Lecture 5: Memory Management

Memory Management

Administrivia

e Assignment 1 is due on September 7th @ 11:59pm

Poll

Memory Management

https://www.strawpoll.me/20863490

3/54

https://www.strawpoll.me/20863490

W ENOYAYELEEC AN Recap — Storage Management

Recap — Storage Management

Layered Architecture

Query Interface
SQL,.

Record Interface

FIND NEXT record,
STORE record

Record Access

write record,
insert in B-tree,

DB Buffer
access page j,
release page j

File Interface

read block k,
write block k

Device Interface

granularity:

data structures:

granularity:

relation, view, ..
logical schema,
integrity constraints
logical record, key,

granularity:

data structures:

granularity:

logical record, key, ..
access path,
physical schema .
physical record,

granularity:

data structures:

physical record,...
free space inventory,
page indexes

granularity: page, segment
granularity: page, segment
data structures: page table,
block map
granularity: block, file
granularity: block, file

data structures:

granularity:

free space inventory,
extent table
track, cylinder, ...

application

logical data

access paths

physical data

page structure

storage allocation

external storage

Database System Architectures

¢ Disk-Centric Database System
> The DBMS assumes that the primary storage location of the database is HDD.
e Memory-Centric Database System
> The DBMS assumes that the primary storage location of the database is DRAM.

Recap - Storage Management
Slotted Pages

Slot Array
l_lﬁ
¢ The most common page layout scheme is called Veoder
slotted pages.
e The slot array maps "slots" to the tuples’
starting position offsets.
¢ The header keeps track of: L AL
» The number of used slots Tuple #2 | Tuple #1
> The offset of the starting location of the last slot v Y J
used. Fixed/Var-length

Tuple Data

W ENOYAYELEEC AN Recap — Storage Management

Log-structured File Organization

e Instead of storing tuples in pages, the DBMS
only stores log records.

¢ The system appends log records to the file of
how the database was modified:

> Inserts store the entire tuple.

> Deletes mark the tuple as deleted.

> Updates contain the delta of just the attributes
that were modified.

INSERT id=1,val=a
INSERT id=2,val=b
DELETE id=4

UPDATE val=X (id=3)
UPDATE val=Y (id=4)

INSERT id=3,val=c

W ENOYAYELEEC AN Recap — Storage Management

Log-structured File Organization

¢ To read a record, the DBMS scans the log
backwards and "recreates" the tuple to find what
it needs.

INSERT id=3,val=c
UPDATE val=X (id=3)
UPDATE val=Y (id=4)

e Build indexes to allow it to jump to locations in
the log.

e Periodically compact the log.

Recap - Storage Management
Today’s Agenda

e Dynamic Memory Management
e Segments

e System Catalog

1Y EROyAYELERSAEHEN Dynamic Memory Management

Dynamic Memory Management

Dynarmic Memory Management
Virtual Address Space

Each Linux process runs within its own virtual address space

The kernel pretends that each process has access to a (huge) continuous range of
addresses (= 256 TiB on x86-64)

Virtual addresses are mapped to physical addresses by the kernel using page tables
and the memory management unit (MMU)

Greatly simplifies memory management code in the kernel and improves security due
to memory isolation

Allows for useful “tricks” such as memory-mapping files

Dynamic Memory Management
Virtual Address Space

The kernel also uses virtual memory

Part of the address space has to be reserved for
kernel memory

This kernel-space memory is mapped to the
same physical address for each process

Access to this memory is restricted
Most of the address space is unused

MMUs on x86-64 platforms only support 48 bit
pointers at the moment

unused
(16 EiB)

OxffffffffFfFFEFEf

0xf££££800000000000

0x0000800000000000

0x0000000000000000

1Y EROyAYELERSAEHEN Dynamic Memory Management

Virtual Address Space

User-space memory is organized in segments
- 0x0000800000000000

Stack segment

e Memory mapping segment 100s of GiB

Heap segment
10s of TiB

BSS, data and text segments
Segments grow over time

e Stack and memory mapping segments usually
grow down (i.e. addresses decrease)

up to some GiB

e Heap segment usually grows up (i.e. addresses
increase)

0x0000000000000000

Dynamic Memory Management
Stack Segment

Stack memory is typically used for objects with automatic storage duration
e The compiler can statically decide when allocations and deallocations must happen
e The memory layout is known at compile-time

e Allows for highly optimized code (allocations and deallocations simply
increase/decrease a pointer)

Fast, but inflexible memory

The stack grows and shrinks as functions push and pop local variables

Stack variables only exist while the function that created them is running

e Array sizes must be known at compile-time

No dynamic data structures are possible (trees, graphs, e.t.c.)

