
1 / 57

Trees (Part 1)

Trees (Part 1)

2 / 57

Trees (Part 1) Recap

Recap

3 / 57

Trees (Part 1) Recap

Hash Tables

• Hash tables are fast data structures that support O(1) look-ups
• Used all throughout the DBMS internals.

▶ Examples: Page Table (Buffer Manager), Lock Table (Lock Manager)

• Trade-off between speed and flexibility.

4 / 57

Trees (Part 1) Recap

Limitations of Hash Tables

• Hash tables are usually not what you want to use for a indexing tables
▶ Lack of ordering in widely-used hashing schemes
▶ Lack of locality of reference −→ more disk seeks
▶ Persistent data structures are much more complex (logging and recovery)
▶ Reference

https://www.evanjones.ca/ordered-vs-unordered-indexes.html

5 / 57

Trees (Part 1) Recap

Table Indexes

• A table index is a replica of a subset of a table’s attributes that are organized and/or
sorted for efficient access based a subset of those attributes.

• Example: {Employee Id, Dept Id} −→ Employee Tuple Pointer
• The DBMS ensures that the contents of the table and the indices are in sync.

6 / 57

Trees (Part 1) Recap

Table Indexes

• It is the DBMS’s job to figure out the best index(es) to use to execute each query.
• There is a trade-off on the number of indexes to create per database.

▶ Storage Overhead
▶ Maintenance Overhead

7 / 57

Trees (Part 1) Recap

Today’s Agenda

• B+Tree Overview
• B+Tree in Practice
• Design Decisions
• Optimizations

8 / 57

Trees (Part 1) B+Tree Overview

B+Tree Overview

9 / 57

Trees (Part 1) B+Tree Overview

B-Tree Family

• There is a specific data structure called a B-Tree.
• People also use the term to generally refer to a class of balanced tree data structures:

▶ B-Tree (1971)
▶ B+Tree (1973)
▶ B*Tree (1977?)
▶ Blink-Tree (1981)

10 / 57

Trees (Part 1) B+Tree Overview

B+Tree

• A B+Tree is a self-balancing tree data structure that keeps data sorted and allows
searches, sequential access, insertions, and deletions in O(log n).
▶ Generalization of a binary search tree in that a node can have more than two children.
▶ Optimized for disk storage (i.e., read and write at page-granularity).

11 / 57

Trees (Part 1) B+Tree Overview

B+Tree Properties

• A B+Tree is an M-way search tree with the following properties:
▶ It is perfectly balanced (i.e., every leaf node is at the same depth).
▶ Every node other than the root, is at least half-full: M/2-1 <= keys <= M-1
▶ Every inner node with k keys has k+1 non-null children (node pointers)

12 / 57

Trees (Part 1) B+Tree Overview

B+Tree Example

13 / 57

Trees (Part 1) B+Tree Overview

B+Tree Example

14 / 57

Trees (Part 1) B+Tree Overview

Nodes

• Every B+Tree node is comprised of an array of key/value pairs.
▶ The keys are derived from the attributes(s) that the index is based on.
▶ The values will differ based on whether the node is classified as inner nodes or leaf nodes.
▶ Inner nodes: Values are pointers to other nodes.
▶ Leaf nodes: Values are pointers to tuples or actual tuple data.

• The arrays are (usually) kept in sorted key order.

15 / 57

Trees (Part 1) B+Tree Overview

B+Tree Leaf Nodes

16 / 57

Trees (Part 1) B+Tree Overview

B+Tree Leaf Nodes

17 / 57

Trees (Part 1) B+Tree Overview

B+Tree Leaf Nodes

18 / 57

Trees (Part 1) B+Tree Overview

B+Tree Leaf Nodes

19 / 57

Trees (Part 1) B+Tree Overview

Node

struct Node {
/// The level in the tree.
uint16_t level;
/// The number of children.
uint16_t count;

...
};

void print_node(Node *node);

20 / 57

Trees (Part 1) B+Tree Overview

Node

struct InnerNode: public Node {
/// The capacity of a node.

static constexpr uint32_t kCapacity = 42;
/// The keys.
KeyT keys[kCapacity];
/// The children.
uint64_t children[kCapacity];

...
};

21 / 57

Trees (Part 1) B+Tree Overview

Leaf Node Values

• Approach 1: Record Ids
▶ A pointer to the location of the tuple that the index entry corresponds to.

