Persistent Memory Databases

Lecture 11: Persistent Memory Databases

Persistent Memory Databases

Recap

2/71

Recap - Larger-than-Memory Databases
Larger-than-Memory Databases

e Allow an in-memory DBMS to store/access data on disk without bringing back all the
slow parts of a disk-oriented DBMS.
> Minimize the changes that we make to the DBMS that are required to deal with
disk-resident data.
> It is better to have only the buffer manager deal with moving data around
> Rest of the DBMS can assume that data is in DRAM.

e Need to be aware of hardware access methods

> In-memory Access = Tuple-Oriented.
> Disk Access = Block-Oriented.

IS SHEIYEHAPEIELENN Recap — Larger-than-Memory Databases

Design Decisions

e Run-time Operation

» Cold Data Identification: When the DBMS runs out of DRAM space, what data should we
evict?

e Eviction Policies
> Timing: When to evict data?
> Evicted Tuple Metadata: During eviction, what meta-data should we keep in DRAM to
track disk-resident data and avoid false negatives?

e Data Retrieval Policies

> Granularity: When we need data, how much should we bring in?
> Merging: Where to put the retrieved data?

Reference

https://hstore.cs.brown.edu/slides/hstore-damon16-ltm.pdf

EUHENYEWGVAPEIZIEEEN Recap — Larger-than-Memory Databases

Today’s Agenda

e Disk-oriented vs In-Memory DBMSs
e Persistent Memory DBMSs

e Storage Engine Architectures

VOSSR COS@PEELEEN Disk-oriented vs In-Memory DBMSs

Disk-oriented vs In-Memory DBMSs

Disk-oriented vs In-Memory DBMSs
Background

e Much of the development history of DBMSs is about dealing with the limitations of
hardware.
e Hardware was much different when the original DBMSs were designed in 1970s:

» Uniprocessor (single-core CPU)

> DRAM capacity was very limited.

> The database had to be stored on disk.

> Disks were even slower than they are now.

VOSSR COS@PEELEEN Disk-oriented vs In-Memory DBMSs

Background

e But now DRAM capacities are large enough that most databases can fit in memory.
> Structured data sets are smaller.

e We need to understand why we can’t always use a "traditional" disk-oriented DBMS
with a large cache to get the best performance.

Disk-oriented vs In-Memory DBMSs
Disk-Oriented DBMS

e The primary storage location of the database is on non-volatile storage (e.g., HDD,
SSD).

e The database is organized as a set of fixed-length pages (aka blocks).

e The system uses an in-memory buffer pool to cache pages fetched from disk.

> Its job is to manage the movement of those pages back and forth between disk and
memory.

Disk-oriented vs In-Memory DBMSs
Buffer Pool

e When a query accesses a page, the DBMS checks to see if that page is already in
memory:
> If it’s not, then the DBMS must retrieve it from disk and copy it into a frame in its buffer
pool.
> If there are no free frames, then find a page to evict.
> If the page being evicted is dirty, then the DBMS must write it back to disk.

e Once the page is in memory, the DBMS translates any on-disk addresses to their
in-memory addresses.

Persistent Memory Databases

Disk-oriented DBMS: Data Organization

Index Buffer Pool Database (On-Disk)
O | W - page2
Pageld+ Page Table paged /
68—

11/ 71

Persistent Memory Databases

Disk-oriented DBMS: Data Organization

Index Buffer Pool Database (On-Disk)
pageb
i [T W | i
aged
Pasgzlef+ Paige Table pag
8 —(m

Da 12/71

Persistent Memory Databases

Disk-oriented DBMS: Data Organization

Index Buffer Pool Database (On-Disk)
pageb
[l || I I | ﬁ
4
Pageld + Page Table page
& ——(m

Persistent Memory Databases

Disk-oriented DBMS: Data Organization

Index Buffer Pool Database (On-Disk)
pageéb
i i o O - i
Pageld+ Page Table paged

Da 14 /71

Persistent Memory Databases

Disk-oriented DBMS: Data Organization

Index Buffer Pool Database (On-Disk)
’ﬁ pageb page0
[| o [pagel pagel
aged age’
Pageld+ Page Tab pag pag l

15/ 71

Disk-oriented vs In-Memory DBMSs
Buffer Pool

e Every tuple access goes through the buffer pool manager regardless of whether that
data will always be in memory.
> Always translate a tuple’s record id to its memory location.
> Worker thread must pin pages that it needs to make sure that they are not
swapped to disk.

