
1 / 43

Data Representation

Lecture 5: Data Representation



2 / 43

Data Representation

Discussion

Deep learning job postings have collapsed in past 6 months
• Something I’ve learned: when non-engineers ask for an AI or ML implementation,

they almost certainly don’t understand the difference between that and an
"algorithmic" solution.

• If you solve "trending products" by building a SQL statement that e.g., selects items
with the largest increase of purchases this month in comparison to the same month a
year ago, that’s still "AI" to them.

• Knowing this can save you a lot of wasted time.
• Any sufficiently misunderstood algorithm is indistinguishable from AI.

https://news.ycombinator.com/item?id=24330326


3 / 43

Data Representation

Discussion

Deep learning job postings have collapsed in past 6 months
• I’ve worked in lots of big corps as a consultant. Every one raced to harness the power

of "big data" 7 years ago. They couldn’t hire or spend money fast enough. And for
their investment they (mostly) got nothing. The few that managed to bludgeon their
map/reduce clusters in to submission and get actionable insights discovered... they
paid more to get those insights than they were worth!

• I think this same thing is happening with ML. It was a hiring bonanza. Every big corp
wanted to get an ML/AI strategy in place. They were forcing ML in to places it didn’t
(and may never) belong. This "recession" is mostly COVID related I think - but
companies will discover that ML is (for the vast majority) a shiny object with no
discernible ROI.

• Like Big Data, I think we’ll see a few companies execute well and actually get some
value, while most will just jump to the next shiny thing in a year or two.

https://news.ycombinator.com/item?id=24330326


4 / 43

Data Representation Recap – Memory Management

Recap



5 / 43

Data Representation Recap – Memory Management

Memory Mapping Files

mmap() is used to manage the virtual address space of a process.

• One use case for mmap() is to map the contents of a file into the virtual memory.
• mmap() can also be used to allocate memory by not associating it with a file.
• With mmap(), data migration is automatically done by the OS (not by the DBMS).
• The key limitation of mmap() is that it does not provide fine-grained control over when

and which pages are moved from DRAM to SSD.
• We will learn about how to design a buffer manager that allows us to gain this control

in a DBMS.



6 / 43

Data Representation Recap – Memory Management

Disk Block Mapping

The units of database space allocation are disk blocks, extents, and segments.
• A disk block is the smallest unit of data used by a database.
• An extent is a logical unit of database storage space allocation made up of a number of

contiguous disk blocks.
• A segment is made up of one or more extents (and is hence not always contiguous on

disk).



7 / 43

Data Representation Recap – Memory Management

System Catalog

• A DBMS stores meta-data about databases in its internal catalog.
• List of tables, columns, indexes, views
• Almost every DBMS stores their catalog as a private database.
• Specialized code for “bootstrapping” catalog tables.



8 / 43

Data Representation Recap – Memory Management

Today’s Agenda

• Data Representation
• Storage Models



9 / 43

Data Representation Data Representation

Data Representation



10 / 43

Data Representation Data Representation

Data Representation

• A catalog table contain the schema information about the user tables
• The DBMS uses this schema information to figure out the tuple’s data representation.
• In this way, it interprets the tuple’s bytes into a set of attributes (types and values).



11 / 43

Data Representation Data Representation

Data Representation

• INTEGER/BIGINT/SMALLINT/TINYINT
▶ C/C++ Representation

• FLOAT/REAL vs. NUMERIC/DECIMAL
▶ IEEE-754 Standard / Fixed-point Decimals

• VARCHAR/VARBINARY/TEXT/BLOB
▶ Header with length, followed by data bytes.

• TIME/DATE/TIMESTAMP
▶ 32/64-bit integer of (micro)seconds since Unix epoch



12 / 43

Data Representation Data Representation

Variable Precision Numbers

• Inexact, variable-precision numeric type that uses the "native" C/C++ types.
▶ Examples: FLOAT, REAL/DOUBLE

• Store directly as specified by IEEE-754.
• Typically faster than arbitrary precision numbers but can have rounding errors. . .

https://en.wikipedia.org/wiki/IEEE-754


13 / 43

Data Representation Data Representation

Variable Precision Numbers

Rounding Example
include <stdio.h>

int main(int argc, char* argv[]) {
float x = 0.1;
float y = 0.2;
printf("x+y = %f\n", x+y);
printf("0.3 = %f\n", 0.3);
}

Output
x+y = 0.300000
0.3 = 0.300000



14 / 43

Data Representation Data Representation

Variable Precision Numbers

Rounding Example
include <stdio.h>

int main(int argc, char* argv[]) {
float x = 0.1;
float y = 0.2;
printf("x+y = %.20f\n", x+y);
printf("0.3 = %.20f\n", 0.3);
}

Output
x+y = 0.30000001192092895508
0.3 = 0.29999999999999998890



15 / 43

Data Representation Data Representation

Fixed Precision Numbers

• Numeric data types with arbitrary precision and scale.
• Used when rounding errors are unacceptable.

