
1 / 64

Buffer Management

Lecture 8: Buffer Management (Part 2)



2 / 64

Buffer Management

Administrivia

• I modified the overall structure of the course to reduce the pace.
• We are delaying the submission deadline for Assignment 2 to Sep 28.
• Now, we only have four regular assignments in the schedule.
• The fifth assignment will be a bonus one for extra credits.



3 / 64

Buffer Management

Administrivia

• We will be giving partial credits to all the submissions for Assignment 1 (minimum: 30
points).

• We will update the auto-grader to give partial credits even if it encounters a segfault
on complex test cases.

• You should ask questions about the exercise sheet on Piazza.



4 / 64

Buffer Management Recap – Buffer Management

Recap



5 / 64

Buffer Management Recap – Buffer Management

Buffer Pool Meta-Data

• The page table keeps track of pages that are
currently in memory.

• Also maintains additional meta-data per page:
▶ Dirty Flag
▶ Pin/Reference Counter



6 / 64

Buffer Management Recap – Buffer Management

Buffer Replacement Policies

• When the DBMS needs to free up a frame to make room for a new page, it must decide
which page to evict from the buffer pool.

• Policies:
▶ FIFO
▶ LFU
▶ LRU
▶ CLOCK
▶ LRU-k
▶ 2Q



7 / 64

Buffer Management Recap – Buffer Management

Today’s Agenda

• Buffer Manager Implementation
• Thread Safety
• 2Q Buffer Replacement Policy



8 / 64

Buffer Management Buffer Manager Implementation

Buffer Manager Implementation



9 / 64

Buffer Management Buffer Manager Implementation

Buffer Manager Interface

Basic interface:
1. FIX (uint64_t page_id, bool is_shared)
2. UNFIX (uint64_t page_id, bool is_dirty)

Pages can only be accessed (or modified) when they are fixed in the buffer pool.



10 / 64

Buffer Management Buffer Manager Implementation

Segments

• Each table is organized a collection of segments.
• Each segments must be written into a separate file named after than segment’s id

auto file_handle = File::open_file(std::to_string(segment_id).c_str(), File::WRITE);
file_handle->read_block(start, page_size_, pool_[frame_id]->data.data());



11 / 64

Buffer Management Buffer Manager Implementation

Segments

• Page id is split into segment id (16 bits) and segment page id (48 bits)
• Page id = segment id | segment page id
• We have provided helper functions to get this information

/// Returns the segment id for a given page id which is contained in the 16
/// most significant bits of the page id.

static constexpr uint16_t get_segment_id(uint64_t page_id) {
return page_id >> 48;

}

/// Returns the page id within its segment for a given page id. This
/// corresponds to the 48 least significant bits of the page id.
static constexpr uint64_t get_segment_page_id(uint64_t page_id) {

return page_id & ((1ull << 48) - 1);
}



12 / 64

Buffer Management Buffer Manager Implementation

Bit Manipulation

int a = 33333, b = -77777; // 4 bytes

Expression Representation Value

a 00000000 00000000 10000010 00110101 33333
b 11111111 11111110 11010000 00101111 -77777
a & b 00000000 00000000 10000000 00100101 32805
a ⊕ b 11111111 11111110 01010010 00011010 -110054
a | b 11111111 11111110 11010010 00111111 -77249
(a | b) 00000000 00000001 00101101 11000000 77248
a & b 00000000 00000001 00101101 11000000 77248



13 / 64

Buffer Management Buffer Manager Implementation

Bit Manipulation

• If you want the k most significant bits of a value, then right shift the value by k

• Example: 1001 1100 » 4 = 0000 1001
• If you want the k least significant bits of a value, then apply a bit mask ((1ull « k) - 1)
• Example: 1 « 4 = 0001 0000; (1 « 4) - 1 = 0000 1111
• (1001 1100) & (0000 1111) = 0000 1100
• Reference

https://www.learncpp.com/cpp-tutorial/bit-manipulation-with-bitwise-operators-and-bit-masks/


14 / 64

Buffer Management Buffer Manager Implementation

Bit Manipulation

Print an integer as a sequence of bits
include <limits.h>
include <stdio.h>

void bit_print(uint32_t a){
int i;
int n = sizeof(int) * CHAR_BIT; /* number of bits in a byte (8) */
int mask = 1 << (n - 1); /* mask = 100...0 */

for (i = 1; i <= n; ++i) {
putchar(((a & mask) == 0) ? '0' : '1');
a <<= 1; // shifting left
if (i % CHAR_BIT == 0 && i < n)
putchar(' ');