1Y EROyAYELERSAEHEN Dynamic Memory Management

Stack Segment

All variables are allocated using stack memory

include <stdio.h>

double multiplyByTwo (double input) {
double twice = input * 2.0;
return twice;

}
int main (int argc, char *argv[]){
int age = 30;
double salary = 12345.67;
double myList[3] = {1.2, 2.3, 3.4};
printf("double your salary is %.3f\n", multiplyByTwo(salary));

return 0;

Dynasmic Memory Management
Heap Segment

The heap is typically used for objects with dynamic storage duration
e The programmer must explicitly manage allocations and deallocations

e Allows for more flexible memory management

Disadvantages
e Performance impact of heap-based memory allocator
e Memory fragmentation

e Dynamic memory allocation is error-prone

> Memory leaks
> Double free (deallocation)
> Make use of debugging tools! (GDB, Valgrind, ASAN)

https://www.cs.cmu.edu/~gilpin/tutorial/
https://www.valgrind.org/docs/manual/mc-manual.html
https://github.com/google/sanitizers

Dynasmic Memory Management
Heap Segment

All variables are allocated using heap memory

include <stdio.h>
include <stdlib.h>

double *multiplyByTwo (double *input) {
double *twice = malloc(sizeof(double));
*twice = *input * 2.0;
return twice;

}

int main (int argc, char *argv[]) {
int *age = malloc(sizeof(int)); *age = 30;
double *salary = malloc(sizeof(double)); “*salary = 12345.67;
double *twiceSalary = multiplyByTwo(salary);
printf("double your salary is %.3f\n", *twiceSalary);

free(age); free(salary); free(twiceSalary);
return 0;

1Y EROyAYELERSAEHEN Dynamic Memory Management

Dynamic Memory Management in CH++

C++ provides several mechanisms for dynamic memory management
e Through new and delete expressions (discouraged)
e Through the C functions malloc and free (discouraged)

e Through smart pointers and ownership semantics (preferred)

Mechanisms give control over the storage duration and possibly lifetime of objects
e Level of control varies by method

e In all cases: manual intervention required

1Y EROyAYELERSAEHEN Dynamic Memory Management

Dynamic Memory Management in CH++

Key functions and features
e std::memcpy : copies bytes between non-overlapping memory regions
e std::memmove : copies bytes between possibly overlapping memory region

e std::unique_ptr: assumes unique ownership of another C++ object through a
pointer

https://en.cppreference.com/w/cpp/string/byte/memcpy
https://en.cppreference.com/w/cpp/memory/unique_ptr

1Y EROyAYELERSAEHEN Dynamic Memory Management

Dynamic Memory Management in CH++

Key functions and features

e copy semantics: Assignment and construction of classes typically employ copy
semantics

e move semantics: Move constructors/assignment operators typically “steal” the
resource of the argument
struct A {

A(const A& other);
A(A&& other);

1
int main(Q) {
A al;
A a2(al); // calls copy constructor
A a3(std::move(al)); // calls move constructor

Dynamic Memory Management
Memory Mapping Files
POSIX defines the function mmap () in the header <sys/mman.h> which can be used to

manage the virtual address space of a process.

void* mmap(void* addr, size_t length, int prot, int flags, int fd, off_t offset)

e Arguments have different meaning depending on flags
e On error, the special value MAP_FAILED is returned
e If a pointer is returned successfully, it must be freed with munmap ()

int munmap(void* addr, size_t length)

e addr must be a value returned from mmap ()
e length must be the same value passed to mmap ()

e munmap () should be called to follow the Resource Acquisition Is Initialization (RAII)
principle

Dynasmic Memory Management
Memory Mapping Files

One use case for mmap () is to map the contents of a file into the virtual memory. To map a
file, the arguments are used as follows:

void* mmap(void* addr, size_t length, int prot, int flags, int fd, off_t offset)

e addr: hint for the kernel which address to use, should be nullptr

e length: length of the returned memory mapping (usually multiple of page size)

e prot: determines how the mapped pages may be accessed and is a combination (with
bitwise or) of the following flags:
> PROT_EXEC: pages may be executed
> PROT_READ:pages may be read
> PROT_WRITE: pages may be written
> PROT_NONE: pages may not be accessed

Dynasmic Memory Management
Memory Mapping Files

One use case for mmap() is to map the contents of a file into the virtual memory. To map a
file, the arguments are used as follows:

void* mmap(void* addr, size_t length, int prot, int flags, int fd, off_t offset)

e flags: should be either MAP_SHARED (changes to the mapped memory are written to
the file) or MAP_PRIVATE (changes are not written to the file)

e fd: descriptor of an opened file
e offset: Offset into the file where the mapping should start (multiple of page size)

