Lecture 8: Buffer Management (Part 2)

Buffer Management

Administrivia

I modified the overall structure of the course to reduce the pace.

We are delaying the submission deadline for Assignment 2 to Sep 28.

e Now, we only have four regular assignments in the schedule.

The fifth assignment will be a bonus one for extra credits.

Buffer Management

Administrivia

e We will be giving partial credits to all the submissions for Assignment 1 (minimum: 30
points).

e We will update the auto-grader to give partial credits even if it encounters a segfault
on complex test cases.

e You should ask questions about the exercise sheet on Piazza.

Buffer Management

Recap

4/ 64

Recap - Buffer Management
Buffer Pool Meta-Data

¢ The page table keeps track of pages that are
currently in memory.
¢ Also maintains additional meta-data per page:
> Dirty Flag

»> Pin/Reference Counter
L

On-Disk File

EIHERVENEESW S0 Recap — Buffer Management

Buffer Replacement Policies

e When the DBMS needs to free up a frame to make room for a new page, it must decide
which page to evict from the buffer pool.
e Policies:
» FIFO
LFU
LRU
CLOCK
LRU-k
2Q

vyVvVvYvVYyYvYyy

Recap - Buffer Management
Today’s Agenda

e Buffer Manager Implementation
e Thread Safety
e 2Q Buffer Replacement Policy

ERIEAVEREESASWE Buffer Manager Implementation

Buffer Manager Implementation

ERIEAVEREESASWE Buffer Manager Implementation

Buffer Manager Interface

Basic interface:
1. FIX (uint64_t page_id, bool is_shared)
2. UNFIX (uint64_t page_id, bool is_dirty)

Pages can only be accessed (or modified) when they are fixed in the buffer pool.

BRIEAVEREESaSWE Buffer Manager Implementation

Segments

e Each table is organized a collection of segments.
e Each segments must be written into a separate file named after than segment’s id

auto file_handle = File::open_file(std::to_string(segment_id).c_str(), File::WRITE);
file_handle->read_block(start, page_size_, pool_[frame_id]->data.data());

IS IVENEEC WIS Buffer Manager Implementation

Segments

e Page id is split into segment id (16 bits) and segment page id (48 bits)

e Pageid = segment id | segment page id

e We have provided helper functions to get this information

/// Returns the segment id for a given page id which is contained in the 16
/// most significant bits of the page id.

static constexpr uintl6_t get_segment_id(uint64_t page_id) {

return page_id >> 48;

}

/// Returns the page id within its segment for a given page id. This

/// corresponds to the 48 least significant bits of the page id.

static constexpr uint64_t get_segment_page_id(uint64_t page_id) {
return page_id & ((lull << 48) - 1);

}

Buffer Manager lmplementation
Bit Manipulation

inta = 33333, b =-77777; // 4 bytes

Expression Representation Value
a 00000000 00000000 10000010 00110101 33333
b 11111111 11111110 11010000 00101111 -77777
a&b 00000000 00000000 10000000 00100101 32805
adb 11111111 11111110 01010010 00011010 -110054
alb 11111111 11111110 11010010 00111111 -77249
(a|b) 00000000 00000001 00101101 11000000 77248
a& b 00000000 00000001 00101101 11000000 77248

Buffer Manager lmplementation
Bit Manipulation

If you want the k most significant bits of a value, then right shift the value by k
Example: 1001 1100 » 4 = 0000 1001

If you want the k least significant bits of a value, then apply a bit mask ((1ull « k) - 1)
Example: 1 « 4 = 0001 0000; (1 «4)-1 = 0000 1111

(1001 1100) & (0000 1111) = 0000 1100

Reference

https://www.learncpp.com/cpp-tutorial/bit-manipulation-with-bitwise-operators-and-bit-masks/

