Trees (Part 2)

Trees (Part 2)

13163(32113

2/59

B+Tree

e A B+Tree is a self-balancing tree data structure that keeps data sorted and allows
searches, sequential access, insertions, and deletions in O(log n).

> Generalization of a binary search tree in that a node can have more than two children.
> Optimized for disk storage (i.e., read and write at page-granularity).

B+Tree Properties

e A B+Tree is an M-way search tree with the following properties:

> It is perfectly balanced (i.e., every leaf node is at the same depth).
> Every node other than the root, is at least half-full: M/2-1 <= keys <= M-1
> Every inner node with k keys has k+1 non-null children (node pointers)

Recap
Today’s Agenda

More B+Trees
Additional Index Magic
Tries / Radix Trees

Inverted Indexes

Trees (Part 2) More B+Trees

More B+Trees

More BTiees
Duplicate Keys

e Approach 1: Append Record Id

> Add the tuple’s unique record id as part of the key to ensure that all keys are unique.
> The DBMS can still use partial keys to find tuples.

e Approach 2: Overflow Leaf Nodes

> Allow leaf nodes to spill into overflow nodes that contain the duplicate keys.
> This is more complex to maintain and modify.

Trees (Part 2)

Append Record Id

>9
~

<Key, RecordId>

||6|I7||8| | EXIEE) I
R

"/

it
S
el
Q

8/59

Trees (Part 2)

Append Record Id

9/59

Append Record Id

Trees (Part 2)

<Key, ReCOrdId>|

Hao

10/59

Append Record 1d

Trees (Part 2)

Insert <6, (Page,Slot)> |H|.|ﬂ|
<5

>9
LI_H3II i

(LeTle T 1 Mz MTell 1) Mellsll I
N
<Key, RecordId>|

11/59

More BTiees
Duplicate Keys

e Approach 1: Append Record Id

> Add the tuple’s unique record id as part of the key to ensure that all keys are unique.
> The DBMS can still use partial keys to find tuples.

e Approach 2: Overflow Leaf Nodes

> Allow leaf nodes to spill into overflow nodes that contain the duplicate keys.
> This is more complex to maintain and modify.

Overflow Leaf Nodes

Trees (Part 2)

Insert 6

13 /59

Overflow Leaf Nodes

Trees (Part 2)
Insert 6
[s[e]] |
Insert 7 <5 <9 >9
Insert 6 N N\
W flsfl 0] ([ellz[le]] ([ollrs]]]
" "y
6|7

6

A

14/59

More B+Trees
Partitioned B-Tree

Bulk operations are fine if they are rare, but they are disruptive
e usually the B-tree has to be take offline
e the new cannot be queries easily

e existing queries must be halted

More B+Trees
Partitioned B-Tree

Basic idea: partition the B-tree
e add an artificial column in front

e creates separate partitions with the B-tree

Partition no. 0 3

More B+Trees
Partitioned B-Tree

Benefits:

partitions are largely independent of each other

e one can append to the “rightmost” partition without disrupting the rest

the index stays always online

partitions can be merged lazily

e merge only when beneficial

Drawbacks:
e no “global” order any more

e lookups have to access all partitions

Trees (Part 2) More B+Trees

Prefix B -tree
A BT -tree can contain separators that do not occur in the data

We can use this to save space:

—_—

|aaaa bbbb| | eeee ffff | |aaaa bbbb| | eeee ffff |

e choose the smallest possible separator

e no change to the lookup logic is required

Trees (Part 2) More B+Trees

Prefix B™-tree

We can do even better by factoring out a common prefix:

http://www. /google.com \ sigmod.org

VN

only one prefix per page

the change to the lookup logic is minor

the lookup key itself is adjusted

sometimes only inner nodes, to keep scans cheap

Trees (Part 2) More B+Trees

Prefix B™-tree

The lexicographic sort order makes prefix compression attractive:

 neighboring entries tend to differ only at the end

e a common prefix occurs very frequently

not only for strings, also for compound keys etc.

in particular important if partitioned B-trees

with big-endian ordering any value might get compressed

UYWAY Additional Index Magic

Additional Index Magic

Implicit Indexes

e Most DBMSs automatically create an index to enforce integrity constraints.

> Primary Keys
> Unique Constraints
CREATE TABLE foo (
id SERIAL PRIMARY KEY,
vall INT NOT NULL,
val2 VARCHAR(32) UNIQUE
);

CREATE UNIQUE INDEX foo_pkey ON foo (id);
CREATE UNIQUE INDEX foo_val2_key ON foo (val2);

Implicit Indexes

e But, this is not done for referential integrity constraints (i.e., foreign keys).

