
1 / 52

Compression

Lecture 9: Compression



2 / 52

Compression Recap – Buffer Management

Recap



3 / 52

Compression Recap – Buffer Management

Thread Safety

• A piece of code is thread-safe if it functions correctly during simultaneous execution
by multiple threads.

• In particular, it must satisfy the need for multiple threads to access the same shared
data (shared access), and

• the need for a shared piece of data to be accessed by only one thread at any given time
(exclusive access)



4 / 52

Compression Recap – Buffer Management

2Q Policy

Maintain two queues (FIFO and LRU)
• Some pages are accessed only once (e.g., sequential scan)
• Some pages are hot and accessed frequently
• Maintain separate lists for those pages
• Scan resistant policy

1. Maintain all pages in FIFO queue
2. When a page that is currently in FIFO is referenced again, upgrade it to the LRU queue
3. Prefer evicting pages from FIFO queue

Hot pages are in LRU, read-once pages in FIFO.



5 / 52

Compression Recap – Buffer Management

Today’s Agenda

• Compression Background
• Naïve Compression
• OLAP Columnar Compression
• Dictionary Compression



6 / 52

Compression Compression Background

Compression Background



7 / 52

Compression Compression Background

Observation

• I/O is the main bottleneck if the DBMS has to fetch data from disk
• Database compression will reduce the number of pages

▶ So, fewer I/O operations (lower disk bandwith consumption)
▶ But, may need to decompress data (CPU overhead)



8 / 52

Compression Compression Background

Observation

Key trade-off is decompression speed vs. compression ratio

• Disk-centric DBMS tend to optimize for compression ratio
• In-memory DBMSs tend to optimize for decompression speed. Why?
• Database compression reduces DRAM footprint and bandwidth consumption.



9 / 52

Compression Compression Background

Real-World Data Characteristics

• Data sets tend to have highly skewed
distributions for attribute values.
▶ Example: Zipfian distribution of the Brown

Corpus

https://en.wikipedia.org/wiki/Brown_Corpus
https://en.wikipedia.org/wiki/Brown_Corpus


10 / 52

Compression Compression Background

Real-World Data Characteristics

• Data sets tend to have high correlation between attributes of the same tuple.
▶ Example: Zip Code to City, Order Date to Ship Date



11 / 52

Compression Compression Background

Database Compression

• Goal 1: Must produce fixed-length values.
▶ Only exception is var-length data stored in separate pool.

• Goal 2: Postpone decompression for as long as possible during query execution.
▶ Also known as late materialization.

• Goal 3: Must be a lossless scheme.



12 / 52

Compression Compression Background

Lossless vs. Lossy Compression

• When a DBMS uses compression, it is always lossless because people don’t like losing
data.

• Any kind of lossy compression is has to be performed at the application level.
• Reading less than the entire data set during query execution is sort of like of

compression. . .



13 / 52

Compression Compression Background

Data Skipping

• Approach 1: Approximate Queries (Lossy)
▶ Execute queries on a sampled subset of the entire table to produce approximate results.
▶ Examples: BlinkDB, Oracle

• Approach 2: Zone Maps (Lossless)
▶ Pre-compute columnar aggregations per block that allow the DBMS to check whether

queries need to access it.
▶ Examples: Oracle, Vertica, MemSQL, Netezza

http://blinkdb.org/
https://oracle-base.com/articles/12c/approximate-query-processing-12cr2
https://docs.oracle.com/database/121/DWHSG/zone_maps.htm
http://www.dbms2.com/2006/09/20/netezza-vs-conventional-data-warehousing-rdbms/


14 / 52

Compression Compression Background

Zone Maps

• Pre-computed aggregates for blocks of data.
• DBMS can check the zone map first to decide

whether it wants to access the block.