▶ Example: NUMERIC, DECIMAL
• Typically stored in a exact, variable-length binary representation with additional

meta-data.
▶ Like a VARCHAR but not stored as a string



16 / 43

Data Representation Data Representation

Postgres: Numeric

typedef unsigned char NumericDigit;
typedef struct {
int ndigits; // number of digits
int weight; // weight of 1st Digit
int scale; // scale factor
int sign; // positive/negative/NaN
NumericDigit *digits; // digit storage
} numeric;



17 / 43

Data Representation Data Representation

Large Values

• Most DBMSs don’t allow a tuple to exceed the
size of a single page.

• To store values that are larger than a page, the
DBMS uses separate overflow storage pages.
▶ Postgres: TOAST (>2KB)
▶ MySQL: Overflow (>½ size of page)
▶ SQL Server: Overflow (>size of page)



18 / 43

Data Representation Data Representation

External Value Storage

• Some systems allow you to store a really large
value in an external file. Treated as a BLOB type.
▶ Oracle: BFILE data type
▶ Microsoft: FILESTREAM data type

• The DBMS cannot manipulate the contents of
an external file.
▶ No durability guarantees.
▶ No transaction protections.

• Objects < 256 KB are best stored in a database
• Objects > 1 MB are best stored in the filesystem
• Reference: To BLOB or Not To BLOB: Large

Object Storage in a Database or a Filesystem?

https://www.microsoft.com/en-us/research/wp-content/uploads/2006/04/tr-2006-45.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2006/04/tr-2006-45.pdf


19 / 43

Data Representation Data Representation

Schema Changes: Index

• CREATE INDEX:
▶ Scan the entire table and populate the index (e.g., hash table: tuple id −→ tuple pointer).
▶ Have to record changes made by txns that modified the table while another txn was

building the index.
▶ When the scan completes, lock the table and resolve changes that were missed after the

scan started.
• DROP INDEX:

▶ Just drop the index logically from the catalog.
▶ It only becomes "invisible" when the txn that dropped it commits.
▶ All ongoing txns will still have to update it.



20 / 43

Data Representation Data Representation

Observation

• The relational model does not specify that we have to store all of a tuple’s attributes
together in a single page.

• This may not actually be the best storage layout for some workloads. . .



21 / 43

Data Representation Storage Models

Storage Models



22 / 43

Data Representation Storage Models

Wikipedia Example

CREATE TABLE pages (
userID INT PRIMARY KEY,
userName VARCHAR UNIQUE,
);

CREATE TABLE pages (
pageID INT PRIMARY KEY,
title VARCHAR UNIQUE,
latest INT REFERENCES revisions (revID),
);

CREATE TABLE revisions (
revID INT PRIMARY KEY,
userID INT REFERENCES useracct (userID),
pageID INT REFERENCES pages (pageID),
content TEXT,
updated DATETIME
);



23 / 43

Data Representation Storage Models

OLTP Workload

On-line Transaction Processing (OLTP)
• Simple queries that read/update a small amount of data that is related to a single entity

in the database.
• This is usually the kind of application that people build first.

SELECT * FROM useracct
WHERE userName = ? AND userPass = ?

UPDATE useracct
SET lastLogin = NOW(), hostname = ?
WHERE userID = ?

INSERT INTO revisions VALUES (?,?...,?)



24 / 43

Data Representation Storage Models

On-line Transaction Processing (OLTP)
• Simple queries that read/update a small amount of data that is related to a single entity

in the database.
• This is usually the kind of application that people build first.

SELECT P.*, R.*
FROM pages AS P INNER JOIN revisions AS R ON P.latest = R.revID
WHERE P.pageID = ?



25 / 43

Data Representation Storage Models

OLAP Workload

On-line Analytical Processing (OLAP)
• Complex queries that read large portions of the database spanning multiple entities.
• You execute these workloads on the data you have collected from your OLTP

application(s).

SELECT P.*, R.*
FROM pages AS P INNER JOIN revisions AS R ON P.latest = R.revID
WHERE P.pageID = ?