Buffer Manager Implementation
Bit Manipulation

Print an integer as a sequence of bits

include <limits.h>
include <stdio.h>

void bit_print(uint32_t a){

int i;
int n = sizeof(int) * CHAR_BIT; /% number of bits in a byte (8) */
int mask = 1 << (n - 1); /* mask = 100...0 */

for (i = 1; i <= n; ++i) {
putchar(((a & mask) == 0) ? '0' : "1");
a <<= 1; // shifting left
if (i % CHAR_BIT == 0 & i < n)
putchar(' ");

Buffer Manager Implementation
Bit Manipulation

Packing a set of bytes into an integer
include <limits.h>

/// Pack 4 characters into a 32-bit integer
uint32_t pack(char a, char b, char c, char d){
uint32_t p = a; /* p will be packed with a, b, c, d */

p = (p << CHAR_BIT) | b;
p (p << CHAR_BIT) | c;
p = (p << CHAR_BIT) | d
return p;

Buffer Manager Implementation
Bit Manipulation

Unpacking a set of bytes from an integer

include <limits.h>

/// Unpack a byte from a 32-bit integer

char unpack(int p, int K){ /* k =0, 1, 2, or 3 */
int n = k * CHAR_BIT; /*n=20, 8, 16, or 24 */
unsigned mask = ((1<<CHAR_BIT)-1); /* low-order byte */

mask <<= n;
return ((p & mask) >> n);

S RVENEECSWSWl Thread Safety

Thread Safety

Thread Safety
Threads

e A thread of execution is a sequence of instructions that can be executed concurrently
with other such sequences in multi-threading environments, while sharing a same
virtual address space

e An initialized thread object represents an active thread of execution
e Such a thread object has a unique thread id
* One thread may wait for another thread to completes its execution

e This is known as joining

Thread Safety
Threads

include <iostream>
include <utility>
include <thread>
include <chrono>

void foo(std::string msg){

std::cout << "thread says: " << msg;

std: :this_thread::sleep_for(std::chrono::seconds(1));
}

int mainQ){
std::thread t1(foo, ~"tl1''");
std::thread::id tl_id = tl.get_idQ);

std::thread t2(foo, ~"t2'");
std::thread::id t2_id = t2.get_id(Q);

Thread Safety
Threads

int main(){

std::cout << "tl's id: " << tl_id << '"\n';
std::cout << "t2's id: " << t2_id << '\n';
tl.joinQ);
t2.join(Q);

Thread Safety
Thread Safety

e A piece of code is thread-safe if it functions correctly during simultaneous execution
by multiple threads.

e In particular, it must satisfy the need for multiple threads to access the same shared
data (shared access), and

e the need for a shared piece of data to be accessed by only one thread at any given time
(exclusive access)

Thread Safety
Thread Safety

e There are a few ways to achieve thread safety:
> Atomic operations
» Thread-local storage
> Mutual exclusion

Atomic operations

e Shared data are accessed by using atomic operations which cannot be interrupted by
other threads.

¢ This usually requires using special assembly instructions, which might be available
in a runtime library.

e Since the operations are atomic, the shared data are always kept in a valid state, no
matter how many other threads access it.

e Atomic operations form the basis of many thread synchronization mechanisms.

e C++: std::atomic

https://en.cppreference.com/w/cpp/atomic/atomic/fetch_add

Thread Safety
Example: American Idol App

We want to keep track of votes for each participant

int vote_counter = 0;

void vote (int number_of_votes) {
for (int i=0; i<number_of_votes; ++i) ++vote_counter;

}

int main Q{

std::vector<std: :thread> threads;

std::cout << "spawn 10 users...\n";

for (int i=1; i<=10; ++i)
threads.push_back(std: :thread(vote, 20));

std::cout << "joining all threads...\n";

for (auto& th : threads) th.join(Q);

std::cout << "vote_counter: " << vote_counter << '\n';

return 0;

Thread Safety
Example: American Idol App

We want to keep track of votes for each participant

include <atomic>
std::atomic<int> vote_counter(0); // Using atomic

int main O{

std::cout << "vote_counter: " << vote_counter << '\n';
return 0;