• Approach 2: Tuple Data
▶ The actual contents of the tuple is stored in the leaf node.
▶ Secondary indexes typically store the record id as their values.

22 / 57

Trees (Part 1) B+Tree Overview

B-Tree vs. B+Tree

• The original B-Tree from 1972 stored keys + values in all nodes in the tree.
▶ More space efficient since each key only appears once in the tree.

• A B+Tree only stores values in leaf nodes.
• Inner nodes only guide the search process.
• Easier to support concurrent index access when only values are stored in leaf nodes.

23 / 57

Trees (Part 1) B+Tree Overview

B+Tree: Insert

• Find correct leaf node L.Put data entry into L in sorted order.
• If L has enough space, done!
• Otherwise, split L keys into L and a new node L2

▶ Redistribute entries evenly, copy up middle key.
▶ Insert index entry pointing to L2 into parent of L.

• To split inner node, redistribute entries evenly, but push up middle key.
• Splits help grow the tree by one level

24 / 57

Trees (Part 1) B+Tree Overview

B+Tree: Visualization

• Demo
• Source: David Gales (Univ. of San Francisco)

https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html

25 / 57

Trees (Part 1) B+Tree Overview

B+Tree: Delete

• Start at root, find leaf L where entry belongs.
• Remove the entry.
• If L is at least half-full, done! If L has only M/2-1 entries,

▶ Try to re-distribute, borrowing from sibling (adjacent node with same parent as L).
▶ If re-distribution fails, merge L and sibling.

• If merge occurred, must delete entry (pointing to L or sibling) from parent of L.

26 / 57

Trees (Part 1) B+Tree In Practice

B+Tree In Practice

27 / 57

Trees (Part 1) B+Tree In Practice

B+Tree Statistics

• Typical Fill-Factor: 67
• Pages per level:

▶ Level 1 = 1 page = 8 KB
▶ Level 2 = 134 pages = 1 MB
▶ Level 3 = 17,956 pages = 140 MB

28 / 57

Trees (Part 1) B+Tree In Practice

Data Organization

• A table can be stored in two ways:
▶ Heap-organized storage: Organizing rows in no particular order.
▶ Index-organized storage: Organizing rows in primary key order.

• Types of indexes:
▶ Clustered index: Organizing rows in a primary key order.
▶ Unclustered index: Organizing rows in a secondary key order.

29 / 57

Trees (Part 1) B+Tree In Practice

Clustered Index

• Tuples are kept sorted on disk using
the order specified by primary key.

• If the query accesses tuples using the
clustering index’s attributes, then the
DBMS can jump directly to the pages
that it needs.

• Traverse to the left-most leaf page, and
then retrieve tuples from all leaf pages.

30 / 57

Trees (Part 1) B+Tree In Practice

Unclustered Index

• Retrieving tuples in the order that
appear in an unclustered index is
inefficient.

• The DBMS can first figure out all the
tuples that it needs and then sort them
based on their page id.

31 / 57

Trees (Part 1) B+Tree In Practice

Clustered vs. Unclustered Index

• Clustered index
▶ Only one clustered index per table
▶ Example: {Employee Id} −→ Employee Tuple Pointer

• Unclustered index
▶ Multiple unclustered indices per table
▶ Example: {Employee City} −→ Clustered Index Pointer or Employee Tuple Pointer
▶ Accessing data through a non-clustered index may need to go through an extra layer of

indirection

32 / 57

Trees (Part 1) B+Tree In Practice

Filtering Tuples

• The DBMS can use a B+Tree index if the filter uses any of the attributes of the key.
• Example: Index on <a,b,c>

▶ Supported: (a=5 AND b=3)
▶ Supported: (b=3).

• For hash index, we must have all attributes in search key.

33 / 57

Trees (Part 1) B+Tree In Practice

Filtering Tuples

Find Key=(A,B)

34 / 57

Trees (Part 1) B+Tree In Practice

Filtering Tuples

Find Key=(A,*)

35 / 57

Trees (Part 1) B+Tree Design Decisions

B+Tree Design Decisions

36 / 57

Trees (Part 1) B+Tree Design Decisions

B+Tree Design Decisions

• Node Size
• Merge Threshold
• Variable Length Keys
• Non-Unique Indexes
• Intra-Node Search
• Modern B-Tree Techniques

https://dl.acm.org/doi/10.1561/1900000028

37 / 57

Trees (Part 1) B+Tree Design Decisions

Node Size

• The slower the storage device, the larger the optimal node size for a B+Tree.
▶ HDD ∼1 MB
▶ SSD: ∼10 KB
▶ In-Memory: ∼512 B

• Optimal sizes varies depending on the workload
▶ Leaf Node Scans (OLAP) vs. Root-to-Leaf Traversals (OLTP)

38 / 57

Trees (Part 1) B+Tree Design Decisions

Merge Threshold

• Some DBMSs do not always merge nodes when it is half full.
• Delaying a merge operation may reduce the amount of reorganization.
• It may also be better to just let underflows to exist and then periodically rebuild entire

tree.

