Lecture 3: Advanced SQL

VCAENWCC RSO Relational Language

Relational Language

e User only needs to specify the answer that they want, not how to compute it.
e The DBMS is responsible for efficient evaluation of the query.
> Query optimizer: re-orders operations and generates query plan

JA

VCAENWCC RSO Relational Language

SQL History

- K715
e Originally “SEQUEL" from IBM’s System R prototype.

——— s
> Structured Query Language

ANSI Sta in 1986. ISO in 1987
> Structured Query Language

JA

JA

JA

JA

JA

b
SQL History

e Current standard is SQL:2016

> SQL:2016 — JSON, Polymorphic tables

> SQL:2011 —s Temporal DBs, Pipelined DML

> S5QL:2008 — TRUNCATE, Fancy sorting

> SQL:2003 — XML, windows, sequences, auto-gen IDs.
> SQL:1999 — T{é'g’e?(, tfiggers, OO)

e Most DBMSs at least support SQL-92
e Comparison of different SQL implementations
v’-—-—_—_

http://troels.arvin.dk/db/rdbms/
JA

JA

JA

JA

VCAENWCC RSO Relational Language

Relational Language

Data Manipulation Language (DML)
Data Definition Language (DDL)
#

Data Control Language (IIDQ\)

JA

JA

JA

JA

JA

JA

Relational Language
Today’s Agenda

Aggregations + Group By

String / Date / Time Operations

Output Control + Redirection
Nested Queries

e Join

Common Table Expressions

Window Functions

VCAENWCC RSO Relational Language

Example Database

SQL Fiddle: Link
—_—
sid name login age gpa sid cid grade
/1 Maria maria@cs 19 3.8 1 1 B
students/> Rahul rahul@cs 22 35 enrolled 7 5 4
3 Shiyi shiyi@s 26 3.7 2 3 B
4 DPeter peter@ece 35 3.8 4 2 C
cid name
1 Computer Architecture
courseés 2 Machine Learning
3 Database Systems
4 Programming Languages

https://bit.ly/3ggswso
JA

JA

Aggregates

e Functions that return a single value from a bag of tuples:
> AVG(col)— Return the average col value.
IN(col)— Return minimum col value.
/P MAX(col)— Return maximum col value.

)-S Return sum of values in col.
COUNT/(col Return number of values for col.

JA

JA

Advanced SQL [WN-EeEE1E

Aggregates

e Aggregate functions can only be usedin-the SELECT output list.

e Task: Get number of students wit @_ 0

SELECT COUNT(login) AS cnt
FROM students WHERE login LIKE '%@cs'
P———

SELECT COUNT(*) AS cnt
FROM students WHERE login LIKE '%G@cs'

SELECT COUNT(1)_AS cnt
FROM students WHERE login LIKE '%@cs'

CNT !

3

JA

JA

JA

JA

JA

Aggregates
Multiple Aggregates

e Task: Get the number of students and their average GPA that have a "@cs" login.

SELECT A\‘G(gpa), COUNT (sid)
FRO udents WHERE login LIKE '%@cs'

AVG CNT
3.6666 3

JA

Distinct Aggregates

e COUNT, SUM, AVG support DISTINCT
P e——
e Task: Get the number of unique students that have an "@cs" login.

SELECT COUNT(DISTI login)
FROM students WHERE login LIKE '%@cs’

COUNT
3

JA

JA

JA

Aggregates

e Output of columns outside of an aggregate.
e Task: Get the average GPA of students enrolled in each course.

SELECT AVG(s.gpa), e.cid
FROM enrolled AS “e, students AS s
WHERE e.sid = s.sid

AVG e.cid
3.5 ?2??

JA

JA

Aggregates

e Output of columns outside of an aggregate.
e Task: Get the average GPA of students enrolled in each course.

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e, students AS s
WHERE e.sid = s.sid

AVG e.cid
3.5 ?2??

e column "e.cid" must appear in the GROUP BY clause or be used in an aggregate
function -~

JA

JA

Grouping
Group By

e Project tuples into subsets and calculate aggregates of each subset.
e Task: Get the average GPA of students enrolled in each course.