SELECT *
FROM table
WHERE val > 600;



15 / 52

Compression Compression Background

Observation

• If we want to compress data, the first question is what data do want to compress.
• This determines what compression schemes are available to us



16 / 52

Compression Compression Background

Compression Granularity

• Choice 1: Block-level
▶ Compress a block of tuples of the same table.

• Choice 2: Tuple-level
▶ Compress the contents of the entire tuple (NSM-only).

• Choice 3: Value-level
▶ Compress a single attribute value within one tuple.
▶ Can target multiple attribute values within the same tuple.

• Choice 4: Column-level
▶ Compress multiple values for one or more attributes stored for multiple tuples

(DSM-only).



17 / 52

Compression Naïve Compression

Naïve Compression



18 / 52

Compression Naïve Compression

Naïve Compression

• Compress data using a general-purpose algorithm.
• Scope of compression is only based on the type of data provided as input.
• Encoding uses a dictionary of commonly used words

▶ LZ4 (2011)
▶ Brotli (2013)
▶ Zstd (2015)

• Consideration
▶ Compression vs. decompression speed.

https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)
https://en.wikipedia.org/wiki/Brotli
https://en.wikipedia.org/wiki/Zstandard


19 / 52

Compression Naïve Compression

Naïve Compression

• Choice 1: Entropy Encoding
▶ More common sequences use less bits to encode, less common sequences use more bits to

encode.
• Choice 2: Dictionary Encoding

▶ Build a data structure that maps data segments to an identifier.
▶ Replace the segment in the original data with a reference to the segment’s position in the

dictionary data structure.



20 / 52

Compression Naïve Compression

Case Study: MySQL InnoDB Compression



21 / 52

Compression Naïve Compression

Naïve Compression

• The DBMS must decompress data first before it can be read and (potentially) modified.
▶ This limits the “complexity” of the compression scheme.

• These schemes also do not consider the high-level meaning or semantics of the data.



22 / 52

Compression Naïve Compression

Observation

• We can perform exact-match comparisons and natural joins on compressed data if
predicates and data are compressed the same way.
▶ Range predicates are trickier. . .

SELECT *
FROM Artists
WHERE name = 'Mozart'

Original Table
Artist Year

Mozart 1756
Beethoven 1770

SELECT *
FROM Artists
WHERE name = 1

Compressed Table
Artist Year

1 1756
2 1770



23 / 52

Compression Columnar Compression

Columnar Compression



24 / 52

Compression Columnar Compression

Columnar Compression

• Null Suppression
• Run-length Encoding
• Bitmap Encoding
• Delta Encoding
• Incremental Encoding
• Mostly Encoding
• Dictionary Encoding



25 / 52

Compression Columnar Compression

Null Suppression

• Consecutive zeros or blanks in the data are replaced with a description of how many
there were and where they existed.
▶ Example: Oracle’s Byte-Aligned Bitmap Codes (BBC)

• Useful in wide tables with sparse data.
• Reference: Database Compression (SIGMOD Record, 1993)

http://dl.acm.org/citation.cfm?id=163096


26 / 52

Compression Columnar Compression

Run-length Encoding

• Compress runs of the same value in a single column into triplets:
▶ The value of the attribute.
▶ The start position in the column segment.
▶ The number of elements in the run.

• Requires the columns to be sorted intelligently to maximize compression opportunities.
• Reference: Database Compression (SIGMOD Record, 1993)

http://dl.acm.org/citation.cfm?id=163096


27 / 52

Compression Columnar Compression

Run-length Encoding

SELECT sex, COUNT(*)
FROM users
GROUP BY sex



28 / 52

Compression Columnar Compression

Run-length Encoding



29 / 52

Compression Columnar Compression

Bitmap Encoding

• Store a separate bitmap for each unique value for an attribute where each bit in the
bitmap corresponds to the value of the attribute in a tuple.
▶ The ith position in the bitmap corresponds to the ith tuple in the table.
▶ Typically segmented into chunks to avoid allocating large blocks of contiguous memory.