Persistent Memory Databases

Disk-Oriented DBMS Overhead

Measured CPU Instructions

Reference

EBUFFER POOL
B LATCHING
BLOCKING
BLOGGING
OB-TREE KEYS
B REAL WORK

https://dl.acm.org/doi/10.1145/1376616.1376713

Disk-oriented vs In-Memory DBMSs
In-memory DBMS

e Assume that the primary storage location of the database is permanently in memory.
e Early ideas proposed in the 1980s but it is now feasible because DRAM prices are low
and capacities are high.
e First commercial in-memory DBMSs were released in the 1990s.
> Examples: TimesTen, DataBlitz, Altibase

https://www.oracle.com/database/technologies/related/timesten.html
https://dbdb.io/db/datablitz
http://altibase.com/

VOSSR COS@PEELEEN Disk-oriented vs In-Memory DBMSs

Storage Access Latencies

L3 DRAM SSD HDD

Read Latency 20ns 60 ns 25,000ns 10,000,000 ns
Write Latency 20ns 60 ns 300,000 ns 10,000,000 ns

Reference

https://dl.acm.org/doi/10.1145/2723372.2749441

Disk-oriented vs In-Memory DBMSs
In-Memory DBMS: Data Organization

e An in-memory DBMS does not need to store the database in slotted pages but it will
still organize tuples in pages:
> Direct memory pointers vs. record ids
> Fixed-length vs. variable-length data memory pools
> Use checksums to detect software errors from trashing the database.

e The OS organizes memory in pages too. We already covered this.

Persistent Memory Databases

In-Memory DBMS: Data Organization

Index

Fixed-Length Variable-Length
Data Bloc Data Blocks
I — l
Block Id +
Offset

21/71

Persistent Memory Databases

In-Memory DBMS: Data Organization

Fixed-Length Variable-Length
Index Data Bloc, Data Blocks
1 1
| 1
] — = I
Block Id +
Offset D)

22/71

IEUHEYEWGVAPEIZILEL N Persistent Memory DBMSs

Persistent Memory DBMSs

LEBEERYCOEPEIELEL N Persistent Memory DBMSs

Importance of Hardware

People have been thinking about using hardware to accelerate DBMSs for decades.
1980s: Database Machines

2000s: FPGAs + Appliances

2010s: FPGAs + GPUs

2020s: PM + FPGAs + GPUs + CSAs + More!

Reference

https://en.wikichip.org/wiki/intel/configurable_spatial_accelerator
https://minds.wisconsin.edu/bitstream/handle/1793/58446/TR504.pdf?sequence=1&isAllowed=y

LEBEERYCOEPEIELEL N Persistent Memory DBMSs

Persistent Memory

e Emerging storage technology that provide low latency read/writes like DRAM, but
with persistent writes and large capacities like SSDs.

> a.k.a., Non-Volatile Memory, Storage-class Memory
e First-generation devices were block-addressable

e Second-generation devices are byte-addressable

LEBEERYCOEPEIELEL N Persistent Memory DBMSs

Persistent Memory

¢ Block-addressable Optane SSD

> NVM Express works with PCI Express to transfer data to and from Optane SSDs
> NVMe enables rapid storage in SSDs and is an improvement over older HDD-related
interfaces (e.g., Serial Attached SCSI (SAS) and Serial ATA (SATA))

¢ Byte-addressable Optane DIMMs

> New assembly instructions and hardware support

https://en.wikipedia.org/wiki/NVM_Express

Persistent Memory Databases

Fundamental Elements of Circuits

Capacitor Resistor Inductor
1745) (1827) (1831)

S

27 /71

LEBEERYCOEPEIELEL N Persistent Memory DBMSs

Fundamental Elements of Circuits

e In 1971, Leon Chua at Berkeley predicted the existence of a fourth fundamental
element.

e A two-terminal device whose resistance depends on the voltage applied to it, but
when that voltage is turned off it permanently remembers its last resistive state.

e Reference

https://www.nature.com/articles/nmat3338

Persistent Memory Databases

Fundamental Elements of Circuits

Capacitor Resistor Inductor Memristor
1745) (1827) (1831) (1971)
—| |— T+ |~

A

29 /71

LEBEERYCOEPEIELEL N Persistent Memory DBMSs

Memristors

A team at HP Labs led by Stanley Williams stumbled upon a nano-device that had
weird properties that they could not understand.