SELECT e.cid, AVG(s.gpa)
FROM enrolled AS e, students AS s
WHERE e.sid = s.sid

aGROUP BY e.cid
S—t N

e.cid AVG
1 3.8
3 3.5

2 3.8

JA

JA

JA

Grouping
Group By

J Igbaggregated values in SELECT output clause must appear in GROUP BY clause.
SELECT e.cid, AVG(s.gpa), s.name %

FROM enrolled AS e, st s AS s
WHERE e.sid = s.sid
GROUP BY e.cid

P~
SELECT e.cid, AVG(s.gpa), s.name
FROM enrolled AS e, students AS s
WHERE e.sid = s.sid

GROUP BY e.cid, s.name
— e

JA

JA

JA

JA

JA

Havmg

e Filters results based on aggregate value.
e Predicate defined over a group (WHERE clause for a GROUP BY)

e —
SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, students AS s

WHERE e.sid = s.sid AND avg_gpa > 3.9
P . PR
GROUP BY e.cid

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

Having

e Filters results based on aggregate value.
i AN HERE clause for a GROUP BY)

JA

JA

JA

JA

Advanced SQL String and Date/Time Functions

String Operations
String Case String Quotes LN \Sg/f / M
SQL-92 Sensitive Single Only l‘g Q/s?
~ Postgres Sensitive Single Only NN r N

ySQL Insensitive Single/Double ’A‘& 4,_
SQLite Sensifive Single/Double

DB2 Sensitive Single Only \) 9 & \)

Oracle Sensitive Single Only L

WHERE UPPER(name) = UPPER('MaRiA') // SQL-92
—— ™ it &
WHERE name = 'MaRiA' // MySQL
Ae®

MY

JA

JA

JA

JA

JA

JA

JA

JA

JA

String and Date/Time Functions
String Operations

e LIKE is used for string matching.
e String-matching operators

> % : Matches any substring (including empty strings).

» "7 Match any one character
==

SELECT * FROM student AS s y @
WHERE s.login LIKE '%@%' lre f
/

SELECT * FROM student AS s

WHERE s.login LIKE '%@c_' @ (8BS

—

JA

JA

JA

JA

String and Date/Time Functions
String Operations

e SQL-92 defines string functions.
> Many DBMSs also have their own unique functjéns

e These functions can be used in any expressionf(projection,

SELECT SUBSTRING(name,®,5) AS aEbrv_name

FROM ents WHERE sid = 1 ———=

edicates, e.t.c.)
—~—F

SELECT * FROM students AS s
WHERE UPPER(e.name) LIKE 'M%'

BN

- meoa
~ oA

JA

JA

JA

JA

JA

JA

JA

String and Date/Time Functions
String Operations

e SQL standard says to use || operator to concatenate two or more strings together.
—

SQL-92
SELECT name FROM students WHERE login = LOWER(name) || '@cs'
/
MSSQL
SELECT name FROM students WHERE login = LOWER(na s'

MySQL
\—ﬁa name FROM students WHERE logirk = CONCAT(LQWER(name), '@cs')
f—

\

JA

JA

JA

JA

JA

JA

String and Date/Time Functions
Date/Time Operations

Operations to manipulate and modify DATE/TIME attributes.
—____—_—-—-l

Can be used in any expression.

Support/syntax varies w1ldly'
Task Get the nu since 2000. (Q)

e Demo Time!

PostgreSQL

SELECT (now()::date - '2000-01-01'::date) AS days;
MySQL

SELECT DATEDIFF(CURDATE(Q), '2000-01-01') AS days;
SQL Server

SELECT DATEDIFF(day, '2000/01/01', GETDATE(Q)) AS days;
D
S— e

JA

JA

JA

JA

JA

JA

JA

JA

VCAEWE RSO Output Control

Output Redirection Q &V\\
P 4L
e Store query results in another table: 'Ym/ \“<
" Table must not already be defined.
e

> Table will have the same number of ¢ lumns with the same types as the input.

SQL-92 I3 /
SELECT DISTINCT cid INTO Courselds ’_’L
FROM enrolled; = ——— 3 swf
MySQL \

—F

CREATE TABLE Courselds (
SELECT_DISTI id FROM enrolled

iy QL e
j ~ \3 0/

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

Output Control
Output Redirection

e Insert tuples from query into another table:
> Inner SELECT must generate the same columns as the target table.

> DBMSs have aifW on what to do with duplicates.
SQL-92 -

ENSERT INTO Courselds
(SELECT DISTINCT cid FROM enrolled);

JA

JA

JA

JA

JA

Output Control
Output Control

¢ ORDER BY <column*> [ASC|DESC]
7 Order the output tuples by the values in one or more of their columns.