}

LS RVENEEC Ol Thread Safety

Atomic operations

Modern CPUs have direct support for atomic integer operations
LOCK prefix in x86 ISA
Example: lock incq 0x29a0(%rip)

RIP addressing is Relative to 64-bit Instruction Pointer register

std::atomic is a portable interface to those intructions
Example: In aarch64 ISA, LDADD would be used instead

Thread Safety
Thread-Local Storage

e Variables are localized so that each thread has its own private copy

e These variables retain their values across function and other code boundaries, and are
thread-safe since they are local to each thread

e C++: thread_local

https://en.cppreference.com/w/cpp/language/storage_duration

Thread Safety
Example: American Idol App

We want to keep track of votes for each participant

include <atomic>
thread_local vote_counter = 0;

int main O{

std::cout << "vote_counter: << vote_counter << '\n';
return 0;

}

e What will happen in this case?

Mutual exclusion

e Access to shared data is serialized using mechanisms that ensure only one thread
reads or writes the shared data at any time.

e Great care is required if a piece of code accesses multiple shared pieces of data —
problems include race conditions, deadlocks, livelocks, starvation, and various other
ills enumerated in an OS textbook.

e Mutual exclusion is accomplished using latches
o C++: std:mutex

https://en.cppreference.com/w/cpp/thread/mutex

Thread Safety
Example: American Idol App

We want to keep track of votes for each participant

include <mutex>

std: :mutex vote_latch;
int vote_counter = 0;

void vote (int number_of_votes) {
vote_latch.lock();
for (int i=0; i<number_of_votes; ++i) ++vote_counter;
vote_latch.unlock();
}

int main O{

std::cout << "vote_counter: << vote_counter << '\n';
return 0;

}

LS RVENEEC Ol Thread Safety

Mutual exclusion

e std::mutex is a more general method than std: :atomic

Can be used to make a sequence of instructions atomic

But, slower than std: :atomic because std: :mutex makes futex system call in Linux

Way slower than the userspace assembly instructions emitted by std: :atomic

https://man7.org/linux/man-pages/man2/futex.2.html

Thread Safety
Lock Guard

e lock_guardis a mutex wrapper that provides a convenient RAII-style mechanism for
owning a mutex for the duration of a scoped block.

e When a lock_guard object is created, it attempts to take ownership of the mutex it is
given.

e When control leaves the scope in which the lock_guard object was created, the
lock_guard is destructed and the mutex is released.

Thread Safety
Example: American Idol App

We want to keep track of votes for each participant

include <mutex>

std: :mutex vote_latch;
int vote_counter = 0;

void vote (int number_of_votes) {
std::lock_guard<std: :mutex> grab_latch(vote_latch);
for (int i=0; i<number_of_votes; ++i) ++vote_counter;

int main O{

std::cout << "vote_counter: << vote_counter << '\n';
return 0;

}

Thread Safety
Shared Mutex

e Shared mutexes are especially useful when shared data can be safely read by any
number of threads simultaneously, but

* a thread may only write the same data when no other thread is reading or writing at
the same time.

e The shared_mutex class is a synchronization primitive that can be used to protect
shared data from being simultaneously accessed by multiple threads.

e In contrast to a regular mutex which facilitate exclusive access, a shared_mutex has
two levels of access:

> shared - several threads can share ownership of the same mutex
> exclusive - only one thread can own the mutex

Thread Safety
Shared Mutex

e If one thread has acquired the exclusive lock (through lock, try_lock), no other
threads can acquire the lock (including the shared).
e If one thread has acquired the shared lock (through lock_shared, try_lock_shared),
no other thread can acquire the exclusive lock, but can acquire the shared lock.
e Only when the exclusive lock has not been acquired by any thread, the shared lock can
be acquired by multiple threads.
e Within one thread, only one lock (shared or exclusive) can be acquired at a given point
in time.
> shared - several threads can share ownership of the same mutex
> exclusive - only one thread can own the mutex

LS RVENEEC Ol Thread Safety

Buffer Manager Implementation

Must be thread-safe!