39 / 57

Trees (Part 1) B+Tree Design Decisions

Variable Length Keys

• Approach 1: Pointers
▶ Store the keys as pointers to the tuple’s attribute.

• Approach 2: Variable Length Nodes
▶ The size of each node in the index can vary.
▶ Requires careful memory management.

• Approach 3: Padding
▶ Always pad the key to be max length of the key type.

• Approach 4: Key Map / Indirection
▶ Embed an array of pointers that map to the key + value list within the node.

40 / 57

Trees (Part 1) B+Tree Design Decisions

Variable Length Keys: Key Map

41 / 57

Trees (Part 1) B+Tree Design Decisions

Non-Unique Indexes

• Approach 1: Duplicate Keys
▶ Use the same leaf node layout but store duplicate keys multiple times.

• Approach 2: Value Lists
▶ Store each key only once and maintain a linked list of unique values.

42 / 57

Trees (Part 1) B+Tree Design Decisions

Non-Unique Indexes: Duplicate Keys

43 / 57

Trees (Part 1) B+Tree Design Decisions

Non-Unique Indexes: Value Lists

44 / 57

Trees (Part 1) B+Tree Design Decisions

Intra-Node Search

• Approach 1: Linear Search
▶ Scan node keys from beginning to

end.
• Approach 2: Binary Search

▶ Jump to middle key, pivot left/right
depending on comparison.

• Approach 3: Interpolation Search
▶ Approximate location of desired key

based on known distribution of keys.

45 / 57

Trees (Part 1) B+Tree Design Decisions

Intra-Node Search

struct InnerNode: public Node {
std::pair<uint32_t, bool> lower_bound(const KeyT &key) {
/// Set lower and upper bounds for binary search
uint16_t l = 0;
uint16_t h = this->count - 2;

}
...

};

46 / 57

Trees (Part 1) Optimizations

Optimizations

47 / 57

Trees (Part 1) Optimizations

Optimizations

• Prefix Compression
• Suffix Truncation
• Bulk Insert
• Pointer Swizzling

48 / 57

Trees (Part 1) Optimizations

Prefix Compression

• Sorted keys in the same leaf node are
likely to have the same prefix.

• Instead of storing the entire key each
time, extract common prefix and store
only unique suffix for each key.
▶ Many variations.

49 / 57

Trees (Part 1) Optimizations

Suffix Truncation

• The keys in the inner nodes are only
used to "direct traffic".
▶ We don’t need the entire key.

• Store a minimum prefix that is needed
to correctly route probes into the index.

50 / 57

Trees (Part 1) Optimizations

Bulk Insert

• The fastest/best way to build a B+Tree
is to first sort the keys and then build
the index from the bottom up.

51 / 57

Trees (Part 1) Optimizations

Bulk Insert

52 / 57

Trees (Part 1) Optimizations

Bulk Insert

53 / 57

Trees (Part 1) Optimizations

Pointer Swizzling

• Nodes use page ids to reference other nodes in the index.
• The DBMS must get the memory location from the page table during traversal.
• If a page is pinned in the buffer pool, then we can store raw pointers instead of page

ids.
• This avoids address lookups from the page table.

54 / 57

Trees (Part 1) Optimizations

Pointer Swizzling

55 / 57

Trees (Part 1) Optimizations

Pointer Swizzling

56 / 57

Trees (Part 1) Conclusion

Conclusion

57 / 57

Trees (Part 1) Conclusion

Conclusion

• The venerable B+Tree is always a good choice for your DBMS.
• Next Class

▶ More B+Trees
▶ Tries / Radix Trees
▶ Inverted Indexes

	Trees (Part 1)
	Recap
	B+Tree Overview
	B+Tree In Practice
	B+Tree Design Decisions
	Optimizations
	Conclusion

