Access Methods

Recap

= 9Dale 2 /44

] Recap
A More Detailed Architecture

Query Interface
SQL,.

Record Interface

FIND NEXT record,
STORE record

Record Access

write record,
insert in B-tree,

DB Buffer
access page j,
release page j

File Interface

read block k,
write block k

Device Interface

granularity:

data structures:

granularity:

relation, view, ..
logical schema,
integrity constraints
logical record, key,

granularity:

data structures:

granularity:

logical record, key, ..
access path,
physical schema .
physical record,

granularity:

data structures:

physical record,...
free space inventory,
page indexes

granularity: page, segment
granularity: page, segment
data structures: page table,
block map
granularity: block, file
granularity: block, file

data structures:

granularity:

free space inventory,
extent table
track, cylinder, ...

application

logical data

access paths

physical data

page structure

storage allocation

external storage

B
Anatomy of a Database System [Monologue]

Process Manager
> Connection Manager + Admission Control
Query Processor
> Query Parser
> Query Optimizer (a.k.a., Query Planner)
> Query Executor
Transactional Storage Manager
> Lock Manager
> Access Methods (a.k.a., Indexes)
> Buffer Pool Manager
> Log Manager
Shared Utilities

> Memory, Disk, and Networking Manager

https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf

Y Reaap
Access Methods

Access methods are the alternative ways for retrieving specific tuples from a relation.

e Typically, there is more than one way to retrieve tuples.

e Depends on the availability of indexes and the conditions specified in the query for
selecting the tuples

e Includes sequential scan method of unordered table heap

e Includes index scan of different types of index structures

We will look at these methods in more detail.

Internal Data Structures

The DBMS maintains several separate data structures

for the data itself (storage and retrieval)

for free space management

for unusually large values

for index structures to speed up access

] Recap
Today’s Agenda

e Sequential Access: Table Heap
e Random Acceess: B-Tree Index

e Random Acceess: Hash Index

Sequential Access: Table Heap

N ' Heap

Slotted Pages
Segment A: P12 Ps67
TIDs
123 3 TID

3 Bytes 1 Byte

|_567 :|-\
‘ Overflow Record

123 7

LB LLTTBTT

(TID size varies, but will most likely be at least 8 bytes on modern systems)

N .
Slotted Pages (2)

Tuples are stored in slotted pages

page
[header] 00 —
slots
<— [data |[data
[data][data][data

data grows from one side, slots from the other

the page is full when both meet

updates/deletes complicate issues, though

might require garbage collection/compactification

N .
Slotted Pages (3)

Header:

LSN for recovery

slotCount = number of used slots

firstFreeSlot to speed up locating free slots

dataStart lower end of the data

freeSpace space that would be available after compactification

Note: a slotted page can contain hundreds of slots!
Requires careful design to get good performance.

N .
Slotted Pages (4)

Slot:

offset start of the data item
length length of the data item

Special cases:
e free slot: offset = 0, length = 0
e zero-length data item: offset > 0, length =0

N .
Slotted Pages (5)

Problem:

1. transaction T; updates data item i; on page P; to a very small size
(or deletes i7)

2. transaction T, inserts a new item i, on page Py, filling P; up
3. transaction T, commits

4. transaction T; aborts (or T3 updates i; again to a larger size)

TID concept = create an indirection
but where to put it? Would have to move i; and 1i,.

N .
Slotted Pages (6)

Logic is much simpler if we can store the TID inside the slot
e borrow a bit from the TID (or have some other way to detect invalid TIDs)
e if the slot contains a valid TID, the entry is redirected

e otherwise, it is a regular slot

Depending on page size size, this wastes a bit space.
But greatly simplifies the slotted page implementation.

N .
Slotted Pages (7)

One possible slot implementation:

[T[s[O]O[O[L[L|L]

1. if T # 11111111y, the slot points to another record
2. otherwise the record is on the current page

2.1 if S =0, the item is at offset O, with length L
2.2 otherwise, the item was moved from another page

> it is also placed at offset O, with length L
> but the first 8 bytes contain the original TID

The original TID is important for scanning.

N ' Heap

Record Layout

The tuples have to be materialized somehow.

One possibility: serialize the attributes

integer |integer |length |string integer

length

string

Problem: accessing an attribute is O(n) in worst case.

N .
Record Layout (2)

It is better to store offset instead of lengths

integer |integer | end | integer| end [string string

splits tuple into two parts

fixed size header and variable size tail

header contains pointers into the tail

allows for accessing any attribute in O(1)

N .
Record Layout (3)

For performance reasons one should even reorder the attributes

split strings into length and data

e re-order attributes by changing alignment

place variable-length data at the end

variable length: alignment = 1

Gives better performance without wasting any space on padding.

