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Naive Compression

e Choice 1: Entropy Encoding

> More common sequences use less bits to encode, less common sequences use more bits to
encode.

e Choice 2: Dictionary Encoding

> Build a data structure that maps data segments to an identifier.
> Replace the segment in the original data with a reference to the segment’s position in the
dictionary data structure.
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Columnar Compression

e Null Suppression

e Run-length Encoding
e Bitmap Encoding

e Delta Encoding

e Incremental Encoding
e Mostly Encoding

e Dictionary Encoding



Today’s Agenda

e Background
e Design Decisions

e Case Studies
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Background
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Observation

e DRAM is expensive (roughly $10 per GB)

> Expensive to buy.
> Expensive to maintain (e.g., energy associated with refreshing DRAM state).

e SSDis 50 x cheaper than DRAM (roughly $0.2 per GB)

e It would be nice if an in-memory DBMS could use cheaper storage without having to
bring in the entire baggage of a disk-oriented DBMS.



Background
Larger-than-Memory Databases

e Allow an in-memory DBMS to store/access data on disk without bringing back all the
slow parts of a disk-oriented DBMS.
> Minimize the changes that we make to the DBMS that are required to deal with
disk-resident data.
> It is better to have only the buffer manager deal with moving data around
> Rest of the DBMS can assume that data is in DRAM.

e Need to be aware of hardware access methods

> In-memory Access = Tuple-Oriented. Why?
> Disk Access = Block-Oriented.
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OLAP

e OLAP queries generally access the
entire table.

e Thus, an in-memory DBMS may Zone Map (A)
. . MIN=## COUNT=##
handle OLAP queries in the same a WOH Ak
. . SUM=H## STDEV=#i##
disk-oriented DBMS does.

e All the optimizations in a disk-oriented
DBMS apply here (e.g., scan sharing,
buffer pool bypass).
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OLTP

e OLTP workloads almost always have hot and cold portions of the database.
> We can assume txns will almost always access hot tuples.

e Goal: The DBMS needs a mechanism to move cold data out to disk and then retrieve it
if it is ever needed again.
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Design Decisions

e Run-time Operation

» Cold Data Identification: When the DBMS runs out of DRAM space, what data should we
evict?

e Eviction Policies
> Timing: When to evict data?
> Evicted Tuple Metadata: During eviction, what meta-data should we keep in DRAM to
track disk-resident data and avoid false negatives?

e Data Retrieval Policies

> Granularity: When we need data, how much should we bring in?
> Merging: Where to put the retrieved data?

Reference


https://hstore.cs.brown.edu/slides/hstore-damon16-ltm.pdf
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Cold Data Identification

e Choice 1: On-line
» The DBMS monitors txn access patterns and tracks how often tuples/pages are used.
> Embed the tracking meta-data directly in tuples/pages.

e Choice 2: Off-line

> Maintain a tuple access log during txn execution.
> Process in background to compute frequencies.
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Eviction Timing

e Choice 1: Threshold
> The DBMS monitors memory usage and begins evicting tuples when it reaches a
threshold.
» The DBMS must manually move data.
e Choice 2: On Demand

» The DBMS/OS runs a replacement policy to decide when to evict data to free space for
new data that is needed.




Design Decisions
Evicted Tuple Metadata

Choice 1: Tuple Tombstones

> Leave a marker that points to the on-disk tuple.
> Update indexes to point to the tombstone tuples.

Choice 2: Bloom Filters

> Use an in-memory, approximate data structure for each index.
> Only tells us whether tuple exists or not (with potential false positives)
» Check on-disk index to find actual location

Choice 3: DBMS Managed Pages
> DBMS tracks what data is in memory vs. on disk.
Choice 4: OS Virtual Memory

> OS tracks what data is on in memory vs. on disk.
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Data Retrieval Granularity

e Choice 1: All Tuples in Block

> Merge all the tuples retrieved from a block regardless of whether they are needed.
> More CPU overhead to update indexes.
> Tuples are likely to be evicted again.

e Choice 2: Only Tuples Needed

> Only merge the tuples that were accessed by a query back into the in-memory table heap.
> Requires additional bookkeeping to track holes.




Design Decisions
Merging Threshold

e Choice 1: Always Merge

> Retrieved tuples are always put into table heap.
e Choice 2: Merge Only on Update

> Retrieved tuples are only merged into table heap if they are used in an UPDATE statement.
> All other tuples are put in a temporary buffer.

e Choice 3: Selective Merge

> Keep track of how often each block is retrieved.
> If a block’s access frequency is above some threshold, merge it back into the table heap.
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Retrieval Mechanism

e Choice 1: Abort-and-Restart
> Abort the txn that accessed the evicted tuple.
> Retrieve the data from disk and merge it into memory with a separate background thread.
> Restart the txn when the data is ready.
> Requires MVCC to guarantee consistency for large txns that access data that does not fit in
memory.
e Choice 2: Synchronous Retrieval

> Stall the txn when it accesses an evicted tuple while the DBMS fetches the data and
merges it back into memory.