Dynasmic Memory Management
Memory Mapping Files

Example of reading integers from file /tmp/ints:
e Note: This assumes that integers are written in binary format to the file!
e Using mmap() to read from large files is often faster than using read()

e This is because with mmap () data is directly read from and written to the file without
copying it to a buffer first

int fd = open(" /tmp/ints'', O_RDONLY);
void* mappedFile= mmap(nullptr, 4096, PROT_READ, MAP_SHARED, fd, 0);
int* fileInts= static_cast<int*>(mappedFile);
for (int i = 0; i < 1024; ++i)
std::cout<< fileInts[i] << std::endl;
munmap (mappedFile, 4096);
close(fd)

1Y EROyAYELERSAEHEN Dynamic Memory Management

Using mmap for Memory Allocation

mmap() can also be used to allocate memory by not associating it with a file.
e flags must be MAP_PRIVATE | MAP_ANONYMOUS

fd must be -1; offset must be 0

Used by malloc() internally

Should be used manually only to allocate large regions of memory (e.g., several MBs)

Example of allocating 100 MiB of memory:

void* mem = mmap(nullptr, 100 * (lull << 20),
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS,
_l’ 0);

/7 L]
munmap (mem, 100 * (lull << 20));

Dynasmic Memory Management
Tuple Layout

e A tuple is essentially a sequence of bytes.
e The DBMS needs a way to keep track of individual tuples.
e Each tuple is assigned a unique record identifier: TID.

std: :vector<char> tuple_data;

struct TID {
explicit TID(uint64_t raw_value);
TID(uint64_t page, uintl6_t slot);
/// The TID could, for instance, look like the following:
/// - 48 bit page id
/// - 16 bit slot id
uint64_t value;

Dynasmic Memory Management
Tuple Schema

e It’s the job of the DBMS to interpret those bytes into attribute types and values.

std::vector<schema: :Table> tables{
schema: :Table(

"customer",

{
schema: :Column("c_custkey", schema::Type::Integer()),
schema: :Column("c_name", schema::Type::Varchar(25)),
schema: :Column("c_address", schema::Type::Varchar(40)),
schema: :Column("c_acctbal", schema::Type::Numeric(12, 2)),

}

1

auto schema = std::make_unique<schema: :Schema>(std: :move(tables));

1Y EROyAYELERSAEHEN Dynamic Memory Management

Page Layout
Slot Array
l_lﬁ
¢ The most common page layout scheme is called Veoder
slotted pages.
e The slot array maps "slots" to the tuples’
starting position offsets.
¢ The header keeps track of: L AL
» The number of used slots Tuple #2 | Tuple #1
> The offset of the starting location of the last slot v Y J
used. Fixed/Var-length

Tuple Data

Dynamic Memory Management
Page Layout

e The header keeps track of:

> The number of used slots
> The offset of the starting location of the last slot used.

struct SlottedPage {
struct Header {

// Constructor
explicit Header(char *_buffer_frame, uint32_t page_size);
/// overall page id
uint64_t overall_page_id;
/// location of the page in memory
char *buffer_frame;
/// Number of currently used slots
uintl6_t slot_count;
/// Lower end of the data
uint32_t data_start;

Dynamic Memory Management
Page Layout

e The slot array maps "slots" to the tuples’ starting position offsets.

struct SlottedPage {

struct Slot {
Slot() = default;
/// The slot value
uint64_t value;
}
/// Constructor.
explicit SlottedPage(char *buffer_frame, uint32_t page_size);
/// Slot helper functions
TID addSlot(uint32_t size);
void setSlot(uintl6_t slotId, uint64_t value);
Slot getSlot(uintl6_t slotId);
}
/// Slot array
auto *slots = reinterpret_cast<Slot *>(header.buffer_frame + sizeof(header));

Poll

Memory Management

https://www.strawpoll.me/20858648

Do 32 /54

https://www.strawpoll.me/20858648

Memory Management

Segments

33 /54

Memory Management Bt

Segments

While page granularity is fine for I/O, it is somewhat unwieldy
e most data structures within a DBMS span multiple pages
e convenient to treat these as one entity: segment
e relations, indexes, free space inventory (FSI), e.t.c.

e each logical DBMS structure is managed as a segment

Conceptually similar to file (but supports non-linear ordering of data).

Memory Management Bt

Segments

A segment offers a virtual address space within the DBMS
e can allocate and release new pages
e can iterate over all pages

e can drop the whole segment

offers a non-linear address space

Greatly simplifies the logic of higher layers.

Memory Management Bt

Segments

Example: pages from R1 | pages from R2 | pages from R1
e Dropping relation R2 —; hole in the segment
e New pages from R1 may be inserted into the hole
e Logical insertion order of R1 does not match the physical storage order in segment

e Need ORDER BY to guarantee logical ordering

Segments
Disk Block Mapping

Catalog Catalog Catalog

bWt /7- 177 1/

-

L]

static file-mapping dynamic extent-mapping dynamic block-mapping

Segments
Disk Block Mapping

All approaches have pros and cons:
e @ static file-mapping
> very simple, low overhead
> resizing is difficult
e ® dynamic block-mapping
> maximum flexibility
» administrative overhead, additional indirection

e & dynamic extent-mapping

» can handle growth
> slight overhead

In most cases extent-based mapping is preferable.