N ' Heap

NULL Values

What about NULL values?
e represent an unknown/unspecified value

e is a special value outside the regular domain

Multiple ways to store it

e either pick an invalid value (not always possible)
e or use a separate NULL bit

NULL bits allow for omitting NULL values from the tuple
e complicates the access logic
e but saves space

e useful if NULL values are common.

N ' Heap

Compression

Some DBMS apply compression techniques to the tuples

most of the time, compression is not added to save space

disk is cheap after all

e compression is used to improve performance

reducing the database size reduces disk bandwidth consumption

Some people really care about space consumption, of course.
But outside embedded DBMSs it is usually an afterthought.

N ' Heap

Compression (2)

What to compress?

the larger data compressed chunk, the better the compression
but: DBMS has to handle updates

usually rules out page-wise compression

individual tuples can be compressed more easily

How to compress?
e general purpose compression like LZ77 too expensive
e compression is about performance, after all

* most system use special-purpose compression

byte-wise to keep performance reasonable

N ' Heap

Compression (3)

A useful technique for integer: variable length encoding

\ length (2 bits) H data (0-4 bytes) \

00
01
10
11

Variant A

1 byte value
2 bytes value
3 bytes value
4 bytes value

Variant B

NULL, 0 bytes value
1 byte value

2 bytes value

4 bytes value

N ' Heap

Compression (4)

The length is fixed length, the compressed data is variable length

fixed |fixed |lenslenylenslen, | comp;| comp, comp,

Problem: locating compressed attributes
e depends on preceding compression
e would require decompressing all previous entries
 not too bad, but can be sped up
e use a lookup tuples per length byte

N ' Heap

Compression (5)
Another popular technique: dictionary compression

Dictionary:
1 | Berlin
2 | Miinchen
3 | Passauerstrafse

stores strings in a dictionary

stores only the string id in the tuple
factors out common strings

can greatly reduce the data size

Tuples:

can be combined with integer compression

city | street | number
1 3 5
2 3 7

N """ ">
Long Records

Data is organized in pages
e many reasons for this, including recovery, buffer management, etc.
e a tuple must fit on a single page
e limits the maximum size of a tuple

What about large tuples?

e sometimes the user wants to store something large
e e.g., embed a document

e SQL supports this via BLOB (Binary Large Object)/CLOB (Character Large Object)

Requires some mechanism so handle these large records.

N .
Long Records (2)

Simply spanning pages is not a good idea:

must read an unbounded number of pages to access a tuple

greatly complicates buffering

a tuple might not even fit into main memory!

updates that change the size are complicated

intermediate results during query processing

Instead, keep the main tuple size down
e BLOBS/CLOBS are stored separate from the tuple
e tuple only contains a pointer

e increases the costs of accessing the BLOB, but simplifies tuple processing

Table Heap

Long Records (3)
BLOBs can be stored in a B-Tree like fashion

|, 100,000 ~.250,000]

AN

[, 40,000 | 100,000] [, 50,000 {110,000 ~150,000|

-

V. | 7 %/ | %/

(relative) offset is search key

allows for accessing and updating arbitrary parts

very flexible and powerful
but might be over-sophisticated
SQL does not offer this interface anyway

Table Heap

Long Records (4)

Using an extent list is simpler

hash length (age/#)(page/#) chain
| 4711 {250,000 [13/3[90/2] --

13 14 15 90 91

% WY WY, 7/ WY

real tuple points to BLOB tuple

BLOB tuple contains a header and an extent list

e in worst case the extent list is chained, but should rarely happen
extent list only allows for manipulating the BLOB in one piece
but this is usually good enough

hash and length to speed up comparisons

N ' Heap
Long Records (5)
It makes sense to optimize for short BLOBs/CLOBs

e users misuse BLOBs/CLOBs
they use CLOB to avoid specifying a maximum length

but most CLOBs are short in reality

on the other hand some BLOBs are really huge
the DBMS cannot know
so BLOBs can be arbitrary large, but short BLOBs should be more efficient

Approach:
1. BLOBs smaller than TID are encoded in BLOB TID
2. BLOBs smaller than page size are stored in BLOB record
3. only larger BLOBs use the full mechanism

N ' Heap

Free Space Inventory

Problem: Where do we have space for incoming data?

Traditional solution: free space bitmap

page 1 page 2 page 3 page 4 page 5 page 6 page x page x+1

0010 0111||{0011 | 0111| (0001 [0000 ... |4 bits|4 bits

byte 1 byte 2 byte 3

byte x/2

Each 4-bit nibble indicates the fill status of a given page.

