Lecture 9: Compression

Compression

];{(3(:2113

2/52

Recap - Buffer Management
Thread Safety

e A piece of code is thread-safe if it functions correctly during simultaneous execution
by multiple threads.

e In particular, it must satisfy the need for multiple threads to access the same shared
data (shared access), and

e the need for a shared piece of data to be accessed by only one thread at any given time
(exclusive access)

Recap - Buffer Management
2Q Policy

Maintain two queues (FIFO and LRU)
e Some pages are accessed only once (e.g., sequential scan)
e Some pages are hot and accessed frequently
e Maintain separate lists for those pages

e Scan resistant policy

1. Maintain all pages in FIFO queue
2. When a page that is currently in FIFO is referenced again, upgrade it to the LRU queue
3. Prefer evicting pages from FIFO queue

Hot pages are in LRU, read-once pages in FIFO.

Recap - Buffer Management
Today’s Agenda

e Compression Background

Naive Compression

OLAP Columnar Compression

Dictionary Compression

(@ aia 5 Compression Background

Compression Background

Observation

e /O is the main bottleneck if the DBMS has to fetch data from disk
e Database compression will reduce the number of pages

> So, fewer /O operations (lower disk bandwith consumption)
> But, may need to decompress data (CPU overhead)

Observation

Key trade-off is decompression speed vs. compression ratio

e Disk-centric DBMS tend to optimize for compression ratio
e In-memory DBMSs tend to optimize for decompression speed. Why?
e Database compression reduces DRAM footprint and bandwidth consumption.

Compression Background
Real-World Data Characteristics

. Zipf plot for Brown corpus tokens

e Data sets tend to have highly skewed
distributions for attribute values.
> Example: Zipfian distribution of the Brown
Corpus

Absolute frequency of token

one
10° 10 10 10° 10* 10°
Frequency rank of token

https://en.wikipedia.org/wiki/Brown_Corpus
https://en.wikipedia.org/wiki/Brown_Corpus

Compression Background
Real-World Data Characteristics

¢ Data sets tend to have high correlation between attributes of the same tuple.
> Example: Zip Code to City, Order Date to Ship Date

Database Compression

e Goal 1: Must produce fixed-length values.
> Only exception is var-length data stored in separate pool.

e Goal 2: Postpone decompression for as long as possible during query execution.
> Also known as late materialization.

e Goal 3: Must be a lossless scheme.

Lossless vs. Lossy Compression

e When a DBMS uses compression, it is always lossless because people don’t like losing
data.

e Any kind of lossy compression is has to be performed at the application level.

e Reading less than the entire data set during query execution is sort of like of
compression. . .

Compression Background
Data Skipping

e Approach 1: Approximate Queries (Lossy)

> Execute queries on a sampled subset of the entire table to produce approximate results.
> Examples: BlinkDB, Oracle

e Approach 2: Zone Maps (Lossless)

> Pre-compute columnar aggregations per block that allow the DBMS to check whether
queries need to access it.
> Examples: Oracle, Vertica, MemSQL, Netezza

http://blinkdb.org/
https://oracle-base.com/articles/12c/approximate-query-processing-12cr2
https://docs.oracle.com/database/121/DWHSG/zone_maps.htm
http://www.dbms2.com/2006/09/20/netezza-vs-conventional-data-warehousing-rdbms/

Zone Maps
Original Data Zone Map
e Pre-computed aggregates for blocks of data. - _
00
e DBMS can check the zone map first to decide) » T
whether it wants to access the block. -2 SE 1

SELECT *
FROM table
WHERE val > 600;

Observation

e If we want to compress data, the first question is what data do want to compress.

e This determines what compression schemes are available to us

Compression Granularity

Choice 1: Block-level

> Compress a block of tuples of the same table.
Choice 2: Tuple-level

> Compress the contents of the entire tuple (NSM-only).
Choice 3: Value-level

> Compress a single attribute value within one tuple.
> Can target multiple attribute values within the same tuple.

Choice 4: Column-level

> Compress multiple values for one or more attributes stored for multiple tuples
(DSM-only).

(@i 5T Naive Compression

Naive Compression

Naive Compression

Compress data using a general-purpose algorithm.

Scope of compression is only based on the type of data provided as input.