•

• Only practical if the cardinality of the attribute is small.
• Reference: MODEL 204 architecture and performance (HPTS, 1987)

http://dx.doi.org/10.1007/3-540-51085-0_42


30 / 52

Compression Columnar Compression

Bitmap Encoding



31 / 52

Compression Columnar Compression

Bitmap Encoding: Analysis

CREATE TABLE customer_dim (
id INT PRIMARY KEY,
name VARCHAR(32),
email VARCHAR(64),
address VARCHAR(64),
zip_code INT

);

• Assume we have 10 million tuples.
• 43,000 zip codes in the US.

▶ 10000000 × 32-bits = 40 MB
▶ 10000000 × 43000 = 53.75 GB

• Every time a txn inserts a new tuple, the DBMS
must extend 43,000 different bitmaps.



32 / 52

Compression Columnar Compression

Bitmap Encoding: Compression

• Approach 1: General Purpose Compression
▶ Use standard compression algorithms (e.g., LZ4, Snappy).
▶ The DBMS must decompress before it can use the data to process a query.
▶ Not useful for in-memory DBMSs.

• Approach 2: Byte-aligned Bitmap Codes
▶ Structured run-length encoding compression.



33 / 52

Compression Columnar Compression

Case Study: Oracle Byte-Aligned Bitmap Codes

• Divide bitmap into chunks that contain different categories of bytes:
▶ Gap Byte: All the bits are 0s.
▶ Tail Byte: Some bits are 1s.

• Encode each chunk that consists of some Gap Bytes followed by some Tail Bytes.
▶ Gap Bytes are compressed with run-length encoding.
▶ Tail Bytes are stored uncompressed unless it consists of only 1-byte or has only one

non-zero bit.

• Reference: Byte-aligned bitmap compression (Data Compression Conference, 1995)

http://dx.doi.org/10.1109/DCC.1995.515586


34 / 52

Compression Columnar Compression

Case Study: Oracle Byte-Aligned Bitmap Codes



35 / 52

Compression Columnar Compression

Case Study: Oracle Byte-Aligned Bitmap Codes

• Chunk 1 (Bytes 1-3)
• Header Byte:

▶ Number of Gap Bytes (Bits 1-3)
▶ Is the tail special? (Bit 4)
▶ Number of verbatim bytes (if Bit 4=0)
▶ Index of 1 bit in tail byte (if Bit 4=1)

• No gap length bytes since gap length <
7

• No verbatim bytes since tail is special.



36 / 52

Compression Columnar Compression

Case Study: Oracle Byte-Aligned Bitmap Codes

• Chunk 2 (Bytes 4-18)
• Header Byte:

▶ 13 gap bytes, two tail bytes
▶ of gaps is > 7, so have to use extra

byte

•

• One gap length byte gives gap length
= 13

• Two verbatim bytes for tail.

• Original Data: 18 bytes
• Compressed Data: 5 bytes.



37 / 52

Compression Columnar Compression

Observation

• Oracle’s BBC is an obsolete format.
▶ Although it provides good compression, it is slower than recent alternatives due to

excessive branching.
▶ Word-Aligned Hybrid (WAH) encoding is a patented variation on BBC that provides

better performance.
• None of these support random access to a given value.

▶ If you want to check whether a given value is present, you must start from the beginning
and decompress the whole thing.

https://sdm.lbl.gov/fastbit/compression.html


38 / 52

Compression Columnar Compression

Delta Encoding

• Recording the difference between values that follow each other in the same column.
▶ Store base value in-line or in a separate look-up table.
▶ Combine with RLE to get even better compression ratios.



39 / 52

Compression Columnar Compression

Incremental Encoding

• Variant of delta encoding that avoids duplicating common prefixes/suffixes between
consecutive tuples.

• This works best with sorted data.