Use std: :mutex and std: : shared_mutex

Naive solution: Synchronize all accesses with a single latch
Must be more efficient

> Hold latches as short as possible
> Do not hold latches while doing 1/O operations
> Distinguish between shared and exclusive requests

S RVENEECSWSWl Thread Safety

Buffer Manager Implementation

Synchronize accesses to segment

void BufferManager::read_frame(uint64_t frame_id) {

std::lock_guard<std: :mutex> file_guard(file_use_mutex_);

LS RVENEEC Ol Thread Safety

Buffer Manager Implementation

Write lock_frame and unlock_frame functions

void BufferManager::lock_frame(uint64_t frame_id, bool exclusive) {
assert(frame_id != INVALID_FRAME_ID);
assert(*use_counters_[frame_id] >= 0);

if (exclusive == false) {
lock_table_[frame_id]->lock_shared();
pool_[frame_id]->exclusive = false;
use_counters_[frame_id]->fetch_add(1l);

}

else {
lock_table_[frame_id]->lock();
pool_[frame_id]->exclusive = true;
pool_[frame_id]->exclusive_thread_id = std::this_thread::get_id();
use_counters_[frame_id]->fetch_add(1l);

LS RVENEEC Ol Thread Safety

Buffer Manager Implementation

Write copy constructor and copy assignment operator for BufferFrame.

BufferFrame: :BufferFrame(const BufferFrame& other)
: page_id(other.page_id),
frame_id(other. frame_id),
data(other.data),
dirty(other.dirty),
exclusive(other.exclusive) {}

BufferFrame& BufferFrame::operator=(BufferFrame other) {
std: :swap(this->page_id, other.page_id);
std: :swap(this->frame_id, other.frame_id);
std: :swap(this->data, other.data);
std::swap(this->dirty, other.dirty);
std: :swap(this->exclusive, other.exclusive);
return *this;

LS RVENEEC Ol Thread Safety

Buffer Manager Implementation

e Reference counting (use_counters_) for eviction
e Fixing a page
> Check if page alredy in buffer pool
If not found, find a free slot in the buffer pool
Lock the frame slot (exclusive mode)
Reset the frame slot’s meta-data
Load data into the frame from disk
Unlock the frame slot (exclusive mode)
Lock the frame based on user’s requested mode (exclusive or shared)

vVVvYyVYvYyYy

LS RVENEEC Ol Thread Safety

Buffer Manager Implementation

Fixing a page

BufferFrame& BufferManager::fix_page(uint64_t page_id, bool exclusive) {

lock_frame(free_frame_id, true);
// Reset meta-data
pool_[free_frame_id]->page_id = page_id;
pool_[free_frame_id]->dirty = false;
read_frame(free_frame_id);
// put in fifo queue
{
std: :lock_guard<std: :mutex> fifo_guard(fifo_mutex_);
fifo_queue_.push_back(free_frame_id);
}
unlock_frame(free_frame_id);
lock_frame(free_frame_id, exclusive);
return *pool_[free_frame_id];

LRIERVEREES NS 2Q Buffer Replacement Policy

2Q Buffer Replacement Policy

2Q Buffer Replacement Policy
2Q Policy

Maintain two queues (FIFO and LRU)
e Some pages are accessed only once (e.g., sequential scan)
e Some pages are hot and accessed frequently
e Maintain separate lists for those pages

¢ Scan resistant policy

1. Maintain all pages in FIFO queue
2. When a page that is currently in FIFO is referenced again, upgrade it to the LRU queue
3. Prefer evicting pages from FIFO queue

Hot pages are in LRU, read-once pages in FIFO.

