
1 / 30

Introduction

Database System Implementation

Joy Arulraj

Slides are derived from courses developed by Thomas Neumann and Andy Pavlo.

https://www.professoren.tum.de/en/neumann-thomas/
https://www.cs.cmu.edu/~pavlo/


2 / 30

Introduction Course Overview

Course Overview



3 / 30

Introduction Course Overview

Welcome!

• This course is on the design and implementation of database management systems
(DBMSs).

Why you might want to take this course?
• DBMS developers are in demand.
• There are many challenging unsolved problems in data management and processing.
• If you are good enough to write code for a DBMS, then you can write code on almost

anything else.

Why you might not want to take this course?
• This is not a course on how to use a database to build applications or how to administer a

database.

JA

JA

JA



4 / 30

Introduction Course Overview

Course Objectives

• Learn about modern practices in database internals and systems programming.
• Students will become proficient in:

▶ Writing correct + performant code
▶ Proper documentation + testing
▶ Working on a large systems programming project



5 / 30

Introduction Course Overview

Course Topics

The internals of single node systems for disk-oriented and in-memory databases.

Topics include:
• Relational Databases
• Storage
• Indexing
• Query Execution
• Potpourri

JA

JA

JA

JA

JA



6 / 30

Introduction Course Overview

Background

• Assume that you have taken an introductory course on database systems (e.g., GT 4400).
• All programming assignments will be written in C++17.

▶ Be prepared to develop and test a multi-threaded program.
▶ Assignment 1 will help get you caught up with C++.
▶ If you have not encountered C++ before and are a Java programmer, you will need to pick

C++ yourself.
▶ Here a couple of helpful references: ❶ Java to C++ Transition Tutorial, ❷ C++ Language
▶ I will briefly cover relevant parts of C++ in this course.

https://cs.brown.edu/courses/cs123/docs/java_to_cpp.shtml
https://www.cplusplus.com/doc/tutorial/
JA

JA

JA

JA



7 / 30

Introduction Course Overview

Course Logistics

• Course Policies
▶ The programming assignments and exercise sheets must be your own work.
▶ They are not group assignments.
▶ You may not copy source code from other people or the web.
▶ Plagiarism will not be tolerated.

• Academic Honesty
▶ Refer to Georgia Tech Academic Honor Code.
▶ If you are not sure, ask me.



8 / 30

Introduction Course Overview

Course Logistics

• Course Web Page
▶ Schedule: https://www.cc.gatech.edu/ jarulraj/courses/4420-f20/

• Discussion Tool: Piazza
▶ https://piazza.com/gatech/fall2019/cs8803ddl/home
▶ For all technical questions, please use Piazza
▶ Don’t email me directly
▶ All non-technical questions should be sent to me

• Grading Tool: Gradescope
▶ You will get immediate feedback on your assignment.
▶ You can iteratively improve your score over time.

• Virtual Office Hours
▶ Will be posted on Piazza.

https://www.cc.gatech.edu/~jarulraj/courses/4420-f20/
https://piazza.com/gatech/fall2019/cs8803ddl/home
JA

JA

JA

JA

JA

JA



9 / 30

Introduction Course Overview

Course Rubric

• Programming Assignments (55%)
▶ Five assignments based on the BuzzDB academic DBMS.
▶ Each assignment builds on the previous one.

• Exercise Sheets (15%)
▶ Three pencil-and-paper tasks.
▶ You will need to upload the sheets to Gradescope.

• Exams (30%)
▶ Two remote exams.
▶ We are planning to use the online proctoring service provided by the university.

JA

JA

JA



10 / 30

Introduction Course Overview

Late Policy

• You are allowed four slip days for either programming assignments or exercise sheets.
• You lose 25% of an assignment’s points for every 24 hrs it is late.
• Mark on your submission (1) how many days you are late and (2) how many late days you

have left.



11 / 30

Introduction Course Overview

Teaching Assistants

• Gaurav Tarlok Kakkar
▶ M.S. (Computer Science)
▶ Worked at Adobe (2 years).
▶ Research Topic: Video analytics using deep learning.

• Pramod Chundhuri
▶ Ph.D. (Computer Science)
▶ Research Topic: Video analytics using deep learning.

• If you are acing through the assignments, you might want to hack on the video analytics
system (codenamed EVA) that we are building.