SELECT sid, grade FROM enrolled
WHERE cid = 2

ORDER BY grade
—

SELECT sid, grade FROM enrolled
WHERE cid = 2
ORDER BY grade DESC, sid ASC

sid grade

1 A
4 A

JA

Output Control
Output Control

e LIMIT <count> [offset]

~ > Limit the number of tuples returned in output.
> Can set an offset to return a "range"

SELECT sid, name FROM students
WHERE login LIKE '%@cs'
LIMIT 10
/

name FROM students
WHERE lodyn LIKE '%@cs'

JA

JA

JA

JA

JA

Nested Queries
Nested Queries

e Queries containing other queries.

e They are often difficult to optimize.

)

e Inner queries can appear (almost) anywhere in query.

SELECT name FROM students --- Outer Querx
WHERE sid IN

(SELECT sid FROM enrolled) --- Inw

JA

JA

Nested Queries
Nested Queries

¢ Task: Get the names of students in course 2

SELECT name FROM students

WHERE
~

JA

Advanced SQL Nested Queries

Nested Queries

e Task: Get the names of students in course 2

SELECT name FROM students
WHERE ...

SELECT sid FROM enrolled
WHERE cid = 2
i,

JA

JA

JA

Advanced SQL Nested Queries

Nested Queries

e Task: Get the names of students in course 2

SELECT name FROM students
WHERE sid IN (
=~ SELECT sid FROM enrolled

WHERE cid = 2

-

JA

JA

JA

JA

Nested Queries
Nested Queries

ALL — Must satisfy expression for all rows in sub-query

ANY — Must satisfy expression for at least one row in sub-query.
(* IN — Equivalent to '=ANY()".
/ EXISTS — Returns true if the subquery returns one or more records.

JA

JA

JA

JA

Nested Queries
Nested Queries

e Task: Get the names of students in course 2

SELECT name FROM students

SELECT sid FROM enrolled
WHERE cid = 2

JA

JA

JA

Nested Queries
Nested Queries

e Task: Get the names of students in course 2

SELECT name FROM students A@
WHERE EXISTS (
SELECT sid FROM enrolled A
WHERE cid = 2 and s.sid = e.sid

) —_—

< EXISTS operator

JA

JA

JA

Nested Queries
Nested Queries

e Task: Get the names of students in course 2

SELECT J(SELECT s.name --- Inner query in projection expression
FROM students AS s
WHERE s.sid = e.sid) JAS sname

FROM enrolled AS e

WHERE cid = 2

po\ Y

JA

JA

Nested Queries
Nested Queries

e Task: Get the names of students not in course 2

SELECT name FROM students

WHERE sid ...

JA

Advanced SQL Nested Queries

Nested Queries

e Task: Get the names of students not in course 2

SELECT name FR dents
WHERE sid ! ALL
S 1d FROM enrolled

WHERE cid = 2

name

Rahul
Shiyi

JA

JA

JA

Nested Queries
Nested Queries

e Task: Find students record with the highest id that is enrolled in at least one course.

--- Won't work in SQL-92

SELECT MAX(e.sid), s.name
FROM enrolled AS e, students AS s
WHERE e.sid = s.sid;

JA

JA

Nested Queries
Nested Queries

e Task: Find students record with the highest id that is enrolled in at least one course.

--- "Is greater than every other sid"
SELECT sid, name

FROM students

WHERE ...

--- "Is greater than every other sid"
SELECT sid, name
FROM students
WHERE sid >= ALL(
SELECT sid FROM enrolled
)

sid name

4 Peter

JA

Nested Queries
Nested Queries

e Task: Find students record with the highest id that is enrolled in at least one course.

SELECT sid, name FROM students
FROM students
WHERE sid IN (
SELECT[MAX(sid) YROM enrolled
) - -
SELECT sid, name FROM students
WHERE sid IN (
SELECT sid FROM enrolled

QORDER BY sid DESC LIMIT 1)
)

—_— -

JA

JA

JA

Nested Queries
Nested Queries

e Task: Find all courses that has no students enrolled in it.

SELECT * FROM courses
WHERE ...
--- "with no tuples in the 'enrolled' table"

—

=

JA

Advanced SQL Nested Queries

Nested Queries

e Task: Find all courses that has no students enrolled in it.

