Larger-than-Memory Databases

Lecture 10: Larger-than-Memory Databases

Larger-than-Memory Databases

Recap

IRV SO S BV BN S0TO @DEIIEE I Recap — Compression

Naive Compression

e Choice 1: Entropy Encoding

> More common sequences use less bits to encode, less common sequences use more bits to
encode.

e Choice 2: Dictionary Encoding

> Build a data structure that maps data segments to an identifier.
> Replace the segment in the original data with a reference to the segment’s position in the
dictionary data structure.

IRV SO S BV BN S0TO @DEIIEE I Recap — Compression

Columnar Compression

e Null Suppression

e Run-length Encoding
e Bitmap Encoding

e Delta Encoding

e Incremental Encoding
e Mostly Encoding

e Dictionary Encoding

Today’s Agenda

e Background
e Design Decisions

e Case Studies

Larger-than-Memory Databases

Recap — Compression

Larger-than-Memory Databases [:EldS:avelen e

Background

Larger-than-Memory Databases BREENI 4ol

Observation

e DRAM is expensive (roughly $10 per GB)

> Expensive to buy.
> Expensive to maintain (e.g., energy associated with refreshing DRAM state).

e SSDis 50 x cheaper than DRAM (roughly $0.2 per GB)

e It would be nice if an in-memory DBMS could use cheaper storage without having to
bring in the entire baggage of a disk-oriented DBMS.

Background
Larger-than-Memory Databases

e Allow an in-memory DBMS to store/access data on disk without bringing back all the
slow parts of a disk-oriented DBMS.
> Minimize the changes that we make to the DBMS that are required to deal with
disk-resident data.
> It is better to have only the buffer manager deal with moving data around
> Rest of the DBMS can assume that data is in DRAM.

e Need to be aware of hardware access methods

> In-memory Access = Tuple-Oriented. Why?
> Disk Access = Block-Oriented.

Larger-than-Memory Databases [:EldS:avelen e

OLAP

e OLAP queries generally access the
entire table.

e Thus, an in-memory DBMS may Zone Map (A)
. . MIN=## COUNT=##
handle OLAP queries in the same a WOH Ak
. . SUM=H## STDEV=#i##
disk-oriented DBMS does.

e All the optimizations in a disk-oriented
DBMS apply here (e.g., scan sharing,
buffer pool bypass).

Larger-than-Memory Databases BREENI 4ol

OLTP

e OLTP workloads almost always have hot and cold portions of the database.
> We can assume txns will almost always access hot tuples.

e Goal: The DBMS needs a mechanism to move cold data out to disk and then retrieve it
if it is ever needed again.

Larger-than-Memory Databases

Larger-than-Memory Databases

In-Memory In-Memory Cold-Data
Index Table Heap Storage
ll

11/53

Larger-than-Memory Databases

Larger-than-Memory Databases

In-Memory
Index

In-Memory
Table Heap

Tuple #00

Tuple #02

Cold-Data
Storage

3
header

Tuple #01
Tuple #03
Tuple #04

3pojg apdn | pawrag

A

12 /53

Larger-than-Memory Databases

Larger-than-Memory Databases

In-Memory
Index

In-Memory
Table Heap

Tuple #00

Tuple #02

Cold-Data
Storage

3
header

Tuple #01

Tuple #03

Tuple #04

3pojg adn | paviag

13/53

Larger-than-Memory Databases

Larger-than-Memory Databases

In-Memory In-Memory Cold-Data
Index Table Heap Storage -
2?2 { s
?2? Tikett ||~
« Tuple #03 '§_
Tilewtt ||
g

SELECT *
FROM table
WHERE id = <Tuple 01>

Do 14 /53

JIEWEOSERBY SOOADEELERI Design Decisions

Design Decisions

Larger-than-Memory Databases BEBESEGNBEEb1E]

Design Decisions

e Run-time Operation

» Cold Data Identification: When the DBMS runs out of DRAM space, what data should we
evict?

e Eviction Policies
> Timing: When to evict data?
> Evicted Tuple Metadata: During eviction, what meta-data should we keep in DRAM to
track disk-resident data and avoid false negatives?

e Data Retrieval Policies

> Granularity: When we need data, how much should we bring in?
> Merging: Where to put the retrieved data?