• Drop me a note if you are interested!

https://github.com/georgia-tech-db/eva
https://github.com/georgia-tech-db/eva
JA

JA



12 / 30

Introduction Motivation

Motivation



13 / 30

Introduction Motivation

Motivation (1)

A Database Management System (DBMS) is a software that allows applications to store
and analyze information in a database.
A general-purpose DBMS is designed to allow the definition, creation, querying, update, and
administration of databases.

DBMSs are super important
• core component of most computer applications
• very large data sets
• valuable data



14 / 30

Introduction Motivation

Motivation (2)

Key challenges:
• scalability to huge data sets
• reliability
• concurrency

Results in very complex software.



15 / 30

Introduction Motivation

About This Course

Goals of this course
• learning how to build a modern DBMS
• understanding the internals of existing DBMSs
• understanding the impact of hardware properties

Rough structure of the course
1. Relational Databases
2. Storage
3. Indexing
4. Query Execution

JA



16 / 30

Introduction Motivation

Next Course

In a follow-up course offered in the Spring semester (GT 8803), we will focus on:
1. Query Compilation
2. Concurrency Control
3. Recovery
4. Query Optimization
5. Potpourri

This course will be a pre-requisite for the next course.

JA

JA



17 / 30

Introduction Motivation

Textbook

• Silberschatz, Korth, & Sudarshan: Database System Concepts. McGraw Hill, 2020.
• Hector Garcia-Molina, Jeff Ullman, and Jennifer Widom: Database Systems: The Complete

Book. Prentice-Hall, 2008.

Caveat
• These textbooks mostly focus on traditional disk-oriented database systems
• Not modern in-memory database systems

JA

JA



18 / 30

Introduction Motivation

Motivational Example

Why is a DBMS different from most other programs?
• many difficult requirements (reliability etc.)
• but a key challenge is scalability

Motivational example
Given two lists L1 and L2, find all entries that occur on both lists.

Looks simple...
L1 = {1, 2, 3, 5}
L2 = {1, 5, 3, 4, 7}
L1 ∩ L2 = {1, 3, 5}

JA

JA



19 / 30

Introduction Motivation

Motivational Example (2)

Given two lists L1 and L2, find all entries that occur on both lists.

Simple if both fit in main memory
Don’t need more than a few lines of code

• sort both lists and intersect L1 = {1, 2, 3, 5}; L2 = {1, 3, 4, 5, 7}
• or load one list in an unordered hash table [2] and probe
• or load one list in an ordered tree structure [1]
• or ...

Note: pairwise comparison is not an option! O(n2)
We will discuss about hash tables and B+trees in Access Paths .



19 / 30

Introduction Motivation

Motivational Example (2)

Given two lists L1 and L2, find all entries that occur on both lists.

Simple if both fit in main memory
Don’t need more than a few lines of code

• sort both lists and intersect L1 = {1, 2, 3, 5}; L2 = {1, 3, 4, 5, 7}
• or load one list in an unordered hash table [2] and probe
• or load one list in an ordered tree structure [1]
• or ...

Note: pairwise comparison is not an option! O(n2)
We will discuss about hash tables and B+trees in Access Paths .

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



20 / 30

Introduction Motivation

Motivational Example (3)

Given two lists L1 and L2, find all entries that occur on both lists.

Slightly more complex if only one list fits in main memory

• load the smaller list into memory
• build tree structure/sort/hash table/...
• scan the larger list one chunk (e.g., 10 numbers) at a time
• search for matches in main memory

Code still similar to the pure main-memory case.



20 / 30

Introduction Motivation

Motivational Example (3)

Given two lists L1 and L2, find all entries that occur on both lists.

Slightly more complex if only one list fits in main memory

• load the smaller list into memory
• build tree structure/sort/hash table/...
• scan the larger list one chunk (e.g., 10 numbers) at a time
• search for matches in main memory

Code still similar to the pure main-memory case.

JA

JA

JA

JA

JA

JA



21 / 30

Introduction Motivation

Motivational Example (4)

Given two lists L1 and L2, find all entries that occur on both lists.

Difficult if neither list fits into main memory

• no direct interaction possible
• Option 1: Sorting works, but already a difficult problem

▶ Programming Assignment 1: external merge sort
▶ We will cover this in External Hash Join .

• Option 2: Partitioning scheme (e.g., numbers in [1, 100], [101, 200],. . . )
▶ break the problem into smaller problems
▶ ensure that each partition fits in memory

Code significantly more involved.