2Q Buffer Replacement Policy
2Q Policy

Request: Fix(1, false)

FIFO Queue

LRU Queue

2Q Policy

Request: Fix(1, false) — True

—_
1
1

FIFO Queue 3

LRU Queue

2Q Policy

Request: Fix(2, true)

—_
1
1

FIFO Queue 3

LRU Queue

2Q Buffer Replacement Policy
2Q Policy

Request: Fix(2, true) — True

—_
N
1

FIFO Queue

LRU Queue

2Q Policy

Request: Fix(3, false)

—_
N
1

FIFO Queue STX -

LRU Queue

2Q Policy

Request: Fix(3, false) — True

—_
N
O8]

FIFO Queue STx1s

LRU Queue

2Q Policy

Request: Fix(4, false)

—_
N
O8]

FIFO Queue STx1s

LRU Queue

2Q Policy

Request: Fix(4, false) — False // (throw buffer_full_error{})

—_
N
O8]

FIFO Queue STXs

LRU Queue

2Q Buffer Replacement Policy
2Q Policy

Request: Unfix(1, false)

—_
N
O8]

FIFO Queue

LRU Queue

2Q Buffer Replacement Policy
2Q Policy

Request: Unfix(1, false) — True

FIFO Queue

LRU Queue

2Q Buffer Replacement Policy
2Q Policy

Request: Fix(4, false)

FIFO Queue

LRU Queue

2Q Buffer Replacement Policy
2Q Policy

Request: Fix(4, false)

FIFO Queue

LRU Queue

2Q Buffer Replacement Policy
2Q Policy

Request: Fix(4, false) — True

FIFO Queue

LRU Queue

2Q Buffer Replacement Policy
2Q Policy

Request: Fix(4, false)

FIFO Queue

LRU Queue

2Q Buffer Replacement Policy
2Q Policy

Request: Fix(4, false) — True

213]-
FIFO Queue X151
41-1-
LRU Queue ST

2Q Buffer Replacement Policy
2Q Policy

Request: Unfix(2, true)

213]-
FIFO Queue X151
41-1-
LRU Queue ST

2Q Buffer Replacement Policy
2Q Policy

Request: Unfix(2, true) — True

FIFO Queue g ——
41-17-
LRU Queue ST

Fix Page

BufferFrame& BufferManager::fix_page(uint64_t page_id, bool exclusive) {

//
//
//
//
//
//
//
//

//
//
//

first check if page is in lru queue: if found, return the frame
if not, check for page in fifo queue: if found, return the frame
if not, find a free slot
- is the buffer full?
- if it is not full, get the next available slot
- if it is full, find a free slot in fifo queue
- find a free slot in lru queue
- throw buffer_full error
found a free slot
lock frame in exclusive mode
set frame's meta-data
read frame from disk using frame's meta-data
add frame to fifo queue
unlock frame in exclusive mode
lock frame in user's requested mode
return the frame

2Ol Splhzzi it Pelley
Page in FIFO Queue

std: :pair<bool, uint64_t> BufferManager: :page_in_fifo_queue(uint64_t page_id) {

{
std::lock_guard<std: :mutex> fifo_guard(fifo_mutex_);
std: :1lock_guard<std: :mutex> lru_guard(lru_mutex_);
bool found_page = false;
uint64_t page_frame_id = INVALID_FRAME_ID;
for (size_t i = 0; i < fifo_queue_.size(); i++) {
auto frame_id = fifo_queue_[i];
if (pool_[frame_id]->page_id == page_id) {
found_page = true;
page_frame_id = frame_id;
fifo_queue_.erase(fifo_queue_.begin() + i);
1lru_queue_.push_back(frame_id);
break;
}
}
return std::make_pair(found_page, page_frame_id);
}

Conclusion

e Thread-safety is an important required with modern multi-core processors
e We maximize concurrency in the buffer manager by:

> Holding latches as short as possible
> Not holding latches while doing I/O operations
> Distinguishing between shared and exclusive requests

e In the next lecture, we will learn about compression.

References 1

Buffer Management

A

64/ 64

	Buffer Management
	Recap – Buffer Management
	Buffer Manager Implementation
	Thread Safety
	2Q Buffer Replacement Policy

	References