N ' Heap

Free Space Inventory

Encode the fill status in 4 bits (some system use only 1 or 2):

must approximate the status

one possibility: data size / paz‘o’bif’;ze

loss of accuracy in the lower range

logarithmic scale is often better: [log, (free size)|

or a combination

8 states: linear for upper range | 8 states: logarithmic for lower range
16: FULL,15: 8B, ..,9: 512B|8: 256 B,...,1: 4B

Encodes the free space (alternative: the used space) in a few bits.

N ' Heap

Free Space Inventory

When inserting data,
e compute the required FSI entry (e.g., < 7)
e scan the FSI for a matching entry
e insert the data on this page

e update the FSI entry if needed

N ' Heap

Free Space Inventory

Problem:

linear sequential scan

FSI is small. With 16 KB pages, 1 FSI page covers 512 MB.
but scan still not free

only 16 FSI values, cache the next matching page (range)
most pages will be static (and full anyway)

segments will mostly grow at the end

caching FSI state avoids scanning most of the FSI entries

N ' Heap

Space Allocation

Allocating pages (or parts of a page) benefits from application knowledge
e e.g., aset of tuples may be inserted in a sequence
e or one very large data item

e should be allocated close to each other

Allocation interface is usually

allocate_space(min, max)
Example:

allocate_space(200 B,20 KB)

e max is a hint to improve spatial data locality

e some interfaces (e.g., segment growth) even implement over-allocation
e reduces fragmentation

N ' Heap

Index Structures

Data is often indexed
e speeds up lookup
e de-facto mandatory for primary keys

e useful for selective queries

Two important access classes:
e point queries
find all tuples that take a given value for particular column

* range queries
find all tuples that take a given range of values for a particular column

Support for more complex predicates is rare.

Random Access: B-Tree Index

B-Tree

B-Trees (including variants) are the dominant index data structure for external storage.

Classical definition:
e a B-Tree has a degree k
e each node except the root has at least k entries
e each node has at most 2k entries
e all leaf nodes are at the same depth

e
B-Tree (2)

Example:

I B-Tree
withk =2, h=3

K67 [o]| K88 [|

[[Ko1[e] Kos]e]

[[K26 o] K2ole| K35]e] | [Ks1]e] K53[e| K55e| Ks8le]] [[K78]e] K86[e]

The e is the TID of the corresponding tuple.

BT -Tree
Most DBMS use the Bt -Tree variant

B*-Tree
/—“K‘WN | withk=2h=3

s | | k3] | | Ksg||| kool | |

[[K02]e|K03 | K16]e| K25]e]

| K36 Ka1e[Ka3]e K47]e] (-H K91 [e] K95]s] |

C|K51|0| K53[e| K55e| K58e|}—{|K67|e| K78[s| K86]e| Kss[-[?

[K26 o] K29 [o] K35]e]

key+TID only in leaf nodes

inner nodes contain separators, might or might not occur in the data

increases the fanout of inner nodes

simplifies the B-Tree logic

Page Structure
Inner Node:

LSN for recovery
upper page of right-most child
count number of entries

key/child key/child-page pairs

Leaf Node:
LSN for recovery
~0 leaf node marker
next next leaf node

count number of entries
key/tid key/TID pairs

Similar to slotted pages for variable keys.

N <" e

Random Access: Hash Index

) Hash Index
Hash-Based Indexes

In main memory a hash table is usually faster than a search tree

e compute a hash-value h, compute a slot (e.g., s = hmod|T|, access the table T[s]
e promises O(1) access

e (if everything works out fine)

A DBMS could profit from this, too. But:
e random I/O is very expensive on disk
e collisions are problematic (e.g., when chaining)
e rehashing is prohibitive

But there are hashing schemes for external storage.

N -
Hash-Based Indexes (2)

Hash indexes are not as versatile as tree indexes:
e only support point query
e order-preserving hashing exists, but does not work well
e choice of the hash function is critical

As a consequence, mainly useful for primary key indexes
e unique keys
e key collisions would be very dangerous

e for other attributes, need to support duplicates (complicated)

N <" e

Conclusion

Access methods are the alternative ways for retrieving specific tuples

Two types of access methods: sequential scan and index scan

Sequential scan is done over an unordered table heap (base data structure)

Index scan is done over an ordered B-Tree or an unordered hash table (or another
derived data structure)

In the next lecture, we will learn about hash indexes

	Access Methods
	Recap
	Table Heap
	B-Tree Index
	Hash Index