Reference

https://hstore.cs.brown.edu/slides/hstore-damon16-ltm.pdf

Larger-than-Memory Databases BEBESEGNBEEb1E]

Cold Data Identification

e Choice 1: On-line
» The DBMS monitors txn access patterns and tracks how often tuples/pages are used.
> Embed the tracking meta-data directly in tuples/pages.

e Choice 2: Off-line

> Maintain a tuple access log during txn execution.
> Process in background to compute frequencies.

Larger-than-Memory Databases BEBESEGNBEEb1E]

Eviction Timing

e Choice 1: Threshold
> The DBMS monitors memory usage and begins evicting tuples when it reaches a
threshold.
» The DBMS must manually move data.
e Choice 2: On Demand

» The DBMS/OS runs a replacement policy to decide when to evict data to free space for
new data that is needed.

Design Decisions
Evicted Tuple Metadata

Choice 1: Tuple Tombstones

> Leave a marker that points to the on-disk tuple.
> Update indexes to point to the tombstone tuples.

Choice 2: Bloom Filters

> Use an in-memory, approximate data structure for each index.
> Only tells us whether tuple exists or not (with potential false positives)
» Check on-disk index to find actual location

Choice 3: DBMS Managed Pages
> DBMS tracks what data is in memory vs. on disk.
Choice 4: OS Virtual Memory

> OS tracks what data is on in memory vs. on disk.

Larger-than-Memory Databases

Evicted Tuple Metadata

In-Memory
Index

Access Frequency

Tuple #00 | I

[Tuple#0l [|
Tuple #02 | mE—

Tuple #03

B
uple #05 | I

In-Memory
Table Heap

Cold-Data

Storage

Tuple #01

Tuple #03

Tuple #04

20/53

Larger-than-Memory

Evicted Tuple Metadata

In-Memory
Index

Access Frequency

Databases

In-Memory
Table Heap

Tuple #00
Tuple #02

Cold-Data
Storage

Tuple #01

Tuple #03

Tuple #04

21/53

Larger-than-Memory Databases
Evicted Tuple Metadata

In-Memory In-Memory Cold-Data
Index Table Heap Storage

- Tuple #01

- Tuple #03

| Tuplesos

-| B <Block,Offset> 1
[B <Block,offser- |

_-| £ <Block,Offset> |

Do 22 /53

Larger-than-Memory Databases
Evicted Tuple Metadata

In-Memory In-Memory Cold-Data
Index Table Heap Storage
Tuple #01
Tuple #03
Tuples0d |
»Bloom Filter | Index
i /

Larger-than-Memory Databases BEBESEGNBEEb1E]

Data Retrieval Granularity

e Choice 1: All Tuples in Block

> Merge all the tuples retrieved from a block regardless of whether they are needed.
> More CPU overhead to update indexes.
> Tuples are likely to be evicted again.

e Choice 2: Only Tuples Needed

> Only merge the tuples that were accessed by a query back into the in-memory table heap.
> Requires additional bookkeeping to track holes.

Design Decisions
Merging Threshold

e Choice 1: Always Merge

> Retrieved tuples are always put into table heap.
e Choice 2: Merge Only on Update

> Retrieved tuples are only merged into table heap if they are used in an UPDATE statement.
> All other tuples are put in a temporary buffer.

e Choice 3: Selective Merge

> Keep track of how often each block is retrieved.
> If a block’s access frequency is above some threshold, merge it back into the table heap.

Larger-than-Memory Databases BEBESEGNBEEb1E]

Retrieval Mechanism

e Choice 1: Abort-and-Restart
> Abort the txn that accessed the evicted tuple.
> Retrieve the data from disk and merge it into memory with a separate background thread.
> Restart the txn when the data is ready.
> Requires MVCC to guarantee consistency for large txns that access data that does not fit in
memory.
e Choice 2: Synchronous Retrieval

> Stall the txn when it accesses an evicted tuple while the DBMS fetches the data and
merges it back into memory.