Encoding uses a dictionary of commonly used words
> LZ4 (2011)
> Brotli (2013)
> Zstd (2015)
Consideration
> Compression vs. decompression speed.

https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)
https://en.wikipedia.org/wiki/Brotli
https://en.wikipedia.org/wiki/Zstandard

Naive Compression

e Choice 1: Entropy Encoding

> More common sequences use less bits to encode, less common sequences use more bits to
encode.

e Choice 2: Dictionary Encoding

> Build a data structure that maps data segments to an identifier.
> Replace the segment in the original data with a reference to the segment’s position in the
dictionary data structure.

(@i 5T Naive Compression

Case Study: MySQL InnoDB Compression

Buffer Pool Disk Pages
R mod log
Compressed-page0: Compressed page0 }[1121418] KB
mod log
16 KB Uncompressed Compressed pagel
page0
mod log

Compressed page2

Naive Compression

e The DBMS must decompress data first before it can be read and (potentially) modified.
» This limits the “complexity” of the compression scheme.

e These schemes also do not consider the high-level meaning or semantics of the data.

Observation

e We can perform exact-match comparisons and natural joins on compressed data if
predicates and data are compressed the same way.

> Range predicates are trickier. ..

SELECT * SELECT *
FROM Artists FROM Artists
WHERE name = 'Mozart' WHERE name = 1
Artist Year Artist Year
Original Table \fozart 1756 Compressed Table 1 1756

Beethoven 1770 2 1770

(@1 BT Columnar Compression

Columnar Compression

Columnar Compression

e Null Suppression

e Run-length Encoding
e Bitmap Encoding

e Delta Encoding

e Incremental Encoding
e Mostly Encoding

e Dictionary Encoding

Columnar Compression
Null Suppression

e Consecutive zeros or blanks in the data are replaced with a description of how many
there were and where they existed.

> Example: Oracle’s Byte-Aligned Bitmap Codes (BBC)
e Useful in wide tables with sparse data.
e Reference: Database Compression (SIGMOD Record, 1993)

http://dl.acm.org/citation.cfm?id=163096

Columnar Compression
Run-length Encoding

e Compress runs of the same value in a single column into triplets:

» The value of the attribute.
> The start position in the column segment.
» The number of elements in the run.

e Requires the columns to be sorted intelligently to maximize compression opportunities.
e Reference: Database Compression (SIGMOD Record, 1993)

http://dl.acm.org/citation.cfm?id=163096

(@1 BT Columnar Compression

Run-length Encoding

Original Data

.
o
1%
o
x

»

Wl |V |o|~|lw] N |—
I

SELECT sex, COUNT(*)
FROM users
GROUP BY sex

Compressed Data

(M,0,3)

(F,3,1)

M,4,1)

(F,5,1)

(M,6,2)

O | |IN|Oo|~|lw]N

RLE Triplet
- Value

- Offset
- Length

(@1 BT Columnar Compression

Run-length Encoding

Original Data Compressed Data
1 M (M,0,3)
2 M 2 (F,3,1)
3 M 3 M, 4,1)
4 F 4 (F,5,1)
6 M 6 (M,6,2)
! s 7__| RLETriplet
8 M 8 - Value
9 M 9 | -Offset

- Length

Columnar Comression
Bitmap Encoding

e Store a separate bitmap for each unique value for an attribute where each bit in the
bitmap corresponds to the value of the attribute in a tuple.

» The i'" position in the bitmap corresponds to the i'" tuple in the table.
> Typically segmented into chunks to avoid allocating large blocks of contiguous memory.

[]
e Only practical if the cardinality of the attribute is small.
e Reference: MODEL 204 architecture and performance (HPTS, 1987)

http://dx.doi.org/10.1007/3-540-51085-0_42

(@1 BT Columnar Compression

Bitmap Encoding

Original Data Compressed Data
sex) —
n| - T
1 M " 1 |[2]|e]
2 M 2 L i
3 M 3 i i
4 F 9 x 8-bits = 4 |lel[1 9 x 2-bits =
6 M 72 bits s [zlle] 18 bits
7 F 7 E I
8 M 8 1(|e
9 v, s |[1][e] J

Columnar Compression
Bitmap Encoding: Analysis

CREATE TABLE customer_dim (e Assume we have 10 million tuples.

id INT PRIMARY KEY, ¢ 43,000 zip codes in the US.

name VARCHAR(32), > 10000000 x 32-bits = 40 MB

email VARCHAR(64), —
address VARCHAR(64) . > 10000000 x 43000 = 53.75 GB

zip_code INT e Every time a txn inserts a new tuple, the DBMS
must extend 43,000 different bitmaps.