}
}



15 / 64

Buffer Management Buffer Manager Implementation

Bit Manipulation

Packing a set of bytes into an integer
include <limits.h>

/// Pack 4 characters into a 32-bit integer
uint32_t pack(char a, char b, char c, char d){
uint32_t p = a; /* p will be packed with a, b, c, d */

p = (p << CHAR_BIT) | b;
p = (p << CHAR_BIT) | c;
p = (p << CHAR_BIT) | d;
return p;

}



16 / 64

Buffer Management Buffer Manager Implementation

Bit Manipulation

Unpacking a set of bytes from an integer
include <limits.h>

/// Unpack a byte from a 32-bit integer
char unpack(int p, int k){ /* k = 0, 1, 2, or 3 */
int n = k * CHAR_BIT; /* n = 0, 8, 16, or 24 */
unsigned mask = ((1<<CHAR_BIT)-1); /* low-order byte */

mask <<= n;
return ((p & mask) >> n);

}



17 / 64

Buffer Management Thread Safety

Thread Safety



18 / 64

Buffer Management Thread Safety

Threads

• A thread of execution is a sequence of instructions that can be executed concurrently
with other such sequences in multi-threading environments, while sharing a same
virtual address space

• An initialized thread object represents an active thread of execution
• Such a thread object has a unique thread id
• One thread may wait for another thread to completes its execution
• This is known as joining



19 / 64

Buffer Management Thread Safety

Threads
include <iostream>
include <utility>
include <thread>
include <chrono>

void foo(std::string msg){
std::cout << "thread says: " << msg;
std::this_thread::sleep_for(std::chrono::seconds(1));

}

int main(){
std::thread t1(foo, ``t1'');
std::thread::id t1_id = t1.get_id();

std::thread t2(foo, ``t2'');
std::thread::id t2_id = t2.get_id();

...
}



20 / 64

Buffer Management Thread Safety

Threads

int main(){
...

std::cout << "t1's id: " << t1_id << '\n';
std::cout << "t2's id: " << t2_id << '\n';

t1.join();
t2.join();

}



21 / 64

Buffer Management Thread Safety

Thread Safety

• A piece of code is thread-safe if it functions correctly during simultaneous execution
by multiple threads.

• In particular, it must satisfy the need for multiple threads to access the same shared
data (shared access), and

• the need for a shared piece of data to be accessed by only one thread at any given time
(exclusive access)



22 / 64

Buffer Management Thread Safety

Thread Safety

• There are a few ways to achieve thread safety:
▶ Atomic operations
▶ Thread-local storage
▶ Mutual exclusion



23 / 64

Buffer Management Thread Safety

Atomic operations

• Shared data are accessed by using atomic operations which cannot be interrupted by
other threads.

• This usually requires using special assembly instructions, which might be available
in a runtime library.

• Since the operations are atomic, the shared data are always kept in a valid state, no
matter how many other threads access it.

• Atomic operations form the basis of many thread synchronization mechanisms.
• C++: std::atomic

https://en.cppreference.com/w/cpp/atomic/atomic/fetch_add


24 / 64

Buffer Management Thread Safety

Example: American Idol App
We want to keep track of votes for each participant
int vote_counter = 0;

void vote (int number_of_votes) {
for (int i=0; i<number_of_votes; ++i) ++vote_counter;

}

int main (){
std::vector<std::thread> threads;
std::cout << "spawn 10 users...\n";
for (int i=1; i<=10; ++i)
threads.push_back(std::thread(vote, 20));

std::cout << "joining all threads...\n";
for (auto& th : threads) th.join();
std::cout << "vote_counter: " << vote_counter << '\n';
return 0;

}



25 / 64

Buffer Management Thread Safety

Example: American Idol App

We want to keep track of votes for each participant
include <atomic>

std::atomic<int> vote_counter(0); // Using atomic

int main (){
...

std::cout << "vote_counter: " << vote_counter << '\n';
return 0;

}



26 / 64

Buffer Management Thread Safety

Atomic operations

• Modern CPUs have direct support for atomic integer operations
• LOCK prefix in x86 ISA
• Example: lock incq 0x29a0(%rip)
• RIP addressing is Relative to 64-bit Instruction Pointer register
• std::atomic is a portable interface to those intructions
• Example: In aarch64 ISA, LDADDwould be used instead



27 / 64

Buffer Management Thread Safety

Thread-Local Storage

• Variables are localized so that each thread has its own private copy
• These variables retain their values across function and other code boundaries, and are

thread-safe since they are local to each thread
• C++: thread_local

https://en.cppreference.com/w/cpp/language/storage_duration


28 / 64

Buffer Management Thread Safety

Example: American Idol App

We want to keep track of votes for each participant
include <atomic>

thread_local vote_counter = 0;

int main (){
...

std::cout << "vote_counter: " << vote_counter << '\n';
return 0;

}

• What will happen in this case?