It wasn’t until they found Chua’s 1971 paper that they realized what they had invented.
Reference
Video

https://ieeexplore.ieee.org/document/4687366
https://www.youtube.com/watch?v=bKGhvKyjgLY

IS SHEABYCLOVAPEIEIEEN Persistent Memory DBMSs

NVM Technologies

¢ Phase-Change Memory (PRAM)
e Resistive RAM (ReRAM)
e Magnetoresistive RAM (MRAM)

IS SHEABYCLOVAPEIEIEEN Persistent Memory DBMSs

Phase-Change Memory

e Storage cell is comprised of two metal
electrodes separated by a resistive heater and
the phase change material (chalcogenide).

e The value of the cell is changed based on how
the material is heated.

> A short pulse changes the cell to a ‘0"
> A long, gradual pulse changes the cell toa ‘1"

e Reference

Bitline

chalcogenide

A I
Heater

Access

https://dl.acm.org/doi/10.1145/1785414.1785441

IS SHEABYCLOVAPEIEIEEN Persistent Memory DBMSs

Resistive RAM

e Two metal layers with two TiO2 layers in

between.
e Running a current one direction moves | Platinum
electrons from the top TiO2 layer to the bottom,
i i
thereby changing the resistance. | Pla - m
¢ Potential programmable storage fabric. . . —

> Bertrand Russell’s Material Implication Logic

e Reference

https://ieeexplore.ieee.org/document/4687366

IEUHEYEWGVAPEIZILEL N Persistent Memory DBMSs

Magnetoresistive RAM

e Stores data using magnetic storage elements

instead of electric charge or current flows.
¢ Spin-Transfer Torque (STT-MRAM) is the Fixed FM Layer—>
leading technology for this type of PM.
> Supposedly able to scale to very smallsizes Free FM Layer &J
(10nm) and have SRAM-like latencies. What is
SRAM used for?

e Reference

https://spectrum.ieee.org/semiconductors/memory/spin-memory-shows-its-might

IS SHEABYCLOVAPEIEIEEN Persistent Memory DBMSs

Why This is for Real

¢ Industry has agreed to standard technologies

intel)
and form factors (JDEC). = il
¢ Linux and Microsoft added support for PM in ! : ! " E !
their kernels (DAX). :

¢ Intel added new instructions for flushing cache
lines to PM (CLFLUSH, CLWB).

Persistent Memory Databases
PM Configurations

DRAM as Hardware- PM Next to
Managed Cache DRAM
DBMS Address Space .

)

~
. - DBMS Address Space .
|
Virtual Memory Sullsystem
| = |

| ‘iinualMemorySubsystjm |

X -

Mo e 2|

Reference

36/71

http://sigmod2017.org/wp-content/uploads/2017/05/06-Data-Structures-Engineering-For-Byte-Addressable-Non-Volatile-Memory.pdf

LEBEERYCOEPEIELEL N Persistent Memory DBMSs

PM for Database Systems

e Block-addressable PM is not that interesting.

e Byte-addressable PM will be a game changer but will require some work to use
correctly.
> In-memory DBMSs will be better positioned to use byte-addressable PM.
> Disk-oriented DBMSs will initially treat PM as just a faster SSD.

IEUHEYEWGVAPEIZILEL N Persistent Memory DBMSs

Storage & Recovery Methods

Understand how a DBMS will behave on a system that only has byte-addressable PM.
Develop PM-optimized implementations of standard DBMS architectures.

Based on the N-Store prototype DBMS.

