Trees (Part 1)

Trees (Part 1)

13163(32113

2/57

Recap
Hash Tables

e Hash tables are fast data structures that support O(1) look-ups
e Used all throughout the DBMS internals.
> Examples: Page Table (Buffer Manager), Lock Table (Lock Manager)

e Trade-off between speed and flexibility.

Recap
Limitations of Hash Tables

e Hash tables are usually not what you want to use for a indexing tables
> Lack of ordering in widely-used hashing schemes
> Lack of locality of reference — more disk seeks
> Persistent data structures are much more complex (logging and recovery)
> Reference

https://www.evanjones.ca/ordered-vs-unordered-indexes.html

Recap
Table Indexes

e A table index is a replica of a subset of a table’s attributes that are organized and/or
sorted for efficient access based a subset of those attributes.

e Example: {Employee Id, Dept Id} — Employee Tuple Pointer

e The DBMS ensures that the contents of the table and the indices are in sync.

Recap
Table Indexes

e Itis the DBMS’s job to figure out the best index(es) to use to execute each query.
e There is a trade-off on the number of indexes to create per database.

> Storage Overhead
» Maintenance Overhead

Recap
Today’s Agenda

B+Tree Overview

B+Tree in Practice

Design Decisions

Optimizations

Trees (Part 1) B+Tree Overview

B+Tree Overview

B+Tree Overview
B-Tree Family

e There is a specific data structure called a B-Tree.
e People also use the term to generally refer to a class of balanced tree data structures:
> B-Tree (1971)
> B+Tree (1973)
> B*Tree (19777)
> Blink-Tree (1981)

Biee Overview
B+Tree

e A B+Tree is a self-balancing tree data structure that keeps data sorted and allows
searches, sequential access, insertions, and deletions in O(log n).

> Generalization of a binary search tree in that a node can have more than two children.
> Optimized for disk storage (i.e., read and write at page-granularity).

B iee Overview
B+Tree Properties

e A B+Tree is an M-way search tree with the following properties:

> It is perfectly balanced (i.e., every leaf node is at the same depth).
> Every node other than the root, is at least half-full: M/2-1 <= keys <= M-1
> Every inner node with k keys has k+1 non-null children (node pointers)

B+Tree Example

Trees (Part 1)

<node*>|<key>

Inner Node

A
<value>|<key>

Leaf Nodes

Hao

12 /57

B+Tree Example

Trees (Part 1)

Inner Node

| (e ll7 01 0] [ledlss]] |
Sibling Pointers Leaf Nodes

13 /57

B+Tree Overview
Nodes

e Every B+Tree node is comprised of an array of key/value pairs.

> The keys are derived from the attributes(s) that the index is based on.

> The values will differ based on whether the node is classified as inner nodes or leaf nodes.
> Inner nodes: Values are pointers to other nodes.

> Leaf nodes: Values are pointers to tuples or actual tuple data.

e The arrays are (usually) kept in sorted key order.

B+Tree Leaf Nodes

Trees (Part 1)
B+Tree Leaf Node
o)
S e [k1| vi|seo kn | vn | = >
v Y *
i e i

15/57

B+Tree Leaf Nodes

Trees (Part 1)

B+Tree Leaf Node

J’Vext
a | k7 v1|ees kn [vn
I]

PagelD

Hao

16 /57

B+Tree Leaf Nodes

Trees (Part 1)

B+Tree Leaf Node

Prev

PagelD
] [

Next
€= = [K7 [V1 [see{ Kkn | Vn [= =
| D

PagelD
Key+Value

17 /57

B+Tree Leaf Nodes

Trees (Part 1)

B+Tree Leaf Node
Level Slots Prev Next
(¢] [#][=][=]
Sorted Keys
|+||+|| ||*| |K7IKZIK3IK4IK5|.Q.K,7
viesd 4 1 ¥
Inlnlnlﬂlnlooolnl

18 /57

Trees (Part 1)

Node

struct Node {

/// The level in the tree.
uintl6_t level;

/// The number of children.
uintl6_t count;

1

void print_node(Node *node);

Da 19/57

B+Tree Overview
Node

struct InnerNode: public Node {
/// The capacity of a node.
static constexpr uint32_t kCapacity = 42;
/// The keys.
KeyT keys[kCapacity];
/// The children.
uint64_t children[kCapacity];

B+Tree Overview
Leaf Node Values

e Approach 1: Record Ids

> A pointer to the location of the tuple that the index entry corresponds to.
e Approach 2: Tuple Data

> The actual contents of the tuple is stored in the leaf node.
> Secondary indexes typically store the record id as their values.

Biee Overview
B-Tree vs. B+Tree

The original B-Tree from 1972 stored keys + values in all nodes in the tree.
> More space efficient since each key only appears once in the tree.

