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Recap
Hash Tables

e Hash tables are fast data structures that support O(1) look-ups
e Used all throughout the DBMS internals.
> Examples: Page Table (Buffer Manager), Lock Table (Lock Manager)

e Trade-off between speed and flexibility.



Recap
Limitations of Hash Tables

e Hash tables are usually not what you want to use for a indexing tables
> Lack of ordering in widely-used hashing schemes
> Lack of locality of reference — more disk seeks
> Persistent data structures are much more complex (logging and recovery)
> Reference


https://www.evanjones.ca/ordered-vs-unordered-indexes.html

Recap
Table Indexes

e A table index is a replica of a subset of a table’s attributes that are organized and/or
sorted for efficient access based a subset of those attributes.

e Example: {Employee Id, Dept Id} — Employee Tuple Pointer

e The DBMS ensures that the contents of the table and the indices are in sync.




Recap
Table Indexes

e Itis the DBMS’s job to figure out the best index(es) to use to execute each query.
e There is a trade-off on the number of indexes to create per database.

> Storage Overhead
» Maintenance Overhead



Recap
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B+Tree Overview

B+Tree in Practice

Design Decisions

Optimizations



Trees (Part 1) B+Tree Overview

B+Tree Overview



B+Tree Overview
B-Tree Family

e There is a specific data structure called a B-Tree.
e People also use the term to generally refer to a class of balanced tree data structures:
> B-Tree (1971)
> B+Tree (1973)
> B*Tree (19777)
> Blink-Tree (1981)



Biee Overview
B+Tree

e A B+Tree is a self-balancing tree data structure that keeps data sorted and allows
searches, sequential access, insertions, and deletions in O(log n).

> Generalization of a binary search tree in that a node can have more than two children.
> Optimized for disk storage (i.e., read and write at page-granularity).




B iee Overview
B+Tree Properties

e A B+Tree is an M-way search tree with the following properties:

> It is perfectly balanced (i.e., every leaf node is at the same depth).
> Every node other than the root, is at least half-full: M/2-1 <= keys <= M-1
> Every inner node with k keys has k+1 non-null children (node pointers)
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B+Tree Example
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B+Tree Overview
Nodes

e Every B+Tree node is comprised of an array of key/value pairs.

> The keys are derived from the attributes(s) that the index is based on.

> The values will differ based on whether the node is classified as inner nodes or leaf nodes.
> Inner nodes: Values are pointers to other nodes.

> Leaf nodes: Values are pointers to tuples or actual tuple data.

e The arrays are (usually) kept in sorted key order.



B+Tree Leaf Nodes
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B+Tree Leaf Nodes
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B+Tree Leaf Nodes
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B+Tree Leaf Nodes

Trees (Part 1)

B+Tree Leaf Node
Level Slots Prev Next
(¢ ] [#][=][=]
Sorted Keys
|+||+|| ||*| |K7IKZIK3IK4IK5|.Q.K,7
viesd 4 1 ¥
Inlnlnlﬂlnlooolnl

18 /57



Trees (Part 1)

Node

struct Node {

/// The level in the tree.
uintl6_t level;

/// The number of children.
uintl6_t count;

1

void print_node(Node *node);
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B+Tree Overview
Node

struct InnerNode: public Node {
/// The capacity of a node.
static constexpr uint32_t kCapacity = 42;
/// The keys.
KeyT keys[kCapacity];
/// The children.
uint64_t children[kCapacity];



B+Tree Overview
Leaf Node Values

e Approach 1: Record Ids

> A pointer to the location of the tuple that the index entry corresponds to.
e Approach 2: Tuple Data

> The actual contents of the tuple is stored in the leaf node.
> Secondary indexes typically store the record id as their values.




Biee Overview
B-Tree vs. B+Tree

The original B-Tree from 1972 stored keys + values in all nodes in the tree.
> More space efficient since each key only appears once in the tree.

A B+Tree only stores values in leaf nodes.

Inner nodes only guide the search process.

Easier to support concurrent index access when only values are stored in leaf nodes.



Biee Overview
B+Tree: Insert

Find correct leaf node L.Put data entry into L in sorted order.

If L has enough space, done!
Otherwise, split L keys into L and a new node L2

> Redistribute entries evenly, copy up middle key.
> Insert index entry pointing to L2 into parent of L.

To split inner node, redistribute entries evenly, but push up middle key.

Splits help grow the tree by one level
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B+Tree: Visualization

e Demo

e Source: David Gales (Univ. of San Francisco)


https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html

B+Tree Overview
B+Tree: Delete

Start at root, find leaf L where entry belongs.

Remove the entry.
If L is at least half-full, done! If L has only M/2-1 entries,

> Try to re-distribute, borrowing from sibling (adjacent node with same parent as L).
> If re-distribution fails, merge L and sibling.

If merge occurred, must delete entry (pointing to L or sibling) from parent of L.
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B+Tree In Practice
B+Tree Statistics

e Typical Fill-Factor: 67
e Pages per level:
> Level1=1page=8KB
> Level 2 =134 pages = 1 MB
> Level 3 = 17,956 pages = 140 MB
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Data Organization

e A table can be stored in two ways:

> Heap-organized storage: Organizing rows in no particular order.
> Index-organized storage: Organizing rows in primary key order.

e Types of indexes:

> Clustered index: Organizing rows in a primary key order.
> Unclustered index: Organizing rows in a secondary key order.