Bitmap Encoding: Compression

e Approach 1: General Purpose Compression

> Use standard compression algorithms (e.g., LZ4, Snappy).
> The DBMS must decompress before it can use the data to process a query.
> Not useful for in-memory DBMSs.

e Approach 2: Byte-aligned Bitmap Codes

> Structured run-length encoding compression.

Columnar Compression
Case Study: Oracle Byte-Aligned Bitmap Codes

e Divide bitmap into chunks that contain different categories of bytes:
> Gap Byte: All the bits are Os.
> Tail Byte: Some bits are 1s.
e Encode each chunk that consists of some Gap Bytes followed by some Tail Bytes.

> Gap Bytes are compressed with run-length encoding.
> Tail Bytes are stored uncompressed unless it consists of only 1-byte or has only one
non-zero bit.

e Reference: Byte-aligned bitmap compression (Data Compression Conference, 1995)

http://dx.doi.org/10.1109/DCC.1995.515586

Columnar Compression

Case Study: Oracle Byte-Aligned Bitmap Codes

Bitmap

00000000 00000000 00010000
00000000 00000000 0000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 (01000000 ©0100010|

Compressed Bitmap

Bitmap Gap Bytes Tail Bytes

00000000 00000000 0000000
00000000 00000000 0000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 01000000 00100010

Compressed Bitmap

20000000 00000000 00010000)|#1

#2

Columnar Compression
Case Study: Oracle Byte-Aligned Bitmap Codes

Bitmap

(00000000

00000000

00010000|#1

00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
01000000

Compressed Bitmap
#1 (010) (1) (0100
(e10) (1) (0100)

00000000
00000000
00000000
00000000
00100010

Chunk 1 (Bytes 1-3)
Header Byte:
> Number of Gap Bytes (Bits 1-3)
> Is the tail special? (Bit 4)
> Number of verbatim bytes (if Bit 4=0)
> Index of 1 bit in tail byte (if Bit 4=1)
No gap length bytes since gap length <
7

No verbatim bytes since tail is special.

Columnar Compression
Case Study: Oracle Byte-Aligned Bitmap Codes

Bitmap bunk
00000000 0000EAR0 0EA10000 Chunk 2 (Bytes 4-18)
00000000 00000000 00000000 Header Byte:

00000000 0000EP0D ©OPERPOD > 13 gap bytes, two tail bytes

00000000 0P0000OO ©00ORO0|#2 > of gaps is > 7, so have to use extra
00000000 00000000 00000000 byte

00000000 01000000 00100010

Compressed Bitmap
#1 (010) (1) (0100) ¢ One gap length byte gives gap length
#2 (111)(0) (0010) 00001101 =13

01000000 00100010

Two verbatim bytes for tail.
e Original Data: 18 bytes
e Compressed Data: 5 bytes.

Observation

e Oracle’s BBC is an obsolete format.
> Although it provides good compression, it is slower than recent alternatives due to
excessive branching.
> Word-Aligned Hybrid (WAH) encoding is a patented variation on BBC that provides
better performance.
e None of these support random access to a given value.

> If you want to check whether a given value is present, you must start from the beginning
and decompress the whole thing.

https://sdm.lbl.gov/fastbit/compression.html

Columnar Compression
Delta Encoding

e Recording the difference between values that follow each other in the same column.

> Store base value in-line or in a separate look-up table.
> Combine with RLE to get even better compression ratios.

Original Data Compressed Data Compressed Data
12:00 |]99.5 12:00 | [99.5 12:00 | [99.5
12:01 | [99.4 +1 0.1 [0][00
12:02 | [99.5 +1 +0.1 0.1
12:03 | [99.6 +1 0.1 0.1
12:04 | [99.4 1 0.2 -0.2

5 x 32-bits 32-bits + (4 x 16-bits) 32-bits + (2 x 16-bits)

=160 bits = 96 bits = 64 bits

Incremental Encoding

e Variant of delta encoding that avoids duplicating common prefixes/suffixes between
consecutive tuples.

e This works best with sorted data.