A B+Tree only stores values in leaf nodes.

Inner nodes only guide the search process.

Easier to support concurrent index access when only values are stored in leaf nodes.

Biee Overview
B+Tree: Insert

Find correct leaf node L.Put data entry into L in sorted order.

If L has enough space, done!
Otherwise, split L keys into L and a new node L2

> Redistribute entries evenly, copy up middle key.
> Insert index entry pointing to L2 into parent of L.

To split inner node, redistribute entries evenly, but push up middle key.

Splits help grow the tree by one level

Trees (Part 1) B+Tree Overview

B+Tree: Visualization

e Demo

e Source: David Gales (Univ. of San Francisco)

https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html

B+Tree Overview
B+Tree: Delete

Start at root, find leaf L where entry belongs.

Remove the entry.
If L is at least half-full, done! If L has only M/2-1 entries,

> Try to re-distribute, borrowing from sibling (adjacent node with same parent as L).
> If re-distribution fails, merge L and sibling.

If merge occurred, must delete entry (pointing to L or sibling) from parent of L.

Trees (Part 1) B+Tree In Practice

B+Tree In Practice

B+Tree In Practice
B+Tree Statistics

e Typical Fill-Factor: 67
e Pages per level:
> Level1=1page=8KB
> Level 2 =134 pages = 1 MB
> Level 3 = 17,956 pages = 140 MB

Trees (Part 1) B+Tree In Practice

Data Organization

e A table can be stored in two ways:

> Heap-organized storage: Organizing rows in no particular order.
> Index-organized storage: Organizing rows in primary key order.

e Types of indexes:

> Clustered index: Organizing rows in a primary key order.
> Unclustered index: Organizing rows in a secondary key order.

Be+Tree In Practice
Clustered Index

e Tuples are kept sorted on disk using o
the order specified by primary key. (Directssearch)

Data Entries

o If the query accesses tuples using the e
clustering index’s attributes, then the ... Z, ,l RN\
DBMS can jump directly to the pages

that it needs.

e Traverse to the left-most leaf page, and
then retrieve tuples from all leaf pages.

Data Records

Trees (Part 1) B+Tree In Practice

Unclustered Index

——
Scan Direction

L
I . Saval,
e Retrieving tuples in the order that .. :}é.,éi/ __________
appear in an unclustered index is ¥
inefficient.
irst f Beci meen
e The DBMS can first figure out all the m_=rees 1o Faie 1l
. age Page
tuples that it needs and then sort them =Eg§g 1% » Page 122
. . Wl Page Page
based on thell‘ page ld -Eggg 1812 };ggg]lgg
Page 103 Ml Page 104
Page 104 Page 104
ElPage 103 Page 104

Trees (Part 1) B+Tree In Practice

Clustered vs. Unclustered Index

e Clustered index

> Only one clustered index per table
> Example: {Employee Id}] — Employee Tuple Pointer

e Unclustered index
> Multiple unclustered indices per table
> Example: {Employee City}] — Clustered Index Pointer or Employee Tuple Pointer
> Accessing data through a non-clustered index may need to go through an extra layer of
indirection

Bifree In Pracice
Filtering Tuples

e The DBMS can use a B+Tree index if the filter uses any of the attributes of the key.

e Example: Index on <a,b,c>
> Supported: (a=5 AND b=3)
> Supported: (b=3).

e For hash index, we must have all attributes in search key.

Filtering Tuples

adlnell || [adfsa] || [eels.d] || [ledleo] [

Find Key=(A,B)

Filtering Tuples

A <A

A A8

Y
[l |

adsAl [[B.elldl] [ledlen] |

A<B

Find Key=(A,*)

T 9ac

34 /57

NS B+Tree Design Decisions

B+Tree Design Decisions

NS B+Tree Design Decisions

B+Tree Design Decisions

Node Size
Merge Threshold
Variable Length Keys

Non-Unique Indexes
Intra-Node Search
Modern B-Tree Techniques

https://dl.acm.org/doi/10.1561/1900000028

B+Tree Design Decisions
Node Size

e The slower the storage device, the larger the optimal node size for a B+Tree.
» HDD ~1 MB
> SSD: ~10 KB
> In-Memory: ~512 B
e Optimal sizes varies depending on the workload
> Leaf Node Scans (OLAP) vs. Root-to-Leaf Traversals (OLTP)

B+Tree Design Decisions
Merge Threshold

e Some DBMSs do not always merge nodes when it is half full.
¢ Delaying a merge operation may reduce the amount of reorganization.

e It may also be better to just let underflows to exist and then periodically rebuild entire
tree.

B+Tree Design Decisions
Variable Length Keys

Approach 1: Pointers

> Store the keys as pointers to the tuple’s attribute.
Approach 2: Variable Length Nodes

> The size of each node in the index can vary.
> Requires careful memory management.