SELECT COUNT(U.lastLogin), EXTRACT(month FROM U.lastLogin) AS month
FROM useracct AS U
WHERE U.hostname LIKE '%.gov'
GROUP BY EXTRACT(month FROM U.lastLogin)



26 / 43

Data Representation Storage Models

Workload Characterization

Workload Operation Complexity Workload Focus

OLTP Simple Writes
OLAP Complex Reads
HTAP Medium Mixture

Source

http://cacm.acm.org/magazines/2011/6/108651


27 / 43

Data Representation Storage Models

Workload Types

• OLTP: On-line Transaction Processing; Simple +Write-intensive
• OLAP: On-line Analytical Processing; Complex + Read-intensive
• HTAP: Hybrid Transaction/Analytical Processing; Medium +Mixed



28 / 43

Data Representation Storage Models

Data Storage Models

• The DBMS can store tuples in different ways that are better for either OLTP or OLAP
workloads.

• We have been assuming the n-ary storage model (NSM) (a.k.a., row storage) so far this
semester.



29 / 43

Data Representation Storage Models

N-ary Storage Model (NSM)

• The DBMS stores all attributes for a single tuple contiguously in a page.
• Ideal for OLTP workloads where queries tend to operate only on an individual entity

and insert-heavy workloads.



30 / 43

Data Representation Storage Models

N-ary Storage Model (NSM)

• The DBMS stores all attributes for a single tuple contiguously in a page.



31 / 43

Data Representation Storage Models

N-ary Storage Model (NSM)

SELECT * FROM useracct
WHERE userName = ? AND userPass = ?

Use index to access the particular user’s tuple.



32 / 43

Data Representation Storage Models

N-ary Storage Model (NSM)

INSERT INTO useracct VALUES (?,?,...?)

Add the user’s tuple using std::memcpy.



33 / 43

Data Representation Storage Models

N-ary Storage Model (NSM)

SELECT COUNT(U.lastLogin), EXTRACT(month FROM U.lastLogin) AS month
FROM useracct AS U
WHERE U.hostname LIKE '%.gov'
GROUP BY EXTRACT(month FROM U.lastLogin)

Useless data accessed for this query.



34 / 43

Data Representation Storage Models

N-ary Storage Model (NSM)

• Advantages
▶ Fast inserts, updates, and deletes.
▶ Good for queries that need the entire tuple.

• Disadvantages
▶ Not good for scanning large portions of the table and/or a subset of the attributes.



35 / 43

Data Representation Storage Models

Decomposition Storage Model (DSM)

• The DBMS stores the values of a single attribute for all tuples contiguously in a page.
▶ Also known as a "column store".

• Ideal for OLAP workloads where read-only queries perform large scans over a subset
of the table’s attributes.



36 / 43

Data Representation Storage Models

Decomposition Storage Model (DSM)

• The DBMS stores the values of a single attribute for all tuples contiguously in a page.
▶ Also known as a "column store".



37 / 43

Data Representation Storage Models

Decomposition Storage Model (DSM)

SELECT COUNT(U.lastLogin), EXTRACT(month FROM U.lastLogin) AS month
FROM useracct AS U
WHERE U.hostname LIKE '%.gov'
GROUP BY EXTRACT(month FROM U.lastLogin)



38 / 43

Data Representation Storage Models

Tuple Identification

• Choice 1: Fixed-length Offsets
▶ Each value is the same length for an attribute.

• Choice 2: Embedded Tuple Ids
▶ Each value is stored with its tuple id in a column.



39 / 43

Data Representation Storage Models

Decomposition Storage Model (DSM)

• Advantages
▶ Reduces the amount wasted I/O because the DBMS only reads the data that it needs.
▶ Better query processing and data compression (more on this later).

• Disadvantages
▶ Slow for point queries, inserts, updates, and deletes because of tuple splitting/stitching.



40 / 43

Data Representation Storage Models

DSM History

• 1970s: Cantor DBMS
• 1980s: DSM Proposal
• 1990s: SybaseIQ (in-memory only)
• 2000s: Vertica, VectorWise, MonetDB
• 2010s: Everyone

http://dl.acm.org/citation.cfm?id=655555


41 / 43

Data Representation Storage Models

Schema Changes: Columns

• ADD COLUMN:
▶ NSM: Copy tuples into new region in memory.
▶ DSM: Just create the new column segment on disk.

• DROP COLUMN:
▶ NSM-1: Copy tuples into new region of memory.
▶ NSM-2: Mark column as "deprecated", clean up later.
▶ DSM: Just drop the column and free memory.

• CHANGE COLUMN:
▶ Check whether the conversion is allowed to happen. Depends on default values.



42 / 43

Data Representation Storage Models

Conclusion

• A DBMS encodes and decodes the tuple’s bytes into a set of attributes based on its
schema.

• It is important to choose the right storage model for the target workload
▶ OLTP −→ Row-Store
▶ OLAP −→ Column-Store



43 / 43

Data Representation Storage Models

References I


	Data Representation
	Recap – Memory Management
	Data Representation
	Storage Models

	References