SELECT * FROM courses
WHERE NOT EXISTS(
A—
SELECT * FROM enrolled
WHERE course.cid = enrolled.cid

cid name

4

JA

JA

JA

Advanced SQL ‘Window Functions

Window Functions

e Performs a “sliding” calculation across a set of related tuples.)
e Unlike GROUP BY, tuples do not collapse into a group

e Soneeded if must refer back to individual tuples

SELECT ... FUNC-NAME(...) --- Special Window Functions, Aggregation Functions
OVER(...) --- How to slice up data? Can also sort. “ —
onaENN, ’f

FROM tableName

JA

JA

JA

JA

JA

JA

JA

JA

Advanced SQL ‘Window Functions

Window Functions

e Special window functions:
ROW_NUMBER() — Number of the current row
> R " '
m Oljder position of the current row.
e Aggregation functions:
> All the functions that we discussed earlier (e.g., MIN, MAX, AVG)

SELECT *, ROW_NUMBER()I E '
OVER () AS row_num ¢
FROM enrolled
P /. / \ 2 g W

sid cid grade%w_nu \
1 1

> 0 > O
= W N

1 2
2 3
4 2

JA

JA

JA

JA

JA

JA

Advanced SQL ‘Window Functions

Window Functions

e The OVER keyword specifies how to group together tuples when computing the
window function.

e Use PARTITION BY to specify group.

SELECT cid, sid, ROW_NUMBER(Q)
OVER (PARTITION BY cid) --- Note the row numbering
FROM enrolled -
ORDER BY cid

cid sid rovy_number

11 W
(T 1 e—

, 2 4 2 ,

—_—

3 2 1¥

<

JA

JA

JA

JA

JA

Advanced SQL ‘Window Functions

Window Functions

* You can also include an ORDE in the window grouping to sort entries in each
group.
SELECT cid, sid, ROW_NUMBER(Q)
OVER (ORDER BY cid) --- Note the row numbering

FROM enrolled
ORDER BY cid

cid sid row_number

1 1 1

2 1 2
2 4 3
3 2 4

JA

Advanced SQL ‘Window Functions

Window Functions

e Task: Find the students with the highest grade for each course.
SELECT cid, sid, grade, rank FROM (

SELECT *, RANK() -- Group tuples by cid and then sort by grade
OVER (PARTITION BY cid ORDER BY grade ASC) AS rank
FROM enrolTed — —

) AS ranking
WHERE ranking.rank = 1

~ J
cid sid grade rank
Al 1 B 1
2 1 A, 1
A3 2 B. 1
A

JA

JA

JA

JA

JA

Advanced SQL ‘Window Functions

Window Functions

e Task: Get the name of the students with the second highest grade for each course.

SELECT cid, sid, grade, rank FROM (
SELECT *, RANKQ)
OVER (PARTITION BY cid ORDER BY grade ASC) AS rank
FROM enrolled
) AS ranking
WHERE ranking.rank = 2 --- Update rank
—

cid sid grade rank

‘424(:2

JA

Advanced SQL ‘Window Functions

Window Functions

name of the students with the second highest grade for each course.
—

* FROM (
SELECT C.name, S.name, E.grade, RANKQ)
OVER (PARTITION BY E.cid ORDER BY E.grade ASC) AS grade_rank
FROM students S, courses C, enrolled E

WHERE S.3Td= E.sid AND C.cid = E.cid --- Connect with students
AS ranking
WHERE ranking.grade_rank = 2
-
name name grade rank

Machine Learning Peter C 2

—

—

JA

JA

JA

JA

Common Table Expressions
Common Table Expressions
s s —— T
A% oS

e Provides a way to write auxiliary statements for use in a larger query.
y y ger query.

> Think of it like a temp table just for one qu.
ternativetqnested queries anm

WITH cteName AS (

SELECT 1
SELECT * FROM cteName

column

1

JA

JA

JA

JA

JA

JA

JA

JA

JA

VGCAENWC RSO Common Table Expressions

Common Table Expressions

* You can bind output columns to names before the AS keyword.

WITH cteName (52_1_1, 'o_lp AS (C/d l Cv(f)/
SELECT 1, 2

) —_— @

SELECT coll + col2 FROM cteName

column

3

JA

JA

VGCAENWC RSO Common Table Expressions

Common Table Expressions

e Task: Find students record with the hlghest id that is enrolled 1n at least one course.
WITH cteSource (maxId) AS (

SELECT MAX(sid) FROM enrolled
) —

SELECT name FROM st;ude\nts cteSource b—’—/
“fAERE students.s1d = cteSource maxId

JA

JA

JA

JA

JA

JA

JA

JA

VGCAENWC RSO Common Table Expressions

Common Table Expressions — Recursion

e Task: Print the sequence of numbers from 1 to 10.

