
1 / 53

Larger-than-Memory Databases

Lecture 10: Larger-than-Memory Databases

2 / 53

Larger-than-Memory Databases Recap – Compression

Recap

3 / 53

Larger-than-Memory Databases Recap – Compression

Naïve Compression

• Choice 1: Entropy Encoding
▶ More common sequences use less bits to encode, less common sequences use more bits to

encode.
• Choice 2: Dictionary Encoding

▶ Build a data structure that maps data segments to an identifier.
▶ Replace the segment in the original data with a reference to the segment’s position in the

dictionary data structure.

4 / 53

Larger-than-Memory Databases Recap – Compression

Columnar Compression

• Null Suppression
• Run-length Encoding
• Bitmap Encoding
• Delta Encoding
• Incremental Encoding
• Mostly Encoding
• Dictionary Encoding

5 / 53

Larger-than-Memory Databases Recap – Compression

Today’s Agenda

• Background
• Design Decisions
• Case Studies

6 / 53

Larger-than-Memory Databases Background

Background

7 / 53

Larger-than-Memory Databases Background

Observation

• DRAM is expensive (roughly $10 per GB)
▶ Expensive to buy.
▶ Expensive to maintain (e.g., energy associated with refreshing DRAM state).

• SSD is 50 × cheaper than DRAM (roughly $0.2 per GB)
• It would be nice if an in-memory DBMS could use cheaper storage without having to

bring in the entire baggage of a disk-oriented DBMS.

8 / 53

Larger-than-Memory Databases Background

Larger-than-Memory Databases

• Allow an in-memory DBMS to store/access data on disk without bringing back all the
slow parts of a disk-oriented DBMS.
▶ Minimize the changes that we make to the DBMS that are required to deal with

disk-resident data.
▶ It is better to have only the buffer manager deal with moving data around
▶ Rest of the DBMS can assume that data is in DRAM.

• Need to be aware of hardware access methods
▶ In-memory Access = Tuple-Oriented. Why?
▶ Disk Access = Block-Oriented.

9 / 53

Larger-than-Memory Databases Background

OLAP

• OLAP queries generally access the
entire table.

• Thus, an in-memory DBMS may
handle OLAP queries in the same a
disk-oriented DBMS does.

• All the optimizations in a disk-oriented
DBMS apply here (e.g., scan sharing,
buffer pool bypass).

10 / 53

Larger-than-Memory Databases Background

OLTP

• OLTP workloads almost always have hot and cold portions of the database.
▶ We can assume txns will almost always access hot tuples.

• Goal: The DBMS needs a mechanism to move cold data out to disk and then retrieve it
if it is ever needed again.

11 / 53

Larger-than-Memory Databases Background

Larger-than-Memory Databases

12 / 53

Larger-than-Memory Databases Background

Larger-than-Memory Databases

13 / 53

Larger-than-Memory Databases Background

Larger-than-Memory Databases

14 / 53

Larger-than-Memory Databases Background

Larger-than-Memory Databases

SELECT *
FROM table
WHERE id = <Tuple 01>

15 / 53

Larger-than-Memory Databases Design Decisions

Design Decisions

16 / 53

Larger-than-Memory Databases Design Decisions

Design Decisions

• Run-time Operation
▶ Cold Data Identification: When the DBMS runs out of DRAM space, what data should we

evict?
• Eviction Policies

▶ Timing: When to evict data?
▶ Evicted Tuple Metadata: During eviction, what meta-data should we keep in DRAM to

track disk-resident data and avoid false negatives?
• Data Retrieval Policies

▶ Granularity: When we need data, how much should we bring in?
▶ Merging: Where to put the retrieved data?

Reference

https://hstore.cs.brown.edu/slides/hstore-damon16-ltm.pdf

17 / 53

Larger-than-Memory Databases Design Decisions

Cold Data Identification

• Choice 1: On-line
▶ The DBMS monitors txn access patterns and tracks how often tuples/pages are used.
▶ Embed the tracking meta-data directly in tuples/pages.

• Choice 2: Off-line
▶ Maintain a tuple access log during txn execution.
▶ Process in background to compute frequencies.

18 / 53

Larger-than-Memory Databases Design Decisions

Eviction Timing

• Choice 1: Threshold
▶ The DBMS monitors memory usage and begins evicting tuples when it reaches a

threshold.
▶ The DBMS must manually move data.

• Choice 2: On Demand
▶ The DBMS/OS runs a replacement policy to decide when to evict data to free space for

new data that is needed.

19 / 53

Larger-than-Memory Databases Design Decisions

Evicted Tuple Metadata

• Choice 1: Tuple Tombstones
▶ Leave a marker that points to the on-disk tuple.
▶ Update indexes to point to the tombstone tuples.