CREATE TABLE bar (
id INT REFERENCES foo (vall),
val VARCHAR(32)

);

CREATE INDEX foo_vall_key ON foo (vall); -- Not automatically done

Partial Indexes

e Create an index on a subset of the entire table.

e This potentially reduces its size and the amount of overhead to maintain it.
¢ One common use case is to partition indexes by date ranges.
> Create a separate index per month, year.

CREATE INDEX idx_foo ON foo (a, b)
WHERE ¢ = 'October';

SELECT b FROM foo WHERE a = 123 AND c = 'October';

Covering Indexes

e If all the fields needed to process the query are available in an index, then the DBMS
does not need to retrieve the tuple from the heap.

e This reduces contention on the DBMS’s buffer pool resources.
CREATE INDEX idx_foo ON foo (a, b);
SELECT b FROM foo WHERE a = 123;

Index Include Columns

e Embed additional columns in indexes to support index-only queries.

e These extra columns are only stored in the leaf nodes and are not part of the search key.
CREATE INDEX idx_foo ON foo (a, b) INCLUDE (c);

SELECT b FROM foo WHERE a = 123 AND c = 'October';

Functional/Expression Indexes

e An index does not need to store keys in the same way that they appear in their base
table.

* You can use functions/expressions when declaring an index.

SELECT * FROM users
WHERE EXTRACT(dow FROM login) = 2;

CREATE INDEX idx_user_login ON users (login);

Functional/Expression Indexes

¢ An index does not need to store keys in the same way that they appear in their base
table.

* You can use functions/expressions when declaring an index.
CREATE INDEX idx_user_login ON users (EXTRACT(dow FROM login));

CREATE INDEX idx_user_login ON foo (login) WHERE EXTRACT(dow FROM login) = 2;

Trees (Part 2) Tries / Radix Trees

Tries / Radix Trees

Trees (Part 2) Tries / Radix Trees

Observation

e The inner node keys in a B+Tree cannot tell you whether a key exists in the index.
e You must always traverse to the leaf node.

e This means that you could have (at least) one buffer pool page miss per level in the tree
just to find out a key does not exist.

Trees (Part 2) Tries / Radix Trees

Trie Index

Keys: [HELLOJ HAT, HAVE

e Use a digital representation of keys to
examine prefixes one-by-one instead of
comparing entire key.

> a.k.a., Digital Search Tree, Prefix Tree.

Trees (Part 2) Tries / Radix Trees

Properties

e Shape only depends on key space and lengths.
> Does not depend on existing keys or insertion order.
> Does not require rebalancing operations.
e All operations have O(k) complexity where k is the length of the key.

> The path to a leaf node represents the key of the leaf
> Keys are stored implicitly and can be reconstructed from paths.

Thies /Radix Tres
Key Span

e The span of a trie level is the number of bits that each partial key / digit represents.

> If the digit exists in the corpus, then store a pointer to the next level in the trie branch.
» Otherwise, store null.

e This determines the fan-out of each node and the physical height of the tree.

Key Span

Trees (Part 2)

1-bit Span Trie
K10+ 00000000 00001010
K25+ 00000000 00011001
K31+ 00000000 00011111
Tt Node
Poi:cpel:H Pointer &>

34 /59

Key Span

Trees (Part 2)

1-bit Span Trie

K10-|0po000oo 00001010
K25-|0p000000 00011001
K31-|0poo0ooo 00011111
elol1|y|le|yl1]|o|e|o|1]y
Ielgll|¢I|0|¢|1IvII0|¢I1|vI
Jﬁ:‘——’ nﬁﬁo——*

35/59

Key Span

Trees (Part 2)

1-bit Span Trie

K10 00000000 00001010
K25- 00000000 00011001
K31 00000000 00011111
e|g|1|y|lelgl1|o|le|d|1]y
|9|g|1|¢|I0|¢I1IYII0|¢I1|v|
PnTi:PmkH Pointer >

A

36/59

Key Span

Trees (Part 2)

1-bit Span Trie

K10 00000000 00401010
K25- 00000000 00411001
K31-> 00000000 004q1)111
e|g[1|gfle|g(r(o|e|o[1]y
loy[1]ol[e[o|1]yl[e]o]1]y]
v - v v
Pointer ®—> Pointer @

37/59

Key Span

Trees (Part 2)

1-bit Span Trie

K10+ 00000000 000ef1010]
K25- 00000000 00011001
K31-> 00000000 00011111
lefo1]yllely[1]0]le[o]2
lofyl1[olJe[o[1]y][e[o]1]y]
L— ' '
Pointer > Pointer &>

38/59

Key Span

Trees (Part 2)

1-bit Span Trie
olyl1|o
0 1|0 | Repeat 10x
0 1y K10~ 00000000 00001010
0l0]1]z To0]1]5] K25 00000000 0001Iep1
T K31-> 00000000 000111)11
9 Egl1 Q /8|1 ¥
[o]o]1[5][6[3]xTe]e]e]1]s]
IGIglllwllelmlllgllowlllgl
PaTi;-‘Pul:‘—’ Pm._’