29 / 64

Buffer Management Thread Safety

Mutual exclusion

• Access to shared data is serialized using mechanisms that ensure only one thread
reads or writes the shared data at any time.

• Great care is required if a piece of code accesses multiple shared pieces of data –
problems include race conditions, deadlocks, livelocks, starvation, and various other
ills enumerated in an OS textbook.

• Mutual exclusion is accomplished using latches
• C++: std::mutex

https://en.cppreference.com/w/cpp/thread/mutex


30 / 64

Buffer Management Thread Safety

Example: American Idol App
We want to keep track of votes for each participant
include <mutex>

std::mutex vote_latch;
int vote_counter = 0;

void vote (int number_of_votes) {
vote_latch.lock();

for (int i=0; i<number_of_votes; ++i) ++vote_counter;
vote_latch.unlock();

}

int main (){
...

std::cout << "vote_counter: " << vote_counter << '\n';
return 0;

}



31 / 64

Buffer Management Thread Safety

Mutual exclusion

• std::mutex is a more general method than std::atomic
• Can be used to make a sequence of instructions atomic
• But, slower than std::atomic because std::mutexmakes futex system call in Linux
• Way slower than the userspace assembly instructions emitted by std::atomic

https://man7.org/linux/man-pages/man2/futex.2.html


32 / 64

Buffer Management Thread Safety

Lock Guard

• lock_guard is a mutex wrapper that provides a convenient RAII-style mechanism for
owning a mutex for the duration of a scoped block.

• When a lock_guard object is created, it attempts to take ownership of the mutex it is
given.

• When control leaves the scope in which the lock_guard object was created, the
lock_guard is destructed and the mutex is released.



33 / 64

Buffer Management Thread Safety

Example: American Idol App

We want to keep track of votes for each participant
include <mutex>

std::mutex vote_latch;
int vote_counter = 0;

void vote (int number_of_votes) {
std::lock_guard<std::mutex> grab_latch(vote_latch);
for (int i=0; i<number_of_votes; ++i) ++vote_counter;

}

int main (){
...

std::cout << "vote_counter: " << vote_counter << '\n';
return 0;

}



34 / 64

Buffer Management Thread Safety

Shared Mutex

• Shared mutexes are especially useful when shared data can be safely read by any
number of threads simultaneously, but

• a thread may only write the same data when no other thread is reading or writing at
the same time.

• The shared_mutex class is a synchronization primitive that can be used to protect
shared data from being simultaneously accessed by multiple threads.

• In contrast to a regular mutexwhich facilitate exclusive access, a shared_mutex has
two levels of access:
▶ shared - several threads can share ownership of the same mutex
▶ exclusive - only one thread can own the mutex



35 / 64

Buffer Management Thread Safety

Shared Mutex

• If one thread has acquired the exclusive lock (through lock, try_lock), no other
threads can acquire the lock (including the shared).

• If one thread has acquired the shared lock (through lock_shared, try_lock_shared),
no other thread can acquire the exclusive lock, but can acquire the shared lock.

• Only when the exclusive lock has not been acquired by any thread, the shared lock can
be acquired by multiple threads.

• Within one thread, only one lock (shared or exclusive) can be acquired at a given point
in time.
▶ shared - several threads can share ownership of the same mutex
▶ exclusive - only one thread can own the mutex



36 / 64

Buffer Management Thread Safety

Buffer Manager Implementation

• Must be thread-safe!
• Use std::mutex and std::shared_mutex
• Naiv̈e solution: Synchronize all accesses with a single latch
• Must be more efficient

▶ Hold latches as short as possible
▶ Do not hold latches while doing I/O operations
▶ Distinguish between shared and exclusive requests



37 / 64

Buffer Management Thread Safety

Buffer Manager Implementation

Synchronize accesses to segment
void BufferManager::read_frame(uint64_t frame_id) {

std::lock_guard<std::mutex> file_guard(file_use_mutex_);
...