Original Data Common Prefix Compressed Data
3 x 8-bits = 24 bits rob - 0| rob 3 x 8-bits = 24 bits
6 x 8-bits = 48 bits robbed » rob » 3| bed 3 x 8-bits = 24 bits
7 x 8-bits = 56 bits robbing robb 4| ing 3 x 8-bits = 24 bits
5 x 8-bits = 40 bits robot rob 3| ot 2 x 8-bits = 16 bits
=168 bits A = 88 bits

Prefix ;
Len'gth Suffix

Columnar Compression
Mostly Encoding

e When values for an attribute are mostly less than the largest possible size for that
attribute’s data type, store them with a more compact data type.

> The remaining values that cannot be compressed are stored in their raw form.
> Reference: Amazon Redshift Documentation

Original Data Compressed Data
_ t64 tl 8 offset value .
5 x 64-bits = 2 e 3 99999999 (156Xb8-bltsé4+b
. 4 4 -bits + 64-bi
320 bits 999969999 x:x — IZlotsbils s
8 8

http://docs.aws.amazon.com/redshift/latest/dg/c_MostlyN_encoding.html

(@050 Dictionary Compression

Dictionary Compression

Dictionary Compression

Probably the most useful compression scheme because it does not require pre-sorting.

Replace frequent patterns with smaller codes.

Most pervasive compression scheme in DBMSs.

Need to support fast encoding and decoding.

Need to also support range queries.

Dictionary Compression: Design Decisions

When to construct the dictionary?

What is the scope of the dictionary?

What data structure do we use for the dictionary?

What encoding scheme to use for the dictionary?

Dictionary Construction

e Choice 1: All-At-Once Construction

> Compute the dictionary for all the tuples at a given point of time.

> New tuples must use a separate dictionary, or the all tuples must be recomputed.
e Choice 2: Incremental Construction

> Merge new tuples in with an existing dictionary.
> Likely requires re-encoding to existing tuples.

Dictionary Scope

e Choice 1: Block-level

> Only include a subset of tuples within a single table.

> Potentially lower compression ratio but can add new tuples more easily. Why?
e Choice 2: Table-level

> Construct a dictionary for the entire table.
> Better compression ratio, but expensive to update.

e Choice 3: Multi-Table

> Can be either subset or entire tables.
> Sometimes helps with joins and set operations.

Dictionary Compression
Multi-Attribute Encoding

e Instead of storing a single value per dictionary entry, store entries that span attributes.
> I'm not sure any DBMS implements this.

Original Data Compressed Data
vall vall val2 code
C 101 77
B 101 YY
A 202 XX
C 101 7z
B 101 YY

Doy Gomtyression
Encoding / Decoding

e A dictionary needs to support two operations:

> Encode: For a given uncompressed value, convert it into its compressed form.
> Decode: For a given compressed value, convert it back into its original form.

e No magic hash function will do this for us.

Order-Preserving Encoding

e The encoded values need to support sorting in the same order as original values.

SELECT * SELECT *
FROM Artists FROM Artists
WHERE name LIKE 'M%' WHERE name BETWEEN 10 AND 20
Original Table Mozart 1756 Compressed Table 10 1756
Max Bruch 1838 20 1838

Beethoven 1770 30 1770

(@050 Dictionary Compression

Order-Preserving Encoding

SELECT Artist
FROM Artists
WHERE name LIKE 'M%'

SELECT DISTINCT Artist
FROM Artists
WHERE name LIKE 'M%'

-- Must still perform sequential scan

- 77

Dictionary Data Structures

e Choice 1: Array
> One array of variable length strings and another array with pointers that maps to string
offsets.
> Expensive to update.

e Choice 2: Hash Table

> Fast and compact.
> Unable to support range and prefix queries.

e Choice 3: B+Tree

> Slower than a hash table and takes more memory.
> Can support range and prefix queries.

Conclusion

Dictionary encoding is probably the most useful compression scheme because it does
not require pre-sorting.

The DBMS can combine different approaches for even better compression.

The DBMS can combine different approaches for even better compression.

In the next lecture, we will learn about larger-than-memory databases.

References 1

A

52/52

	Compression
	Recap – Buffer Management
	Compression Background
	Naïve Compression
	Columnar Compression
	Dictionary Compression

	References