Reference

https://github.com/jarulraj/storage
https://dl.acm.org/doi/10.1145/2723372.2749441

LEBEERYCOEPEIELEL N Persistent Memory DBMSs

Synchronization

e Existing programming models assume that any write to memory is non-volatile.
> CPU decides when to move data from caches to DRAM.

e The DBMS needs a way to ensure that data is flushed from caches to PM.

Synchronization

STORE

Q-}

Persistent Memory Databases

L1 Cache
L2 Cache

CLWB

EN

Memor
Contr

ADR

= 9Dale 40/ 71

LESEERYEO@PEELEL N Persistent Memory DBMSs

Synchronization

e Cache-line Flush (CLFLUSH)

> This instruction allows the DBMS to flush a cache-line out to memory.
> If that cache line contains modified data at any level of the cache hierarchy, that data is
written back to memory.

e Cache-line Write Back (CLWB)

Writes back the cache line (if modified) to memory

> The cache line may be retained in the cache hierarchy in non-modified state
> Improves performance by reducing cache misses

> CLWSB instruction is ordered only by store-fencing (SFENCE) operation.

e Asynchronous DRAM Refresh (ADR)

> In case of a power loss, there is sufficient reserve power to flush the stores pending in the
memory controller back to Optane DIMM.
> Stores are posted to the Write Pending Queue (WPQ) in the memory controller

v

e Reference

https://www.usenix.org/system/files/login/articles/login_summer17_07_rudoff.pdf

IS SHEABYCLOVAPEIEIEEN Persistent Memory DBMSs

Naming

e If the DBMS process restarts, we need to make sure that all the pointers for in-memory
data point to the same data.

Index Table Heap

b Tuple#00

T b Tuple #01

 — S ——
] \/ b Tuple #02
u Tuple #00(v2) 4

IS SHEABYCLOVAPEIEIEEN Persistent Memory DBMSs

Naming

e If the DBMS process restarts, we need to make sure that all the pointers for in-memory
data point to the same data.

Index

| Tuple #00 (v2) ‘

Persistent Memory DEMSs
PM-Aware Memory Allocator

e Feature 1: Synchronization

> The allocator writes back CPU cache lines to PM using the CLFLUSH instruction.
> Tt then issues a SFENCE instruction to wait for the data to become durable on PM.

e Feature 2: Naming

> The allocator ensures that virtual memory addresses assigned to a memory-mapped
region never change even after the OS or DBMS restarts.

EESHENIYEWOVAPEZIEEIN Storage Engine Architectures

Storage Engine Architectures

IS SV EHGAPEIELEEN Storage Engine Architectures

Storage Engine Architectures

e Choice 1: In-place Updates

> Table heap with a write-ahead log + snapshots.
> Example: VoltDB

e Choice 2: Copy-on-Write

> Create a shadow copy of the table when updated.
> No write-ahead log.
> Example: LMDB

e Choice 3: Log-structured

> All writes are appended to log. No table heap.
> Example: RocksDB

IESHEABYCNWOAPEIZIEEN Storage Engine Architectures

In—place Updates Engine

In-Memory In-Memory
Index Table Heap

Tuple #00
Tuple #01
Tuple #02

Durable
Storage

Write-Ahead Log

IESHEABYCNWOAPEIZIEEN Storage Engine Architectures

In—place Updates Engine

In-Memory In-Memory Durable
Index Table Heap

Tuple #00 Write-Ahead Log

Tuple #01 » 48 Tuple Delta

Tuple #02

IESHEABYCNWOAPEIZIEEN Storage Engine Architectures

In—place Updates Engine

In-Memory In-Memory Durable
Index Table Heap

g |
§8) Tuple Delta

Tuple#01 ()
Tuple #02

Snapshots

IESHEABYCNWOAPEIZIEEN Storage Engine Architectures

In-place Updates Engine

In-Memory In-Memory Durable
Index Table Heap Storage

g |
Tuple %01 (1) » 48 Tuple Delta
Tuple #02

RY) Tuple#01(!)

IESHEABYCNWOAPEIZIEEN Storage Engine Architectures

In—place Updates Engine

e Limitations

> Duplicate Data
> Recovery Latency

Storage Engine Architectures
PM-Aware Architectures

e Leverage the allocator’s non-volatile pointers to only record what changed rather
than how it changed.

e The DBMS only must maintain a transient UNDO log for a txn until it commits.