• Choice 2: Bloom Filters
▶ Use an in-memory, approximate data structure for each index.
▶ Only tells us whether tuple exists or not (with potential false positives)
▶ Check on-disk index to find actual location

• Choice 3: DBMS Managed Pages
▶ DBMS tracks what data is in memory vs. on disk.

• Choice 4: OS Virtual Memory
▶ OS tracks what data is on in memory vs. on disk.

20 / 53

Larger-than-Memory Databases Design Decisions

Evicted Tuple Metadata

21 / 53

Larger-than-Memory Databases Design Decisions

Evicted Tuple Metadata

22 / 53

Larger-than-Memory Databases Design Decisions

Evicted Tuple Metadata

23 / 53

Larger-than-Memory Databases Design Decisions

Evicted Tuple Metadata

24 / 53

Larger-than-Memory Databases Design Decisions

Data Retrieval Granularity

• Choice 1: All Tuples in Block
▶ Merge all the tuples retrieved from a block regardless of whether they are needed.
▶ More CPU overhead to update indexes.
▶ Tuples are likely to be evicted again.

• Choice 2: Only Tuples Needed
▶ Only merge the tuples that were accessed by a query back into the in-memory table heap.
▶ Requires additional bookkeeping to track holes.

25 / 53

Larger-than-Memory Databases Design Decisions

Merging Threshold

• Choice 1: Always Merge
▶ Retrieved tuples are always put into table heap.

• Choice 2: Merge Only on Update
▶ Retrieved tuples are only merged into table heap if they are used in an UPDATE statement.
▶ All other tuples are put in a temporary buffer.

• Choice 3: Selective Merge
▶ Keep track of how often each block is retrieved.
▶ If a block’s access frequency is above some threshold, merge it back into the table heap.

26 / 53

Larger-than-Memory Databases Design Decisions

Retrieval Mechanism

• Choice 1: Abort-and-Restart
▶ Abort the txn that accessed the evicted tuple.
▶ Retrieve the data from disk and merge it into memory with a separate background thread.
▶ Restart the txn when the data is ready.
▶ Requires MVCC to guarantee consistency for large txns that access data that does not fit in

memory.
• Choice 2: Synchronous Retrieval

▶ Stall the txn when it accesses an evicted tuple while the DBMS fetches the data and
merges it back into memory.

27 / 53

Larger-than-Memory Databases Case Studies

Case Studies

28 / 53

Larger-than-Memory Databases Case Studies

Case Studies

• Tuple-Oriented Systems
▶ H-Store – Anti-Caching
▶ Hekaton – Project Siberia
▶ EPFL’s VoltDB Prototype
▶ Apache Geode – Overflow Tables

• Block-Oriented Systems
▶ LeanStore – Hierarchical Buffer Pool
▶ Umbra – Variable-length Buffer Pool
▶ MemSQL – Columnar Tables

29 / 53

Larger-than-Memory Databases Case Studies

H-Store – Anti-Caching

• Cold Tuple Identification: On-line Identification
• Eviction Timing: Administrator-defined Threshold
• Evicted Tuple Metadata: Tombstones
• Retrieval Mechanism: Abort-and-restart Retrieval
• Retrieval Granularity: Block-level Granularity
• Merging Threshold: Always Merge
• Reference

https://www.vldb.org/pvldb/vol6/p1942-debrabant.pdf

30 / 53

Larger-than-Memory Databases Case Studies

HEKATON – PROJECT SIBERIA

• Cold Tuple Identification: Off-line Identification
• Eviction Timing: Administrator-defined Threshold
• Evicted Tuple Metadata: Bloom Filters
• Retrieval Mechanism: Synchronous Retrieval
• Retrieval Granularity: Tuple-level Granularity
• Merging Threshold: Always Merge
• Reference

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/p1016-eldawy.pdf

31 / 53

Larger-than-Memory Databases Case Studies

EPFL VOLTDB

• Cold Tuple Identification: Off-line Identification
• Eviction Timing: OS Virtual Memory
• Evicted Tuple Metadata: N/A
• Retrieval Mechanism: Synchronous Retrieval
• Retrieval Granularity: Page-level Granularity
• Merging Threshold: Always Merge
• Reference

https://dl.acm.org/doi/10.1145/2485278.2485285

32 / 53

Larger-than-Memory Databases Case Studies

EPFL VOLTDB

33 / 53

Larger-than-Memory Databases Case Studies

EPFL VOLTDB

34 / 53

Larger-than-Memory Databases Case Studies

EPFL VOLTDB

35 / 53

Larger-than-Memory Databases Case Studies

EPFL VOLTDB

36 / 53

Larger-than-Memory Databases Case Studies

EPFL VOLTDB

37 / 53

Larger-than-Memory Databases Case Studies

APACHE GEODE – OVERFLOW TABLES

• Cold Tuple Identification: On-line Identification
• Eviction Timing: Administrator-defined Threshold
• Evicted Tuple Metadata: Tombstones (?)
• Retrieval Mechanism: Synchronous Retrieval
• Retrieval Granularity: Tuple-level Granularity
• Merging Threshold: Merge Only on Update (?)
• Reference

http://geode.docs.pivotal.io/docs/managing/disk_storage/how_disk_stores_work.html

38 / 53

Larger-than-Memory Databases Case Studies

Observation

• The systems that we have discussed so far are tuple-oriented.
▶ The DBMS must track meta-data about individual tuples.
▶ Does not reduce storage overhead of indexes.
▶ Indexes may occupy up to 60% of DRAM in an OLTP database.