Larger-than-Memory Databases [M@EEISSTTe I

Case Studies

Larger-than-Memory Databases

Case Studies

e Tuple-Oriented Systems
> H-Store — Anti-Caching
> Hekaton — Project Siberia
> EPFL’s VoltDB Prototype
> Apache Geode — Overflow Tables

e Block-Oriented Systems

> LeanStore — Hierarchical Buffer Pool
> Umbra — Variable-length Buffer Pool
» MemSQL - Columnar Tables

Case Studies

Case Studies
H-Store — Anti-Caching

e Cold Tuple Identification: On-line Identification

e Eviction Timing: Administrator-defined Threshold

e Evicted Tuple Metadata: Tombstones

e Retrieval Mechanism: Abort-and-restart Retrieval

e Retrieval Granularity: Block-level Granularity

e Merging Threshold: Always Merge

e Reference

https://www.vldb.org/pvldb/vol6/p1942-debrabant.pdf

HEKATON - PROJECT SIBERIA

¢ Cold Tuple Identification: Off-line Identification
e Eviction Timing: Administrator-defined Threshold

e Evicted Tuple Metadata: Bloom Filters

e Retrieval Mechanism: Synchronous Retrieval

e Retrieval Granularity: Tuple-level Granularity

e Merging Threshold: Always Merge

e Reference

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/p1016-eldawy.pdf

EPFL VOLTDB

¢ Cold Tuple Identification: Off-line Identification
e Eviction Timing: OS Virtual Memory
e Evicted Tuple Metadata: N/A

e Retrieval Mechanism: Synchronous Retrieval

e Retrieval Granularity: Page-level Granularity

e Merging Threshold: Always Merge

e Reference

https://dl.acm.org/doi/10.1145/2485278.2485285

EPFL VOLTDB

Larger-than-Memory Databases

In-Memory Cold-Data
Table Heap Storage
nlock
X Hot Tuples
Cold Tuples

Do 32/53

EPFL VOLTDB

Larger-than-Memory Databases

In-Memor

y
Table Heap
mlock

Cold-Data
Storage
x Hot Tuples

Cold Tuples

Tuple #01

33/53

Larger-than-Memory Databases
EPFL VOLTDB

In-Memory Cold-Data
Table Heap Storage
nlock
x Hot Tuples
Cold Tuples »

Do 34/53

EPFL VOLTDB

Larger-than-Memory Databases

In-Memory

Table Heap
mlock

Cold-Data

Storage
X Hot Tuples

Tuple #03

Tuple #02

Cold Tuples

T]

TP UL »

35/53

EPFL VOLTDB

Larger-than-Memory Databases

In-Memory

Table Heap
mlock

Cold-Data

Storage
X Hot Tuples

Tuple #03

Tuple #02

Cold Tuples

T, la.uQ1.

WPy

Do 36 /53

APACHE GEODE - OVERFLOW TABLES

e Cold Tuple Identification: On-line Identification

e Eviction Timing: Administrator-defined Threshold
e Evicted Tuple Metadata: Tombstones (?)

e Retrieval Mechanism: Synchronous Retrieval

e Retrieval Granularity: Tuple-level Granularity
e Merging Threshold: Merge Only on Update (?)
e Reference

http://geode.docs.pivotal.io/docs/managing/disk_storage/how_disk_stores_work.html

Larger-than-Memory Databases B@ERSCIEEIE

Observation

e The systems that we have discussed so far are tuple-oriented.

» The DBMS must track meta-data about individual tuples.
> Does not reduce storage overhead of indexes.
> Indexes may occupy up to 60% of DRAM in an OLTP database.
e Goal: Need an unified way to evict cold data from both tables and indexes with low
overhead. ..

Larger-than-Memory Databases B@ERSCIEEIE

LeanStore

e In-memory storage manager from TUM that supports larger-than-memory databases.
> Handles both tuples + indexes
> Not part of the HyPer project.
e Hierarchical + Randomized Block Eviction
> Use pointer swizzling to determine whether a block is evicted or not.
> Instead of tracking when pages are accessed, randomly evict pages and then track
whether they ended up getting used.
> If yes, put it back in the hot space.
> If not, then evict it.

e Reference

https://db.in.tum.de/~leis/papers/leanstore.pdf

Larger-than-Memory Databases B@ERSCIEEIE

Pointer Swizzling

e Switch the contents of pointers based on whether the target object resides in memory
or on disk.
e Decentralized way to track whether a page is in memory or not.

e We track everything with 64-bit pointers, but currently only use 48-bits.

> Use first bit in address to tell what kind of address it is.
> Only works if there is only one pointer to the object.