Segments
Disk Block Mapping

The units of database space allocation are disk blocks, extents, and segments.
e A disk block is the smallest unit of data used by a database.

e An extent is a logical unit of database storage space allocation made up of a number of
contiguous disk blocks.

e One or more extents in turn make up a segment.

e When the existing space in a segment is completely used, the DBMS allocates a new
extent for the segment.

Segments
Disk Block Mapping

A segment is a set of extents that contains all the data for a specific logical storage structure
within a tablespace.

e For each table, the DBMS allocates one or more extents to form that table’s data
segment

e For each index, the DBMS allocates one or more extents to form its index segment.

Segments
Disk Block Mapping

Dynamic extent-mapping:

e grows by adding a new extent

should grow exponentially (e.g., factor 1.25)

e exponential growth bounds the number of extents

reduces both complexity and space consumption
and helps with sequential I/O! Why?

Segments
Segment Types

Segments can be classified into types
e public vs. private (e.g., list of segments) // visibility to the user

e permanent (e.g., relation) vs. temporary (e.g., intermediate output of a relational
operator in the query plan)

e automatic vs. manual

e with recovery vs. without recovery

Differ in complexity and required effort.

Memory Management Bt

Private Segments

Most DBMS will need at least two private segments:
e segment inventory

> keeps track of all disk blocks allocated to segments
> keeps extent lists or page tables or ...

e free space inventory (FSI)

> keeps track of free pages
> maintains bitmaps or free extents or ...

Segments
Public Segments

Public segments built upon these low-level private segments.

Common high-level segments:
e schema

relations

e temporary segments (created and discarded on demand)

Segments
Slotted Page Segment

Slotted Page Segment

class SPSegment : public buzzdb::Segment {
public:
/// Constructor
SPSegment (uint16_t segment_id, BufferManager &buffer_manager,
SchemaSegment &schema, FSISegment &fsi);
/// Allocate a new record.
TID allocate(uint32_t record_size);
/// Read the data of the record into a buffer.
uint32_t read(TID tid, std::byte *record, uint32_t capacity) const;
/// Write a record.
uint32_t write(TID tid, std::byte *record, uint32_t record_size);
/// Resize a record.
void resize(TID tid, uint32_t new_size);
/// Removes the record from the slotted page
void erase(TID tid);

Segments
Slotted Page Segment

Slotted Page Segment
class SPSegment : public buzzdb::Segment {

protected:
/// Schema segment
SchemaSegment &schema;
/// Free space inventory
FSISegment &fsi;

}

Poll

Memory Management

https://www.strawpoll.me/20858678

47 / 54

https://www.strawpoll.me/20858678

W ENGYAYEWEEC OISl System Catalog

System Catalog

System Catlog
System Catalog

e A DBMS stores meta-data about databases in its internal catalog.

> List of tables, columns, indexes, views
> List of users, permissions
> Internal statistics (e.g., disk reads, storage space allocation)

e Almost every DBMS stores their catalog as a private database.

> Wrap object abstraction around tuples.
> Specialized code for “bootstrapping” catalog tables. Why?

System Catlog
System Catalog

* You can query the DBMS’s INFORMATION_SCHEMA database to get info.
> ANSI standard set of read-only views that provide info about all of the tables, views,
columns, and procedures in a database
> DBMSs also have non-standard shortcuts to retrieve this information.

W ENGYAYEWEEC OISl System Catalog

Accessing Table Schema

SQL Fiddle: Link

e Task: List all the tables in the database.

--- SQL 92
SELECT * FROM INFORMATION_SCHEMA.TABLES
WHERE table_schema = 'public';

--- PostgreSQL
\d

--- MySQL

SHOW TABLES;
--- SQLite
.tables;

https://bit.ly/3ggswso

W ENGYAYEWEEC OISl System Catalog

Accessing Table Schema

e Task: List all the columns in the students table.

--- SQL 92
SELECT * FROM INFORMATION_SCHEMA.COLUMNS
WHERE table_name = 'students';

--- PostgreSQL
\d student

--- MySQL
DESCRIBE student;
--- SQLite
.schema student;

Conclusion

e The units of database space allocation are disk blocks, extents, and segments

e A DBMS stores meta-data about databases in its internal catalog

References 1

Memory Management

A

5454

	Memory Management
	Recap – Storage Management
	Dynamic Memory Management
	Segments
	System Catalog

	References