39/59

Key Span

1-bit Span Trie

ylo
|4 | 0 | Repeat 10x

Trees (Part 2)

K10+ 00000000 00001010
K25- 00000000 00011001
K31+ 00000000 00011111

A

40/59

Tries / Radix Trees
Radix Tree

1-bit Span Radix Tree

)

e Omit all nodes with only a single child. § 10| Repeat 0%

» a.k.a., Patricia Tree. T L:D
e Can produce false positives ~
¢ So the DBMS always checks the Y Y
original tuple to see whether a key
matches.
Tuple Node

Pointer > Pointer &>

Radix Tree: Modifications

< T

ELLO

o —

/>
Xt f—{

Radix Tree: Modifications

H
'
ELLO A
I < ¥
o VE T IR
i

Radix Tree: Modifications

= 9Dale 44 /59

Radix Tree: Modifications

-
X =

Radix Tree: Modifications

< T

ELLO A
i
o

Trees (Part 2) Tries / Radix Trees

Radix Tree: Modifications

= T

ELLO AIR

X |
X —

Thies /Radix Tres
Radix Tree: Binary Comparable Keys

e Not all attribute types can be decomposed into binary comparable digits for a radix
tree.

> Unsigned Integers: Byte order must be flipped for little endian machines.

> Signed Integers: Flip two’s-complement so that negative numbers are smaller than
positive.

> Floats: Classify into group (neg vs. pos, normalized vs. denormalized), then store as
unsigned integer.

> Compound: Transform each attribute separately.

Trees (Part 2)

Radix Tree: Binary Comparable Keys

8-bit Span Radix Tree

Int Key: 168496141 m m

M
Hex Key: 0A 0B 0C 0D m
Little Big

Endian Endian

Find 658205
Hex QA®@B 1D

Da 49 /59

Trees (Part 2)

Radix Tree: Binary Comparable Keys

8-bit Span Radix Tree

Int Key: 168496141

$

Hex Key: 0A 0B 0C 0D

Find 658205
Hex QA QB 1D

Endian

50/59

Trees (Part 2) Inverted Index

Inverted Index

Trees (Part 2) Inverted Index

Observation

e The tree indexes that we’ve discussed so far are useful for "point" and "range" queries:

> Find all customers in the 30308 zip code.
> Find all orders between June 2020 and September 2020.

e They are not good at keyword searches:
> Find all Wikipedia articles that contain the word "Trie"

Inverted Index
Wikipedia Example

CREATE TABLE pages (
userID INT PRIMARY KEY,
userName VARCHAR UNIQUE,
)

CREATE TABLE pages (

pageID INT PRIMARY KEY,

title VARCHAR UNIQUE,

latest INT REFERENCES revisions (revID),
DN

CREATE TABLE revisions (

revID INT PRIMARY KEY,

userID INT REFERENCES useracct (userID),

pageID INT REFERENCES pages (pagelD),

content TEXT, -- Text Search
updated DATETIME

b

Inverted Index
Wikipedia Example

e If we create an index on the content attribute, what does that do?

e This doesn’t help our query.

e Our query is also not correct since it will return any occurrence (not only exact matches)
CREATE INDEX idx_rev_content ON revisions (content);

SELECT pageID FROM revisions WHERE content LIKE '%Trie%';

Trees (Part 2) Inverted Index

Inverted Index

e Aninverted index stores a mapping of words to records that contain those words in
the target attribute.
> Sometimes called a full-text search index.
> Also called a concordance in old (like really old) times.

e Major DBMSs support these natively (e.g., PostgreSQL Generalized Inverted Index
(GIN))

e There are also specialized DBMSs (e.g., Lucene, Elasticsearch)

Inverted Index
Query Types

e Phrase Searches

> Find records that contain a list of words in the given order.
e Proximity Searches

» Find records where two words occur within n words of each other.
e Wildcard Searches

> Find records that contain words that match some pattern (e.g., regular expression).

Trees (Part 2) Inverted Index

Design Decisions

e Decision 1: What To Store

» The index needs to store at least the words contained in each record (separated by
punctuation characters).
> Can also store frequency, position, and other meta-data.

e Decision 2: When To Update
> Maintain auxiliary data structures to "stage" updates and then update the index in batches.

Trees (Part 2) Conclusion

Conclusion

Trees (Part 2) Conclusion

Conclusion

e B+Trees are still the way to go for tree indexes.
e Next Class
> How to make indexes thread-safe!

	Trees (Part 2)
	Recap
	More B+Trees
	Additional Index Magic
	Tries / Radix Trees
	Inverted Index
	Conclusion