WITH RECURSIVE cteSource (counter) AS (

ﬁ (SELECT 1)

UNION ALL
” (SELECT counter + 1 FROM cteSource WHERE counter < 10)
)

SELECT * FROM cteSource
7

—

JA

JA

JA

Joins
Types of Join

e Types of Join
> (INNER) JOI Q E}) I>—> Returns records that have matching values in both tables
> L RJOIN (2x) — Returns all records from the left table, and the matched

records from the right table

> RIGHT OUTER JOIN (XC) — Returns all records from the right table, and the matched
records from the left table

» FULL OUTER JOIN (2x€) — Returns all records when there is a match in either left or
right table

JA

JA

Joins
Example Database

SQL Fiddle: Link
—

sid name sid hobby
q 1 Maria 1 Stars
students - Rahul Climbing
3 Shiyi \-— 2 Coding
4 Peter 5 Rugby

—

v

https://bit.ly/3aRfMYg
JA

JA

JA

Advanced SQL Joins

Types of Join: Inner Join

e Task: List the hobbies of students.

SELECT name, hobby
FROM students JOIN hobbies
B
ON students.id = hobbies.user_id;

name grade

Maria Stars
Maria Climbing
Rahul Coding

JA

s
Types of Join: Left Outer Join
e

e Task: List the hobbies of all students.

SELECT name, hobby
FROM students LEFT OUTER JOIN hobbies
ON students.id = hobbies.user_id;

name grade

Maria Stars
Maria Climbin
ahul Coding

—~ Peter NULL
5 Shiyi NULL

>

JA

JA

JA

JA

JEie
Types of Join: Right Outer Join

e Task: List all the hobbies of students.

SELECT name, hobby

FROM students RIGHT OUTER JOIN hobbies
ON students.id = hobbies.user_id;

name grade

Lad

Maria Stars
Maria Climbing
Rahul Coding

—>NULL Rugby

JA

JA

s
Types of Join: Full Outer Join

e Task: List all the hobbies of all students.

SELECT name, hobby
FROM students FULL OUTER JOIN hobbies
ON students.id = hobbies.user_id;

name grade

Maria Stars
Maria Climbing
Rahul Coding
~”NULL Rugby,
Peter NUL
Shiyi NUL

JA

Advanced SQL Joins

More Types of Join

e SEMI JOIN ()
> Returns record from the left table if there is a matching record in the right table
> Unlike regular JOIN, only returns columns from the left table and no duplicates.
> We do not care about the values of other columns in the right table’s record
> Used to execute queries with EXISTS or IN operators

m—
e ANTIJOIN (>)
> Opposite of a SEMI JOIN
> Returns record from the left table if thergis no yhatchingecord in the right table

> Used to execute queries with NOT EXIS OT IN operators
LATERAL]OIN (»<1) (a.k.a., Dependent Join, CROSS APPLY)

> Subqueries appearing in FROM clau&be preceded by.the key word LATERAL

> Table functions appearing in FROM cla\se can also be priceded by the key word

LATERAL

JA

JA

JA

JA

JA

JA

JA

JA

JA

Advanced SQL Joins

Types of Join: Semi Join

e Task: List the names of students with hobbies.

SELECT name
FROM students
WHERE sid IN

(SELECT sid
FROM hobbies);

name

Maria
Rahul

JA

Jns
Types of Join: Anti Join

e Task: List the names of students without hobbies

SELECT name
FROM students
WHERE sid NOT IN
(SELECT sid
FROM hobbies);

name

4’ Shiyi
'l

Peter

JA

s
Types of Join: Lateral Join

e Task: List the names of students with hobbies.

SELECT name p
FROM studen®s, LATERAL A(SELECT sid FROM hobbies

—— WHERE students.sid = hobbies.sid)fss;

name

Maria
Maria
Rahul

JA

JA

JA

JA

JA

JA

Advanced SQL Joins

Conclusion

e SQL is not a dead language.
e You should (almost) always strive to compute your answer as a single SQL statement.

Next Class

e Storage Management

63/ 64

References 1

A

64 / 64

	Advanced SQL
	Relational Language
	Aggregates
	Grouping
	String and Date/Time Functions
	Output Control
	Nested Queries
	Window Functions
	Common Table Expressions
	Joins

	References