21 / 30

Introduction Motivation

Motivational Example (4)

Given two lists L1 and L2, find all entries that occur on both lists.

Difficult if neither list fits into main memory

• no direct interaction possible
• Option 1: Sorting works, but already a difficult problem

▶ Programming Assignment 1: external merge sort
▶ We will cover this in External Hash Join .

• Option 2: Partitioning scheme (e.g., numbers in [1, 100], [101, 200],. . . )
▶ break the problem into smaller problems
▶ ensure that each partition fits in memory

Code significantly more involved.

JA

JA

JA

JA

JA

JA

JA



22 / 30

Introduction Motivation

Motivational Example (5)

Given two lists L1 and L2, find all entries that occur on both lists.

Hard if we make no assumptions about L1 and L2.

• tons of corner cases
• a list can contain duplicates
• a single duplicate value might exceed the size of main memory!
• breaks “simple” external memory logic
• multiple ways to solve this
• but all of them are somewhat involved
• and a DBMS must not make assumptions about its data!

Code complexity is very high.



22 / 30

Introduction Motivation

Motivational Example (5)

Given two lists L1 and L2, find all entries that occur on both lists.

Hard if we make no assumptions about L1 and L2.

• tons of corner cases
• a list can contain duplicates
• a single duplicate value might exceed the size of main memory!
• breaks “simple” external memory logic
• multiple ways to solve this
• but all of them are somewhat involved
• and a DBMS must not make assumptions about its data!

Code complexity is very high.

JA

JA

JA

JA

JA



23 / 30

Introduction Motivation

Motivational Example (6)

Designing a robust, scalable algorithm is hard
• must cope with very large instances
• hard even when the database fits in main memory
• billions of data items
• rules out the possibility of using O(n2) algorithms
• external algorithms (i.e., database does not fit in memory) are even harder

This is why a DBMS is a complex software system.

JA

JA



24 / 30

Introduction Shift in Hardware Trends

Shift in Hardware Trends



25 / 30

Introduction Shift in Hardware Trends

Traditional Assumptions

Historically, a DBMS is designed based on these assumptions:
• database is much larger than main memory
• I/O cost dominates everything with Hard Disk Drives (HDD)
• random I/O operations to “mechanical” HDD are very expensive

This led to a very conservative, but also very scalable design.

JA

JA

JA

JA

JA



26 / 30

Introduction Shift in Hardware Trends

Hardware Trends
Hardware has evolved over the decades (invalidating these assumptions):

• main memory size is increasing
• servers with 1 TB main memory are affordable
• “electromagnetic” Solid State Drives (SSD) have lower random I/O cost
• . . .

This affects the design of a DBMS
• CPU costs are now more important
• I/O operations are eliminated or greatly reduced
• the classical architecture (disk-oriented database systems) has become suboptimal

But this is more of an evolution as opposed to a revolution. Many of the old techniques are still
relevant for scalability.

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



27 / 30

Introduction Shift in Hardware Trends

Goals

Ideally, a DBMS
• efficiently handles arbitrarily-large databases
• never loses data
• offers a high-level API to manipulate and retrieve data
• this API is the declarative Structured Query Language (SQL)
• shields the application from the complexity of data management
• offers excellent performance for all kinds of queries and all kinds of data

This is a very ambitious goal!
This has been accomplished, but comes with inherent complexity.

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



28 / 30

Introduction Shift in Hardware Trends

Course Organization

1. storage
2. access paths
3. query processing (algebraic operators)

In each topic, we will cover aspects of both disk-oriented and modern in-memory DBMSs.

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



29 / 30

Introduction Shift in Hardware Trends

Conclusion

1. Complexity of a database system arises from the need for robust, scalable algorithms
2. A database systems must satisfy many requirements: reliability, scalability, e.t.c.,
3. In the next lecture, we will learn about relational database systems.



30 / 30

Modern Hardware

References I

[1] CPPReference. std::map. https://en.cppreference.com/w/cpp/container/map.
[2] CPPReference. std::unordered_map.
https://en.cppreference.com/w/cpp/container/unordered_map.

https://en.cppreference.com/w/cpp/container/map
https://en.cppreference.com/w/cpp/container/unordered_map
JA

JA

JA

JA


	Introduction
	Introduction
	Course Overview
	Motivation
	Shift in Hardware Trends

	The Classical Architecture
	Efficient Query Processing
	Modern Hardware
	References