Larger-than-Memory Databases [M@EEISSTTe I

Case Studies
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Case Studies

e Tuple-Oriented Systems
> H-Store — Anti-Caching
> Hekaton — Project Siberia
> EPFL’s VoltDB Prototype
> Apache Geode — Overflow Tables

e Block-Oriented Systems

> LeanStore — Hierarchical Buffer Pool
> Umbra — Variable-length Buffer Pool
» MemSQL - Columnar Tables

Case Studies



Case Studies
H-Store — Anti-Caching

e Cold Tuple Identification: On-line Identification

e Eviction Timing: Administrator-defined Threshold

e Evicted Tuple Metadata: Tombstones

e Retrieval Mechanism: Abort-and-restart Retrieval

e Retrieval Granularity: Block-level Granularity

e Merging Threshold: Always Merge

e Reference


https://www.vldb.org/pvldb/vol6/p1942-debrabant.pdf

HEKATON - PROJECT SIBERIA

¢ Cold Tuple Identification: Off-line Identification
e Eviction Timing: Administrator-defined Threshold

e Evicted Tuple Metadata: Bloom Filters

e Retrieval Mechanism: Synchronous Retrieval

e Retrieval Granularity: Tuple-level Granularity

e Merging Threshold: Always Merge

e Reference


https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/p1016-eldawy.pdf

EPFL VOLTDB

¢ Cold Tuple Identification: Off-line Identification
e Eviction Timing: OS Virtual Memory
e Evicted Tuple Metadata: N/A

e Retrieval Mechanism: Synchronous Retrieval

e Retrieval Granularity: Page-level Granularity

e Merging Threshold: Always Merge

e Reference


https://dl.acm.org/doi/10.1145/2485278.2485285

EPFL VOLTDB
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APACHE GEODE - OVERFLOW TABLES

e Cold Tuple Identification: On-line Identification

e Eviction Timing: Administrator-defined Threshold
e Evicted Tuple Metadata: Tombstones (?)

e Retrieval Mechanism: Synchronous Retrieval

e Retrieval Granularity: Tuple-level Granularity
e Merging Threshold: Merge Only on Update (?)
e Reference



http://geode.docs.pivotal.io/docs/managing/disk_storage/how_disk_stores_work.html
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Observation

e The systems that we have discussed so far are tuple-oriented.

» The DBMS must track meta-data about individual tuples.
> Does not reduce storage overhead of indexes.
> Indexes may occupy up to 60% of DRAM in an OLTP database.
e Goal: Need an unified way to evict cold data from both tables and indexes with low
overhead. ..
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LeanStore

e In-memory storage manager from TUM that supports larger-than-memory databases.
> Handles both tuples + indexes
> Not part of the HyPer project.
e Hierarchical + Randomized Block Eviction
> Use pointer swizzling to determine whether a block is evicted or not.
> Instead of tracking when pages are accessed, randomly evict pages and then track
whether they ended up getting used.
> If yes, put it back in the hot space.
> If not, then evict it.

e Reference


https://db.in.tum.de/~leis/papers/leanstore.pdf
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Pointer Swizzling

e Switch the contents of pointers based on whether the target object resides in memory
or on disk.
e Decentralized way to track whether a page is in memory or not.

e We track everything with 64-bit pointers, but currently only use 48-bits.

> Use first bit in address to tell what kind of address it is.
> Only works if there is only one pointer to the object.
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Case Studies
Replacement Strategy

e Randomly select blocks for eviction.
> Don’t have to maintain meta-data every time a txn accesses a hot block.
> Only track accesses for cold data, which should be rare if it is cold.
e Unswizzle their pointer but leave in memory.
> Add to a FIFO queue of blocks staged for eviction.
> If page is accessed again, remove from queue.
> Otherwise, evict pages when reaching front of queue.



Case Studies
Block Hierarchy

e Blocks are organized in a tree hierarchy.
> Each page has only one parent, which means that there is only a single pointer.
> No centralized page table (as is the case in a disk-oriented DBMS).
e The DBMS can only evict a block if its children are also evicted.
> This avoids the problem of evicting blocks that contain swizzled pointers
> Otherwise, these pointers are invalid because they will point to old locations in memory.
> If a block is selected but it has in-memory children, then it automatically switches to select
one of its children.
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Umbra

e New DBMS from HyPer team at TUM.

> Low overhead buffer pool with variable-sized pages.

> Employs the same hierarchical organization and randomized block eviction algorithm
from LeanStore.

> Uses virtual memory to allocate storage but the DBMS manages block eviction on its own.

e DBMS stores relations as index-organized tables, so there is no separate management
needed to handle index blocks.

e Reference


http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
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Variable-Sized Buffer Pool
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MEMSQL — Columnar Tables

Administrator manually declares a table as a disk-resident columnar table with zone
maps.
> Pre-2017: Used mmap but this was a bad idea.
> Current: Unified single logical table format that combines mutable delta store with
immutable column store.

Evicted Tuple Metadata: None

Retrieval Mechanism: Synchronous Retrieval

Merging Threshold: Always Merge

Reference


http://docs.memsql.com/docs/columnstore
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Conclusion

e Today we focused on working around the block-oriented access granularity and lower
bandwidth of secondary storage.

e We will learn about how recently-released byte-addressable, non-volatile memory
(2019) changes the hardware landscape.
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