}



38 / 64

Buffer Management Thread Safety

Buffer Manager Implementation

Write lock_frame and unlock_frame functions
void BufferManager::lock_frame(uint64_t frame_id, bool exclusive) {
assert(frame_id != INVALID_FRAME_ID);
assert(*use_counters_[frame_id] >= 0);

if (exclusive == false) {
lock_table_[frame_id]->lock_shared();
pool_[frame_id]->exclusive = false;
use_counters_[frame_id]->fetch_add(1);

}
else {
lock_table_[frame_id]->lock();
pool_[frame_id]->exclusive = true;
pool_[frame_id]->exclusive_thread_id = std::this_thread::get_id();
use_counters_[frame_id]->fetch_add(1);

}
}



39 / 64

Buffer Management Thread Safety

Buffer Manager Implementation

Write copy constructor and copy assignment operator for BufferFrame.
BufferFrame::BufferFrame(const BufferFrame& other)

: page_id(other.page_id),
frame_id(other.frame_id),
data(other.data),
dirty(other.dirty),
exclusive(other.exclusive) {}

BufferFrame& BufferFrame::operator=(BufferFrame other) {
std::swap(this->page_id, other.page_id);
std::swap(this->frame_id, other.frame_id);
std::swap(this->data, other.data);
std::swap(this->dirty, other.dirty);
std::swap(this->exclusive, other.exclusive);
return *this;

}



40 / 64

Buffer Management Thread Safety

Buffer Manager Implementation

• Reference counting (use_counters_) for eviction
• Fixing a page

▶ Check if page alredy in buffer pool
▶ If not found, find a free slot in the buffer pool
▶ Lock the frame slot (exclusive mode)
▶ Reset the frame slot’s meta-data
▶ Load data into the frame from disk
▶ Unlock the frame slot (exclusive mode)
▶ Lock the frame based on user’s requested mode (exclusive or shared)



41 / 64

Buffer Management Thread Safety

Buffer Manager Implementation

Fixing a page
BufferFrame& BufferManager::fix_page(uint64_t page_id, bool exclusive) {
...
lock_frame(free_frame_id, true);
// Reset meta-data
pool_[free_frame_id]->page_id = page_id;
pool_[free_frame_id]->dirty = false;
read_frame(free_frame_id);
// put in fifo queue
{
std::lock_guard<std::mutex> fifo_guard(fifo_mutex_);
fifo_queue_.push_back(free_frame_id);

}
unlock_frame(free_frame_id);
lock_frame(free_frame_id, exclusive);
return *pool_[free_frame_id];

}



42 / 64

Buffer Management 2Q Buffer Replacement Policy

2Q Buffer Replacement Policy



43 / 64

Buffer Management 2Q Buffer Replacement Policy

2Q Policy

Maintain two queues (FIFO and LRU)
• Some pages are accessed only once (e.g., sequential scan)
• Some pages are hot and accessed frequently
• Maintain separate lists for those pages
• Scan resistant policy

1. Maintain all pages in FIFO queue
2. When a page that is currently in FIFO is referenced again, upgrade it to the LRU queue
3. Prefer evicting pages from FIFO queue

Hot pages are in LRU, read-once pages in FIFO.



44 / 64

Buffer Management 2Q Buffer Replacement Policy

2Q Policy

Request: Fix(1, false)

FIFO Queue
- - -
- - -

LRU Queue
- - -
- - -



45 / 64

Buffer Management 2Q Buffer Replacement Policy

2Q Policy

Request: Fix(1, false) −→ True

FIFO Queue
1 - -
S - -

LRU Queue
- - -
- - -



46 / 64

Buffer Management 2Q Buffer Replacement Policy

2Q Policy

Request: Fix(2, true)

FIFO Queue
1 - -
S - -

LRU Queue
- - -
- - -



47 / 64

Buffer Management 2Q Buffer Replacement Policy

2Q Policy

Request: Fix(2, true) −→ True

FIFO Queue
1 2 -
S X -

LRU Queue
- - -
- - -



48 / 64

Buffer Management 2Q Buffer Replacement Policy

2Q Policy

Request: Fix(3, false)

FIFO Queue
1 2 -
S X -

LRU Queue
- - -
- - -



49 / 64

Buffer Management 2Q Buffer Replacement Policy

2Q Policy

Request: Fix(3, false) −→ True

FIFO Queue
1 2 3
S X S

LRU Queue
- - -
- - -



50 / 64

Buffer Management 2Q Buffer Replacement Policy

2Q Policy

Request: Fix(4, false)