40 / 52

Compression Columnar Compression

Mostly Encoding

• When values for an attribute are mostly less than the largest possible size for that
attribute’s data type, store them with a more compact data type.
▶ The remaining values that cannot be compressed are stored in their raw form.
▶ Reference: Amazon Redshift Documentation

http://docs.aws.amazon.com/redshift/latest/dg/c_MostlyN_encoding.html


41 / 52

Compression Dictionary Compression

Dictionary Compression



42 / 52

Compression Dictionary Compression

Dictionary Compression

• Probably the most useful compression scheme because it does not require pre-sorting.
• Replace frequent patterns with smaller codes.
• Most pervasive compression scheme in DBMSs.
• Need to support fast encoding and decoding.
• Need to also support range queries.



43 / 52

Compression Dictionary Compression

Dictionary Compression: Design Decisions

• When to construct the dictionary?
• What is the scope of the dictionary?
• What data structure do we use for the dictionary?
• What encoding scheme to use for the dictionary?



44 / 52

Compression Dictionary Compression

Dictionary Construction

• Choice 1: All-At-Once Construction
▶ Compute the dictionary for all the tuples at a given point of time.
▶ New tuples must use a separate dictionary, or the all tuples must be recomputed.

• Choice 2: Incremental Construction
▶ Merge new tuples in with an existing dictionary.
▶ Likely requires re-encoding to existing tuples.



45 / 52

Compression Dictionary Compression

Dictionary Scope

• Choice 1: Block-level
▶ Only include a subset of tuples within a single table.
▶ Potentially lower compression ratio but can add new tuples more easily. Why?

• Choice 2: Table-level
▶ Construct a dictionary for the entire table.
▶ Better compression ratio, but expensive to update.

• Choice 3: Multi-Table
▶ Can be either subset or entire tables.
▶ Sometimes helps with joins and set operations.



46 / 52

Compression Dictionary Compression

Multi-Attribute Encoding

• Instead of storing a single value per dictionary entry, store entries that span attributes.
▶ I’m not sure any DBMS implements this.



47 / 52

Compression Dictionary Compression

Encoding / Decoding

• A dictionary needs to support two operations:
▶ Encode: For a given uncompressed value, convert it into its compressed form.
▶ Decode: For a given compressed value, convert it back into its original form.

• No magic hash function will do this for us.



48 / 52

Compression Dictionary Compression

Order-Preserving Encoding

• The encoded values need to support sorting in the same order as original values.

SELECT *
FROM Artists
WHERE name LIKE 'M%'

Original Table

Artist Year

Mozart 1756
Max Bruch 1838
Beethoven 1770

SELECT *
FROM Artists
WHERE name BETWEEN 10 AND 20

Compressed Table

Artist Year

10 1756
20 1838
30 1770



49 / 52

Compression Dictionary Compression

Order-Preserving Encoding

SELECT Artist
FROM Artists
WHERE name LIKE 'M%' -- Must still perform sequential scan

SELECT DISTINCT Artist
FROM Artists
WHERE name LIKE 'M%' -- ??



50 / 52

Compression Dictionary Compression

Dictionary Data Structures

• Choice 1: Array
▶ One array of variable length strings and another array with pointers that maps to string

offsets.
▶ Expensive to update.

• Choice 2: Hash Table
▶ Fast and compact.
▶ Unable to support range and prefix queries.

• Choice 3: B+Tree
▶ Slower than a hash table and takes more memory.
▶ Can support range and prefix queries.



51 / 52

Compression Dictionary Compression

Conclusion

• Dictionary encoding is probably the most useful compression scheme because it does
not require pre-sorting.

• The DBMS can combine different approaches for even better compression.
• The DBMS can combine different approaches for even better compression.
• In the next lecture, we will learn about larger-than-memory databases.



52 / 52

Compression Dictionary Compression

References I


	Compression
	Recap – Buffer Management
	Compression Background
	Naïve Compression
	Columnar Compression
	Dictionary Compression

	References