• Goal: Need an unified way to evict cold data from both tables and indexes with low
overhead. . .

39 / 53

Larger-than-Memory Databases Case Studies

LeanStore

• In-memory storage manager from TUM that supports larger-than-memory databases.
▶ Handles both tuples + indexes
▶ Not part of the HyPer project.

• Hierarchical + Randomized Block Eviction
▶ Use pointer swizzling to determine whether a block is evicted or not.
▶ Instead of tracking when pages are accessed, randomly evict pages and then track

whether they ended up getting used.
▶ If yes, put it back in the hot space.
▶ If not, then evict it.

• Reference

https://db.in.tum.de/~leis/papers/leanstore.pdf

40 / 53

Larger-than-Memory Databases Case Studies

Pointer Swizzling

• Switch the contents of pointers based on whether the target object resides in memory
or on disk.

• Decentralized way to track whether a page is in memory or not.
• We track everything with 64-bit pointers, but currently only use 48-bits.

▶ Use first bit in address to tell what kind of address it is.
▶ Only works if there is only one pointer to the object.

41 / 53

Larger-than-Memory Databases Case Studies

Pointer Swizzling

42 / 53

Larger-than-Memory Databases Case Studies

Pointer Swizzling

43 / 53

Larger-than-Memory Databases Case Studies

Replacement Strategy

• Randomly select blocks for eviction.
▶ Don’t have to maintain meta-data every time a txn accesses a hot block.
▶ Only track accesses for cold data, which should be rare if it is cold.

• Unswizzle their pointer but leave in memory.
▶ Add to a FIFO queue of blocks staged for eviction.
▶ If page is accessed again, remove from queue.
▶ Otherwise, evict pages when reaching front of queue.

44 / 53

Larger-than-Memory Databases Case Studies

Block Hierarchy

• Blocks are organized in a tree hierarchy.
▶ Each page has only one parent, which means that there is only a single pointer.
▶ No centralized page table (as is the case in a disk-oriented DBMS).

• The DBMS can only evict a block if its children are also evicted.
▶ This avoids the problem of evicting blocks that contain swizzled pointers
▶ Otherwise, these pointers are invalid because they will point to old locations in memory.
▶ If a block is selected but it has in-memory children, then it automatically switches to select

one of its children.

45 / 53

Larger-than-Memory Databases Case Studies

Block Hierarchy

46 / 53

Larger-than-Memory Databases Case Studies

Block Hierarchy

47 / 53

Larger-than-Memory Databases Case Studies

Block Hierarchy

48 / 53

Larger-than-Memory Databases Case Studies

Umbra

• New DBMS from HyPer team at TUM.
▶ Low overhead buffer pool with variable-sized pages.
▶ Employs the same hierarchical organization and randomized block eviction algorithm

from LeanStore.
▶ Uses virtual memory to allocate storage but the DBMS manages block eviction on its own.

• DBMS stores relations as index-organized tables, so there is no separate management
needed to handle index blocks.

• Reference

http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf

49 / 53

Larger-than-Memory Databases Case Studies

Variable-Sized Buffer Pool

50 / 53

Larger-than-Memory Databases Case Studies

Variable-Sized Buffer Pool

51 / 53

Larger-than-Memory Databases Case Studies

MEMSQL – Columnar Tables

• Administrator manually declares a table as a disk-resident columnar table with zone
maps.
▶ Pre-2017: Used mmap but this was a bad idea.
▶ Current: Unified single logical table format that combines mutable delta store with

immutable column store.

• Evicted Tuple Metadata: None
• Retrieval Mechanism: Synchronous Retrieval
• Merging Threshold: Always Merge
• Reference

http://docs.memsql.com/docs/columnstore

52 / 53

Larger-than-Memory Databases Case Studies

Conclusion

• Today we focused on working around the block-oriented access granularity and lower
bandwidth of secondary storage.

• We will learn about how recently-released byte-addressable, non-volatile memory
(2019) changes the hardware landscape.

53 / 53

Larger-than-Memory Databases Case Studies

References I

	Larger-than-Memory Databases
	Recap – Compression
	Background
	Design Decisions
	Case Studies

	References

