
1 / 44

Access Methods

Access Methods

2 / 44

Recap

Recap

3 / 44

Recap

A More Detailed Architecture

DB

granularity:
data structures:

granularity:

block, file
free space inventory,
extent table ...
track, cylinder, ...

granularity:
data structures:

granularity:

page, segment
page table,
block map ...
block, file

granularity:
data structures:

granularity:

physical record,...
free space inventory,
page indexes ...
page, segment

granularity:
data structures:

granularity:

logical record, key,...
access path,
physical schema ...
physical record, ...

granularity:
data structures:

granularity:

relation, view, ...
logical schema,
integrity constraints
logical record, key, ...

granularity: relation, view, ...

Device Interface

File Interface

DB Buffer

Record Access

Record Interface

Query Interface
SQL,...

FIND NEXT record,
STORE record

write record,
insert in B-tree,...

access page j,
release page j

read block k,
write block k

application

logical data

access paths

physical data

page structure

storage allocation

external storage

4 / 44

Recap

Anatomy of a Database System [Monologue]

• Process Manager
▶ Connection Manager + Admission Control

• Query Processor
▶ Query Parser
▶ Query Optimizer (a.k.a., Query Planner)
▶ Query Executor

• Transactional Storage Manager
▶ Lock Manager
▶ Access Methods (a.k.a., Indexes)
▶ Buffer Pool Manager
▶ Log Manager

• Shared Utilities
▶ Memory, Disk, and Networking Manager

https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf

5 / 44

Recap

Access Methods

Access methods are the alternative ways for retrieving specific tuples from a relation.
• Typically, there is more than one way to retrieve tuples.
• Depends on the availability of indexes and the conditions specified in the query for

selecting the tuples
• Includes sequential scan method of unordered table heap
• Includes index scan of different types of index structures

We will look at these methods in more detail.

6 / 44

Recap

Internal Data Structures

The DBMS maintains several separate data structures
• for the data itself (storage and retrieval)
• for free space management
• for unusually large values
• for index structures to speed up access

7 / 44

Recap

Today’s Agenda

• Sequential Access: Table Heap
• Random Acceess: B-Tree Index
• Random Acceess: Hash Index

8 / 44

Table Heap

Sequential Access: Table Heap

9 / 44

Table Heap

Slotted Pages

Segment A:

123 3
3 Bytes 1 Byte

123 7 Record

TIDs

P123

567 6
TID

Overflow Record

P567

(TID size varies, but will most likely be at least 8 bytes on modern systems)

10 / 44

Table Heap

Slotted Pages (2)
Tuples are stored in slotted pages

page

data data
data data data

slotsheader

• data grows from one side, slots from the other
• the page is full when both meet
• updates/deletes complicate issues, though
• might require garbage collection/compactification

11 / 44

Table Heap

Slotted Pages (3)

Header:

LSN for recovery
slotCount number of used slots
firstFreeSlot to speed up locating free slots
dataStart lower end of the data
freeSpace space that would be available after compactification

Note: a slotted page can contain hundreds of slots!
Requires careful design to get good performance.

12 / 44

Table Heap

Slotted Pages (4)

Slot:

offset start of the data item
length length of the data item

Special cases:
• free slot: offset = 0, length = 0
• zero-length data item: offset > 0, length = 0

13 / 44

Table Heap

Slotted Pages (5)

Problem:
1. transaction T1 updates data item i1 on page P1 to a very small size

(or deletes i1)
2. transaction T2 inserts a new item i2 on page P1, filling P1 up
3. transaction T2 commits
4. transaction T1 aborts (or T3 updates i1 again to a larger size)

TID concept ⇒ create an indirection
but where to put it? Would have to move i1 and i2.

14 / 44

Table Heap

Slotted Pages (6)

Logic is much simpler if we can store the TID inside the slot
• borrow a bit from the TID (or have some other way to detect invalid TIDs)
• if the slot contains a valid TID, the entry is redirected
• otherwise, it is a regular slot

Depending on page size size, this wastes a bit space.
But greatly simplifies the slotted page implementation.

15 / 44

Table Heap

Slotted Pages (7)

One possible slot implementation:

T S O O O L L L

1. if T , 11111111b, the slot points to another record
2. otherwise the record is on the current page

2.1 if S = 0, the item is at offset O, with length L
2.2 otherwise, the item was moved from another page

▶ it is also placed at offset O, with length L
▶ but the first 8 bytes contain the original TID

The original TID is important for scanning.

16 / 44

Table Heap

Record Layout

The tuples have to be materialized somehow.

One possibility: serialize the attributes

integer integer length string integer length string

Problem: accessing an attribute is O(n) in worst case.

