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B+Tree

e A B+Tree is a self-balancing tree data structure that keeps data sorted and allows
searches, sequential access, insertions, and deletions in O(log n).

> Generalization of a binary search tree in that a node can have more than two children.
> Optimized for disk storage (i.e., read and write at page-granularity).




B+Tree Properties

e A B+Tree is an M-way search tree with the following properties:

> It is perfectly balanced (i.e., every leaf node is at the same depth).
> Every node other than the root, is at least half-full: M/2-1 <= keys <= M-1
> Every inner node with k keys has k+1 non-null children (node pointers)




Recap
Today’s Agenda

More B+Trees
Additional Index Magic
Tries / Radix Trees

Inverted Indexes



Trees (Part 2) More B+Trees

More B+Trees



More BTiees
Duplicate Keys

e Approach 1: Append Record Id

> Add the tuple’s unique record id as part of the key to ensure that all keys are unique.
> The DBMS can still use partial keys to find tuples.

e Approach 2: Overflow Leaf Nodes

> Allow leaf nodes to spill into overflow nodes that contain the duplicate keys.
> This is more complex to maintain and modify.
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Append Record Id
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More BTiees
Duplicate Keys

e Approach 1: Append Record Id

> Add the tuple’s unique record id as part of the key to ensure that all keys are unique.
> The DBMS can still use partial keys to find tuples.

e Approach 2: Overflow Leaf Nodes

> Allow leaf nodes to spill into overflow nodes that contain the duplicate keys.
> This is more complex to maintain and modify.
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Overflow Leaf Nodes
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More B+Trees
Partitioned B-Tree

Bulk operations are fine if they are rare, but they are disruptive
e usually the B-tree has to be take offline
e the new cannot be queries easily

e existing queries must be halted



More B+Trees
Partitioned B-Tree

Basic idea: partition the B-tree
e add an artificial column in front

e creates separate partitions with the B-tree

Partition no. 0 3



More B+Trees
Partitioned B-Tree

Benefits:

partitions are largely independent of each other

e one can append to the “rightmost” partition without disrupting the rest

the index stays always online

partitions can be merged lazily

e merge only when beneficial

Drawbacks:
e no “global” order any more

e lookups have to access all partitions
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Prefix B -tree
A BT -tree can contain separators that do not occur in the data

We can use this to save space:

—_—

|aaaa bbbb| | eeee ffff | |aaaa bbbb| | eeee ffff |

e choose the smallest possible separator

e no change to the lookup logic is required
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Prefix B™-tree

We can do even better by factoring out a common prefix:

http://www. /google.com \ sigmod.org

VN

only one prefix per page

the change to the lookup logic is minor

the lookup key itself is adjusted

sometimes only inner nodes, to keep scans cheap
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Prefix B™-tree

The lexicographic sort order makes prefix compression attractive:

 neighboring entries tend to differ only at the end

e a common prefix occurs very frequently

not only for strings, also for compound keys etc.

in particular important if partitioned B-trees

with big-endian ordering any value might get compressed
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Implicit Indexes

e Most DBMSs automatically create an index to enforce integrity constraints.

> Primary Keys
> Unique Constraints
CREATE TABLE foo (
id SERIAL PRIMARY KEY,
vall INT NOT NULL,
val2 VARCHAR(32) UNIQUE
);

CREATE UNIQUE INDEX foo_pkey ON foo (id);
CREATE UNIQUE INDEX foo_val2_key ON foo (val2);



Implicit Indexes

e But, this is not done for referential integrity constraints (i.e., foreign keys).

CREATE TABLE bar (
id INT REFERENCES foo (vall),
val VARCHAR(32)

);

CREATE INDEX foo_vall_key ON foo (vall); -- Not automatically done



Partial Indexes

e Create an index on a subset of the entire table.

e This potentially reduces its size and the amount of overhead to maintain it.
¢ One common use case is to partition indexes by date ranges.
> Create a separate index per month, year.

CREATE INDEX idx_foo ON foo (a, b)
WHERE ¢ = 'October';

SELECT b FROM foo WHERE a = 123 AND c = 'October';



Covering Indexes

e If all the fields needed to process the query are available in an index, then the DBMS
does not need to retrieve the tuple from the heap.

e This reduces contention on the DBMS’s buffer pool resources.
CREATE INDEX idx_foo ON foo (a, b);
SELECT b FROM foo WHERE a = 123;



Index Include Columns

e Embed additional columns in indexes to support index-only queries.

e These extra columns are only stored in the leaf nodes and are not part of the search key.
CREATE INDEX idx_foo ON foo (a, b) INCLUDE (c);

SELECT b FROM foo WHERE a = 123 AND c = 'October';



Functional/Expression Indexes

e An index does not need to store keys in the same way that they appear in their base
table.

* You can use functions/expressions when declaring an index.

SELECT * FROM users
WHERE EXTRACT(dow FROM login) = 2;

CREATE INDEX idx_user_login ON users (login);



Functional/Expression Indexes

¢ An index does not need to store keys in the same way that they appear in their base
table.