Approach 3: Padding
> Always pad the key to be max length of the key type.
Approach 4: Key Map / Indirection

> Embed an array of pointers that map to the key + value list within the node.

Trees (Part 1)

Variable Length Keys: Key Map

B+Tree Leaf Node

0 e
EXREINENNEN
Sorted Key Map

[A-=[L-=[0-5]P-]

Key+Values

V4

@ [phr
Ll | vz |[aha | v7 [lobo

V3

it
S
el
Q

40/ 57

NS B+Tree Design Decisions

Non-Unique Indexes

e Approach 1: Duplicate Keys

> Use the same leaf node layout but store duplicate keys multiple times.
e Approach 2: Value Lists

> Store each key only once and maintain a linked list of unique values.

Trees (Part 1)

Non-Unique Indexes: Duplicate Keys

B+Tree Leaf Node
| Level Slots Prev Next
AN Ced Cel (=] (=]
A Sorted Keys
g s r
[I I il §

Vajues

K1 | k1| K1] k2| k2 |eee| kn |
A

ENERERERENITEN

Da 42 /57

Trees (Part 1)
Non-Unique Indexes: Value Lists

B+Tree Leaf Node
E Level
2

Slots Prev Next

EXRERRENNEN
E Sorted Keys
o — ['| k1| k2| k3| k4| K5 |owe] Kn |
o, Values

43757

NS B+Tree Design Decisions

Intra-Node Search

e Approach 1: Linear Search

> Scan node keys from beginning to
end.

e Approach 2: Binary Search

> Jump to middle key, pivot left/right
depending on comparison.

e Approach 3: Interpolation Search

> Approximate location of desired key
based on known distribution of keys.

Find Key=

Lells]fel] II#I 9 |[1e]]

Lells][el] II;II 9 [[1e]]

Offset: 7-(10-8)=5

Lells]fel] H‘i” 9 [[1e]]

B+Tree Design Decisions
Intra-Node Search

struct InnerNode: public Node {
std::pair<uint32_t, bool> lower_bound(const KeyT &key) {
/// Set lower and upper bounds for binary search
uintl6é_t 1 = 0;
uintl6é_t h = this->count - 2;

}

UECENENSI Optimizations

Optimizations

UECENENSI Optimizations

Optimizations

Prefix Compression

Suffix Truncation
Bulk Insert

Pointer Swizzling

UECENENSI Optimizations

Pretix Compression

|| robbed ||robbing|| robot ||

e Sorted keys in the same leaf node are
likely to have the same prefix. ‘
¢ Instead of storing the entire key each

time, extract common prefix and store
only unique suffix for each key.

» Many variations. |bed ||bing| ot ||

Prefix: rob

UECENENSI Optimizations

Suffix Truncation

| |abcdefghijk| |1mnopqrstuv| |

e The keys in the inner nodes are only
used to "direct traffic". N-1T-T 1 U-1-1 1

> We don’t need the entire key.

e Store a minimum prefix that is needed eodpe[]][I]
to correctly route probes into the index.

UECENENSI Optimizations

Bulk Insert

o The fastest/best way to build a B+Tree Keys: 3,7,9,13,6,1
is to first sort the keys and then build Sorted Keys: 1, 3, 6, 7, 9, 13
the index from the bottom up.

BUIk Inser t

Trees (Part 1)

51/57

BUIk Inser t

Trees (Part 1)

—

m\m

13
"

UECENENSI Optimizations

Pointer Swizzling

Nodes use page ids to reference other nodes in the index.

The DBMS must get the memory location from the page table during traversal.

If a page is pinned in the buffer pool, then we can store raw pointers instead of page
ids.
This avoids address lookups from the page table.

Trees (Part 1)

Pointer Swizzling

Find Key>3 Find Key>3

DI y

W flsll 1) [lellzdl I IR

g

Page #2 - <Page*>

Buffer Poole-"

Buffer Pool

Do 54 /57

Pointer Swizzling

Find Key>3

~Page #3

IR

|| | R A

Buffer Pool«----....

\—/
Page #2 - <Page*>
Page #3 - <Page*>

Trees (Part 1)

<Page*>

Find Key>3

| ERIERI

[61[7]]

Buffer Pool

Dae

55/57

Trees (Part 1) Conclusion

Conclusion

Trees (Part 1) Conclusion

Conclusion

e The venerable B+Tree is always a good choice for your DBMS.
e Next Class

» More B+Trees
» Tries / Radix Trees
> Inverted Indexes

	Trees (Part 1)
	Recap
	B+Tree Overview
	B+Tree In Practice
	B+Tree Design Decisions
	Optimizations
	Conclusion