17 / 44

Table Heap

Record Layout (2)

It is better to store offset instead of lengths

integer integer end stringinteger end string

• splits tuple into two parts
• fixed size header and variable size tail
• header contains pointers into the tail
• allows for accessing any attribute in O(1)

18 / 44

Table Heap

Record Layout (3)

For performance reasons one should even reorder the attributes

• split strings into length and data
• re-order attributes by changing alignment
• place variable-length data at the end
• variable length: alignment = 1

Gives better performance without wasting any space on padding.

19 / 44

Table Heap

NULL Values

What about NULL values?
• represent an unknown/unspecified value
• is a special value outside the regular domain

Multiple ways to store it
• either pick an invalid value (not always possible)
• or use a separate NULL bit

NULL bits allow for omitting NULL values from the tuple
• complicates the access logic
• but saves space
• useful if NULL values are common.

20 / 44

Table Heap

Compression

Some DBMS apply compression techniques to the tuples
• most of the time, compression is not added to save space
• disk is cheap after all
• compression is used to improve performance
• reducing the database size reduces disk bandwidth consumption

Some people really care about space consumption, of course.
But outside embedded DBMSs it is usually an afterthought.

21 / 44

Table Heap

Compression (2)

What to compress?
• the larger data compressed chunk, the better the compression
• but: DBMS has to handle updates
• usually rules out page-wise compression
• individual tuples can be compressed more easily

How to compress?
• general purpose compression like LZ77 too expensive
• compression is about performance, after all
• most system use special-purpose compression
• byte-wise to keep performance reasonable

22 / 44

Table Heap

Compression (3)

A useful technique for integer: variable length encoding

length (2 bits) data (0-4 bytes)

Variant A Variant B
00 1 byte value NULL, 0 bytes value
01 2 bytes value 1 byte value
10 3 bytes value 2 bytes value
11 4 bytes value 4 bytes value

23 / 44

Table Heap

Compression (4)

The length is fixed length, the compressed data is variable length

fixed fixed len1len2len3len4 comp1 comp2 comp4

Problem: locating compressed attributes
• depends on preceding compression
• would require decompressing all previous entries
• not too bad, but can be sped up
• use a lookup tuples per length byte

24 / 44

Table Heap

Compression (5)
Another popular technique: dictionary compression

Dictionary:
1 Berlin
2 München
3 Passauerstraße
... ...

Tuples:

city street number
1 3 5
2 3 7
...

• stores strings in a dictionary
• stores only the string id in the tuple
• factors out common strings
• can greatly reduce the data size
• can be combined with integer compression

25 / 44

Table Heap

Long Records

Data is organized in pages
• many reasons for this, including recovery, buffer management, etc.
• a tuple must fit on a single page
• limits the maximum size of a tuple

What about large tuples?
• sometimes the user wants to store something large
• e.g., embed a document
• SQL supports this via BLOB (Binary Large Object)/CLOB (Character Large Object)

Requires some mechanism so handle these large records.

26 / 44

Table Heap

Long Records (2)

Simply spanning pages is not a good idea:
• must read an unbounded number of pages to access a tuple
• greatly complicates buffering
• a tuple might not even fit into main memory!
• updates that change the size are complicated
• intermediate results during query processing

Instead, keep the main tuple size down
• BLOBS/CLOBS are stored separate from the tuple
• tuple only contains a pointer
• increases the costs of accessing the BLOB, but simplifies tuple processing

27 / 44

Table Heap

Long Records (3)
BLOBs can be stored in a B-Tree like fashion

100,000 250,000

40,000 100,000 50,000 110,000 150,000

• (relative) offset is search key
• allows for accessing and updating arbitrary parts
• very flexible and powerful
• but might be over-sophisticated
• SQL does not offer this interface anyway

28 / 44

Table Heap

Long Records (4)
Using an extent list is simpler

hash length (page/#) (page/#)chain

4711 250,000 13/3 90/2

13 14 15 90 91

• real tuple points to BLOB tuple
• BLOB tuple contains a header and an extent list
• in worst case the extent list is chained, but should rarely happen
• extent list only allows for manipulating the BLOB in one piece
• but this is usually good enough
• hash and length to speed up comparisons

29 / 44

Table Heap

Long Records (5)

It makes sense to optimize for short BLOBs/CLOBs
• users misuse BLOBs/CLOBs
• they use CLOB to avoid specifying a maximum length
• but most CLOBs are short in reality
• on the other hand some BLOBs are really huge
• the DBMS cannot know
• so BLOBs can be arbitrary large, but short BLOBs should be more efficient

Approach:
1. BLOBs smaller than TID are encoded in BLOB TID
2. BLOBs smaller than page size are stored in BLOB record
3. only larger BLOBs use the full mechanism

30 / 44

Table Heap

Free Space Inventory

Problem: Where do we have space for incoming data?

Traditional solution: free space bitmap

0010 0111
page 1 page 2

0011 0111
page 3 page 4

0001 0000
page 5 page 6

4 bits 4 bits
page x page x+1

byte 1 byte 2 byte 3 byte x/2

...