Larger-than-Memory Databases
Pointer Swizzling

i

)<Pageld, Offset>

\‘ 64-bits
k-

41/53

Larger-than-Memory Databases
Pointer Swizzling

Bl — B2

(0)<MemoryAddr>

Kl oo

Do 42 /53

Case Studies
Replacement Strategy

e Randomly select blocks for eviction.
> Don’t have to maintain meta-data every time a txn accesses a hot block.
> Only track accesses for cold data, which should be rare if it is cold.
e Unswizzle their pointer but leave in memory.
> Add to a FIFO queue of blocks staged for eviction.
> If page is accessed again, remove from queue.
> Otherwise, evict pages when reaching front of queue.

Case Studies
Block Hierarchy

e Blocks are organized in a tree hierarchy.
> Each page has only one parent, which means that there is only a single pointer.
> No centralized page table (as is the case in a disk-oriented DBMS).
e The DBMS can only evict a block if its children are also evicted.
> This avoids the problem of evicting blocks that contain swizzled pointers
> Otherwise, these pointers are invalid because they will point to old locations in memory.
> If a block is selected but it has in-memory children, then it automatically switches to select
one of its children.

Larger-than-Memory Databases

Block Hierarchy

Unswizzled
Pointer =~~~ Bo
Swiz,"zle d F,T\ Hot Stage
Pointer —— = BI i B3
1
|
Hash Table E Cooling Stage
Eviction Q i
HEER ’
i
]
b
) 4 Cold Stage

Do 45/53

Larger-than-Memory Databases

\

Block Hierarchy
Unswizzled
Pointer ~—===" Bo
Swizzled r_,?\ Hot Stage
Pointer > » E B3
1
Hash Table i Cooling Stage
Eviction Queue i
B R | H|x Bi i
i
I
I
A 4

3

Cold Stage a

= = = Dalx 46 /53

Larger-than-Memory Databases

Block Hierarchy

Unswizzled
Pointer =~~~ i
Swisslod ,k': Hot Stage
Pointer A B3
Hash Table N 4 E Cooling Stage
Eviction Queue :
H|H|H|H B1 i %
P ’
1
I
+

3

Cold Stage a

Do 47 /53

Larger-than-Memory Databases B@ERSCIEEIE

Umbra

e New DBMS from HyPer team at TUM.

> Low overhead buffer pool with variable-sized pages.

> Employs the same hierarchical organization and randomized block eviction algorithm
from LeanStore.

> Uses virtual memory to allocate storage but the DBMS manages block eviction on its own.

e DBMS stores relations as index-organized tables, so there is no separate management
needed to handle index blocks.

e Reference

http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf

Larger-than-Memory Databases

Variable-Sized Buffer Pool

Buffer Frames Blocks
v
o AN AN
Inactive
smcmu.fl_?_‘.. 128k (| 128k || 128K8 | 128KB
256 KB i 256 KB |

Active
Size Class 2 . @

Size Class 3 @

)

V
CAOWI DNIAA PINUISTY

Da

49/53

Larger-than-Memory Databases

Variable-Sized Buffer Pool

Buffer Frames

Blocks

64Kk8 64KBi 64K [64ke| 64K 64 KB [6aka] 6aks \

mwll’@ll@l
Inactive

Size Class 1 -ﬁ . .

128 KB

| 128 KB | 128K8 | 128KB

(0)<MemoryAddr>

Swizzled Size Class 2 . @

256 KB i 256 KB |

Unswizzled
(1)<Blockld><SizeClass> Size Class 3 @

L
——
KAOWIR PNIUA PIAISTY

it
N)

)Q & 50/ 52

1
@D

Conz e
MEMSQL — Columnar Tables

Administrator manually declares a table as a disk-resident columnar table with zone
maps.
> Pre-2017: Used mmap but this was a bad idea.
> Current: Unified single logical table format that combines mutable delta store with
immutable column store.

Evicted Tuple Metadata: None

Retrieval Mechanism: Synchronous Retrieval

Merging Threshold: Always Merge

Reference

http://docs.memsql.com/docs/columnstore

Larger-than-Memory Databases B@ERSCIEEIE

Conclusion

e Today we focused on working around the block-oriented access granularity and lower
bandwidth of secondary storage.

e We will learn about how recently-released byte-addressable, non-volatile memory
(2019) changes the hardware landscape.

References 1

er-than-Memory Databases

Q1

@
~
Qa1
(O8]

	Larger-than-Memory Databases
	Recap – Compression
	Background
	Design Decisions
	Case Studies

	References