FIFO Queue
1 2 3
S X S

LRU Queue
- - -
- - -



51 / 64

Buffer Management 2Q Buffer Replacement Policy

2Q Policy

Request: Fix(4, false) −→ False // (throw buffer_full_error{} )

FIFO Queue
1 2 3
S X S

LRU Queue
- - -
- - -



52 / 64

Buffer Management 2Q Buffer Replacement Policy

2Q Policy

Request: Unfix(1, false)

FIFO Queue
1 2 3
S X S

LRU Queue
- - -
- - -



53 / 64

Buffer Management 2Q Buffer Replacement Policy

2Q Policy

Request: Unfix(1, false) −→ True

FIFO Queue
- 2 3
- X S

LRU Queue
- - -
- - -



54 / 64

Buffer Management 2Q Buffer Replacement Policy

2Q Policy

Request: Fix(4, false)

FIFO Queue
- 2 3
- X S

LRU Queue
- - -
- - -



55 / 64

Buffer Management 2Q Buffer Replacement Policy

2Q Policy

Request: Fix(4, false)

FIFO Queue
2 3 -
X S -

LRU Queue
- - -
- - -



56 / 64

Buffer Management 2Q Buffer Replacement Policy

2Q Policy

Request: Fix(4, false) −→ True

FIFO Queue
2 3 4
X S S

LRU Queue
- - -
- - -



57 / 64

Buffer Management 2Q Buffer Replacement Policy

2Q Policy

Request: Fix(4, false)

FIFO Queue
2 3 4
X S S

LRU Queue
- - -
- - -



58 / 64

Buffer Management 2Q Buffer Replacement Policy

2Q Policy

Request: Fix(4, false) −→ True

FIFO Queue
2 3 -
X S -

LRU Queue
4 - -
S - -



59 / 64

Buffer Management 2Q Buffer Replacement Policy

2Q Policy

Request: Unfix(2, true)

FIFO Queue
2 3 -
X S -

LRU Queue
4 - -
S - -



60 / 64

Buffer Management 2Q Buffer Replacement Policy

2Q Policy

Request: Unfix(2, true) −→ True

FIFO Queue
3 - -
S - -

LRU Queue
4 - -
S - -



61 / 64

Buffer Management 2Q Buffer Replacement Policy

Fix Page
BufferFrame& BufferManager::fix_page(uint64_t page_id, bool exclusive) {

// first check if page is in lru queue: if found, return the frame
// if not, check for page in fifo queue: if found, return the frame
// if not, find a free slot
// - is the buffer full?
// - if it is not full, get the next available slot
// - if it is full, find a free slot in fifo queue
// - find a free slot in lru queue
// - throw buffer_full error
// found a free slot
// lock frame in exclusive mode
// set frame's meta-data
// read frame from disk using frame's meta-data
// add frame to fifo queue
// unlock frame in exclusive mode
// lock frame in user's requested mode
// return the frame

}



62 / 64

Buffer Management 2Q Buffer Replacement Policy

Page in FIFO Queue
std::pair<bool, uint64_t> BufferManager::page_in_fifo_queue(uint64_t page_id) {
{
std::lock_guard<std::mutex> fifo_guard(fifo_mutex_);
std::lock_guard<std::mutex> lru_guard(lru_mutex_);
bool found_page = false;
uint64_t page_frame_id = INVALID_FRAME_ID;
for (size_t i = 0; i < fifo_queue_.size(); i++) {
auto frame_id = fifo_queue_[i];
if (pool_[frame_id]->page_id == page_id) {
found_page = true;
page_frame_id = frame_id;
fifo_queue_.erase(fifo_queue_.begin() + i);
lru_queue_.push_back(frame_id);
break;

}
}
return std::make_pair(found_page, page_frame_id);

}
}



63 / 64

Buffer Management 2Q Buffer Replacement Policy

Conclusion

• Thread-safety is an important required with modern multi-core processors
• We maximize concurrency in the buffer manager by:

▶ Holding latches as short as possible
▶ Not holding latches while doing I/O operations
▶ Distinguishing between shared and exclusive requests

• In the next lecture, we will learn about compression.



64 / 64

Buffer Management 2Q Buffer Replacement Policy

References I


	Buffer Management
	Recap – Buffer Management
	Buffer Manager Implementation
	Thread Safety
	2Q Buffer Replacement Policy

	References