Each 4-bit nibble indicates the fill status of a given page.

31 / 44

Table Heap

Free Space Inventory

Encode the fill status in 4 bits (some system use only 1 or 2):
• must approximate the status

• one possibility: data size /
page size

2bits

• loss of accuracy in the lower range
• logarithmic scale is often better: ⌈log2(free size)⌉
• or a combination
• 8 states: linear for upper range | 8 states: logarithmic for lower range
• 16: FULL, 15: 8 B, ..., 9: 512 B | 8: 256 B, . . . , 1: 4 B

Encodes the free space (alternative: the used space) in a few bits.

32 / 44

Table Heap

Free Space Inventory

When inserting data,
• compute the required FSI entry (e.g., ⩽ 7)
• scan the FSI for a matching entry
• insert the data on this page
• update the FSI entry if needed

33 / 44

Table Heap

Free Space Inventory

Problem:
• linear sequential scan
• FSI is small. With 16 KB pages, 1 FSI page covers 512 MB.
• but scan still not free
• only 16 FSI values, cache the next matching page (range)
• most pages will be static (and full anyway)
• segments will mostly grow at the end
• caching FSI state avoids scanning most of the FSI entries

34 / 44

Table Heap

Space Allocation

Allocating pages (or parts of a page) benefits from application knowledge
• e.g., a set of tuples may be inserted in a sequence
• or one very large data item
• should be allocated close to each other

Allocation interface is usually
allocate_space(min,max)

Example:
allocate_space(200 B, 20 KB)

• max is a hint to improve spatial data locality
• some interfaces (e.g., segment growth) even implement over-allocation
• reduces fragmentation

35 / 44

Table Heap

Index Structures

Data is often indexed
• speeds up lookup
• de-facto mandatory for primary keys
• useful for selective queries

Two important access classes:
• point queries

find all tuples that take a given value for particular column
• range queries

find all tuples that take a given range of values for a particular column

Support for more complex predicates is rare.

36 / 44

B-Tree Index

Random Access: B-Tree Index

37 / 44

B-Tree Index

B-Tree

B-Trees (including variants) are the dominant index data structure for external storage.

Classical definition:
• a B-Tree has a degree k

• each node except the root has at least k entries
• each node has at most 2k entries
• all leaf nodes are at the same depth

38 / 44

B-Tree Index

B-Tree (2)
Example:

B-Tree
with k = 2, h = 3K47

K25 K36

K02 K03 K16 K41 K43

K26 K29 K35 K51 K53 K55 K58 K78 K86

K67 K88

K91 K95

The • is the TID of the corresponding tuple.

39 / 44

B-Tree Index

B+-Tree
Most DBMS use the B+-Tree variant

B+-Tree
with k = 2, h = 3K49

K25 K35

K02 K03 K16 K36 K41

K26 K29 K35 K51 K53 K55 K58 K67 K78

K58 K90

K91 K95K25 K43 K47

K86 K88

• key+TID only in leaf nodes
• inner nodes contain separators, might or might not occur in the data
• increases the fanout of inner nodes
• simplifies the B-Tree logic

40 / 44

B-Tree Index

Page Structure
Inner Node:
LSN for recovery
upper page of right-most child
count number of entries
key/child key/child-page pairs
... ...

Leaf Node:
LSN for recovery
~0 leaf node marker
next next leaf node
count number of entries
key/tid key/TID pairs
... ...

Similar to slotted pages for variable keys.

41 / 44

Hash Index

Random Access: Hash Index

42 / 44

Hash Index

Hash-Based Indexes

In main memory a hash table is usually faster than a search tree
• compute a hash-value h, compute a slot (e.g., s = hmod|T |, access the table T [s]

• promises O(1) access
• (if everything works out fine)

A DBMS could profit from this, too. But:
• random I/O is very expensive on disk
• collisions are problematic (e.g., when chaining)
• rehashing is prohibitive

But there are hashing schemes for external storage.

43 / 44

Hash Index

Hash-Based Indexes (2)

Hash indexes are not as versatile as tree indexes:
• only support point query
• order-preserving hashing exists, but does not work well
• choice of the hash function is critical

As a consequence, mainly useful for primary key indexes
• unique keys
• key collisions would be very dangerous
• for other attributes, need to support duplicates (complicated)

44 / 44

Hash Index

Conclusion

• Access methods are the alternative ways for retrieving specific tuples
• Two types of access methods: sequential scan and index scan
• Sequential scan is done over an unordered table heap (base data structure)
• Index scan is done over an ordered B-Tree or an unordered hash table (or another

derived data structure)
• In the next lecture, we will learn about hash indexes

	Access Methods
	Recap
	Table Heap
	B-Tree Index
	Hash Index