Be+Tree In Practice
Clustered Index

e Tuples are kept sorted on disk using o
the order specified by primary key. (Directssearch)

Data Entries

o If the query accesses tuples using the e
clustering index’s attributes, then the ... Z, ,l RN\
DBMS can jump directly to the pages

that it needs.

e Traverse to the left-most leaf page, and
then retrieve tuples from all leaf pages.

Data Records
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Unclustered Index
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Clustered vs. Unclustered Index

e Clustered index

> Only one clustered index per table
> Example: {Employee Id}] — Employee Tuple Pointer

e Unclustered index
> Multiple unclustered indices per table
> Example: {Employee City}] — Clustered Index Pointer or Employee Tuple Pointer
> Accessing data through a non-clustered index may need to go through an extra layer of
indirection




Bifree In Pracice
Filtering Tuples

e The DBMS can use a B+Tree index if the filter uses any of the attributes of the key.

e Example: Index on <a,b,c>
> Supported: (a=5 AND b=3)
> Supported: (b=3).

e For hash index, we must have all attributes in search key.



Filtering Tuples
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B+Tree Design Decisions

Node Size
Merge Threshold
Variable Length Keys

Non-Unique Indexes
Intra-Node Search
Modern B-Tree Techniques


https://dl.acm.org/doi/10.1561/1900000028

B+Tree Design Decisions
Node Size

e The slower the storage device, the larger the optimal node size for a B+Tree.
» HDD ~1 MB
> SSD: ~10 KB
> In-Memory: ~512 B
e Optimal sizes varies depending on the workload
> Leaf Node Scans (OLAP) vs. Root-to-Leaf Traversals (OLTP)



B+Tree Design Decisions
Merge Threshold

e Some DBMSs do not always merge nodes when it is half full.
¢ Delaying a merge operation may reduce the amount of reorganization.

e It may also be better to just let underflows to exist and then periodically rebuild entire
tree.



B+Tree Design Decisions
Variable Length Keys

Approach 1: Pointers

> Store the keys as pointers to the tuple’s attribute.
Approach 2: Variable Length Nodes

> The size of each node in the index can vary.
> Requires careful memory management.

Approach 3: Padding
> Always pad the key to be max length of the key type.
Approach 4: Key Map / Indirection

> Embed an array of pointers that map to the key + value list within the node.
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Variable Length Keys: Key Map

B+Tree Leaf Node
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NS B+Tree Design Decisions

Non-Unique Indexes

e Approach 1: Duplicate Keys

> Use the same leaf node layout but store duplicate keys multiple times.
e Approach 2: Value Lists

> Store each key only once and maintain a linked list of unique values.
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Non-Unique Indexes: Duplicate Keys
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Non-Unique Indexes: Value Lists

B+Tree Leaf Node
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NS B+Tree Design Decisions

Intra-Node Search

e Approach 1: Linear Search

> Scan node keys from beginning to
end.

e Approach 2: Binary Search

> Jump to middle key, pivot left/right
depending on comparison.

e Approach 3: Interpolation Search

> Approximate location of desired key
based on known distribution of keys.

Find Key=

Lells]fel] II#I 9 |[1e]]

Lells][el] II;II 9 [[1e]]

Offset: 7-(10-8)=5

Lells]fel] H‘i” 9 [[1e]]




B+Tree Design Decisions
Intra-Node Search

struct InnerNode: public Node {
std::pair<uint32_t, bool> lower_bound(const KeyT &key) {
/// Set lower and upper bounds for binary search
uintl6é_t 1 = 0;
uintl6é_t h = this->count - 2;

}
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Optimizations

Prefix Compression

Suffix Truncation
Bulk Insert

Pointer Swizzling



UECENENSI  Optimizations

Pretix Compression

|| robbed ||robbing|| robot ||

e Sorted keys in the same leaf node are
likely to have the same prefix. ‘
¢ Instead of storing the entire key each

time, extract common prefix and store
only unique suffix for each key.

» Many variations. |bed ||bing| ot ||

Prefix: rob




UECENENSI  Optimizations

Suffix Truncation

| |abcdefghijk| |1mnopqrstuv| |

e The keys in the inner nodes are only
used to "direct traffic". N-1T-T 1 U-1-1 1

> We don’t need the entire key.

e Store a minimum prefix that is needed eodpe[ ] ][I ]
to correctly route probes into the index.




UECENENSI  Optimizations

Bulk Insert

o The fastest/best way to build a B+Tree Keys: 3,7,9,13,6,1
is to first sort the keys and then build Sorted Keys: 1, 3, 6, 7, 9, 13
the index from the bottom up.
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UECENENSI  Optimizations

Pointer Swizzling

Nodes use page ids to reference other nodes in the index.

The DBMS must get the memory location from the page table during traversal.

If a page is pinned in the buffer pool, then we can store raw pointers instead of page
ids.
This avoids address lookups from the page table.
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Pointer Swizzling
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Pointer Swizzling
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Conclusion

e The venerable B+Tree is always a good choice for your DBMS.
e Next Class

» More B+Trees
» Tries / Radix Trees
> Inverted Indexes
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