> Dirty cache lines from an uncommitted txn can be flushed by hardware to the memory
controller.
> No REDO log because we flush all the changes to PM at the time of commit.

IESHEABYCNWOAPEIZIEEN Storage Engine Architectures

PM-Aware In-place Updates Engine

PM PM PM
Index Table Heap Storage

Tuple #00 Write-Ahead Log

Tuple #01 »

Tuple #02

Persistent Memory Databases

PM-Aware In-place Updates Engine

PM PM
Index Table Heap
Tuple #00

Tuple #01

Write-Ahead Log

i B Tuple Pointers
Tuple #02

A

54 /71

Persistent Memory Databases

PM-Aware In-place Updates Engine

PM PM PM
Index Table Heap Storage
_ Tugygw |
Tuple#01 ()

Write-Ahead Log

Tuple #02

§ B Tuple Pointers

A

IESHEABYCNWOAPEIZIEEN Storage Engine Architectures

Copy-On-Write Engine

‘ Current Directory ‘
‘ Leaf'1 ‘ ’ Leaf 2 ‘

i

Page #00 Page #01

IESHEABYCNWOAPEIZIEEN Storage Engine Architectures

Copy-On-Write Engine

\ Current Directory
1Y Uit Leo
o — o —

Page #00 Page #01 Page #00

Persistent Memory Databases
Copy-On-Write Engine

| Current Directory ‘ e

Dirty Directory

0 Updated Leaf 1
Page #00

Page #01

Page #00

58/71

Persistent Memory Databases
Copy-On-Write Engine

Master Record

Page #00

Pﬁge #01

Page #00

Da 59 /71

Persistent Memory Databases
Copy-On-Write Engine

e Limitations

> Expensive Copies

A

60/ 71

Persistent Memory Databases

PM-Aware Copy-On-Write Engine

Current Directory
‘ Leaf 1

| Tuple #00 I

Tuple #00())

A

61/71

Persistent Memory Databases

PM-Aware Copy-On-Write Engine

Master Record

‘ Current Directory

Leaf'1

| Tuple #00 |

Tuple #01

Tuple #00(!)

A

62/71

IESHEABYCNWOAPEIZIEEN Storage Engine Architectures

Log-Structured Engine

MemTable SST able

? Bloom Filter

IESHEABYCNWOAPEIZIEEN Storage Engine Architectures

Log-Structured Engine

MemTable SSTable

? Bloom Filter

Write-Ahead Log |

} Tuple Delta (@

Persistent Memory Databases

Log-Structured Engine

MemTable

Write-Ahead Log

Tuple Delta (@1

Storage Engine Architectures

SSTable

? Bloom Filter

Tuple Delta
Tuple Data

3

IESHEABYCNWOAPEIZIEEN Storage Engine Architectures

Log-Structured Engine

e Limitations

> Duplicate Data
> Compactions

Persis

tent Memory Databases

PM-Aware Log-Structured Engine

Tuple Delta (@

MemTable SSTable
Bloom Filter

I | I | I | »

Write-Ahead Log

Tuple Delta

Tuple Data

,,
Q

67

,/]

IESHEABYCNWOAPEIZIEEN Storage Engine Architectures

PM-Aware Log-Structured Engine

MemTable

IESHEABYCNWOAPEIZIEEN Storage Engine Architectures

PM Summary

e Optimization of Storage Engine Architectures

> Leverage byte-addressability to avoid unnecessary data duplication.

IS SV EHGAPEIELEEN Storage Engine Architectures

Conclusion

e The design of a in-memory DBMS is significantly different than a disk-oriented system.

e The world has finally become comfortable with in-memory data storage and
processing.

e Byte-addressable PM is going to be a game changer.

e We are likely to see many new computational components that DBMSs can use in the
next decade.

> The core ideas / algorithms will still be the same.

References 1

Persistent Memory Databases

71/ 71

	Persistent Memory Databases
	Recap – Larger-than-Memory Databases
	Disk-oriented vs In-Memory DBMSs
	Persistent Memory DBMSs
	Storage Engine Architectures

	References