* You can use functions/expressions when declaring an index.
CREATE INDEX idx_user_login ON users (EXTRACT(dow FROM login));

CREATE INDEX idx_user_login ON foo (login) WHERE EXTRACT(dow FROM login) = 2;
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Trees (Part 2) Tries / Radix Trees

Observation

e The inner node keys in a B+Tree cannot tell you whether a key exists in the index.
e You must always traverse to the leaf node.

e This means that you could have (at least) one buffer pool page miss per level in the tree
just to find out a key does not exist.
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Trie Index

Keys: [HELLOJ HAT, HAVE

e Use a digital representation of keys to
examine prefixes one-by-one instead of
comparing entire key.

> a.k.a., Digital Search Tree, Prefix Tree.




Trees (Part 2) Tries / Radix Trees

Properties

e Shape only depends on key space and lengths.
> Does not depend on existing keys or insertion order.
> Does not require rebalancing operations.
e All operations have O(k) complexity where k is the length of the key.

> The path to a leaf node represents the key of the leaf
> Keys are stored implicitly and can be reconstructed from paths.




Thies /Radix Tres
Key Span

e The span of a trie level is the number of bits that each partial key / digit represents.

> If the digit exists in the corpus, then store a pointer to the next level in the trie branch.
» Otherwise, store null.

e This determines the fan-out of each node and the physical height of the tree.




Key Span
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Key Span
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Key Span
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Key Span
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Key Span
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Key Span
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Key Span

1-bit Span Trie
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Tries / Radix Trees
Radix Tree

1-bit Span Radix Tree

)

e Omit all nodes with only a single child. § 10| Repeat 0%

» a.k.a., Patricia Tree. T L:D
e Can produce false positives ~
¢ So the DBMS always checks the Y Y
original tuple to see whether a key
matches.
Tuple Node

Pointer > Pointer &>



Radix Tree: Modifications
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Radix Tree: Modifications
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Radix Tree: Modifications
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Thies /Radix Tres
Radix Tree: Binary Comparable Keys

e Not all attribute types can be decomposed into binary comparable digits for a radix
tree.

> Unsigned Integers: Byte order must be flipped for little endian machines.

> Signed Integers: Flip two’s-complement so that negative numbers are smaller than
positive.

> Floats: Classify into group (neg vs. pos, normalized vs. denormalized), then store as
unsigned integer.

> Compound: Transform each attribute separately.
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Radix Tree: Binary Comparable Keys
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Radix Tree: Binary Comparable Keys

8-bit Span Radix Tree

Int Key: 168496141

$

Hex Key: 0A 0B 0C 0D

Find 658205
Hex QA QB 1D

Endian
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Trees (Part 2) Inverted Index

Observation

e The tree indexes that we’ve discussed so far are useful for "point" and "range" queries:

> Find all customers in the 30308 zip code.
> Find all orders between June 2020 and September 2020.

e They are not good at keyword searches:
> Find all Wikipedia articles that contain the word "Trie"



Inverted Index
Wikipedia Example

CREATE TABLE pages (
userID INT PRIMARY KEY,
userName VARCHAR UNIQUE,
)

CREATE TABLE pages (

pageID INT PRIMARY KEY,

title VARCHAR UNIQUE,

latest INT REFERENCES revisions (revID),
DN

CREATE TABLE revisions (

revID INT PRIMARY KEY,

userID INT REFERENCES useracct (userID),

pageID INT REFERENCES pages (pagelD),

content TEXT, -- Text Search
updated DATETIME

b



Inverted Index
Wikipedia Example

e If we create an index on the content attribute, what does that do?

e This doesn’t help our query.

e Our query is also not correct since it will return any occurrence (not only exact matches)
CREATE INDEX idx_rev_content ON revisions (content);

SELECT pageID FROM revisions WHERE content LIKE '%Trie%';
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Inverted Index

e Aninverted index stores a mapping of words to records that contain those words in
the target attribute.
> Sometimes called a full-text search index.
> Also called a concordance in old (like really old) times.

e Major DBMSs support these natively (e.g., PostgreSQL Generalized Inverted Index
(GIN))

e There are also specialized DBMSs (e.g., Lucene, Elasticsearch)



Inverted Index
Query Types

e Phrase Searches

> Find records that contain a list of words in the given order.
e Proximity Searches

» Find records where two words occur within n words of each other.
e Wildcard Searches

> Find records that contain words that match some pattern (e.g., regular expression).
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Design Decisions

e Decision 1: What To Store

» The index needs to store at least the words contained in each record (separated by
punctuation characters).
> Can also store frequency, position, and other meta-data.

e Decision 2: When To Update
> Maintain auxiliary data structures to "stage" updates and then update the index in batches.
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Trees (Part 2) Conclusion

Conclusion

e B+Trees are still the way to go for tree indexes.
e Next Class
> How to make indexes thread-safe!
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