Index Concurrency Control

Administrivia

e Assignment 3 is due on Oct 19th @ 11:59pm
e Exercise Sheeet 3 is due on Oct 19th @ 11:59pm (no late days allowed)

Recap

= 9Dae 3/129

Index Data Structures

e List of Data Structures: Hash Tables, B+Trees, Radix Trees

e Most DBMSs automatically create an index to enforce integrity constraints.

e B+Trees are the way to go for indexing data.

Observation

e We assumed that all the data structures that we have discussed so far are
single-threaded.

e But we need to allow multiple threads to safely access our data structures to take
advantage of additional CPU cores and hide disk I/O stalls.

Concurrency Control

e A concurrency control protocol is the method that the DBMS uses to ensure "correct”
results for concurrent operations on a shared object.
e A protocol’s correctness criteria can vary:

> Logical Correctness: Am I reading the data that I am supposed to read?
> Physical Correctness: Is the internal representation of the object sound?

] Recap
Today’s Agenda

Latches Overview

Hash Table Latching

B+Tree Latching

Leaf Node Scans

Delayed Parent Updates (B''™*-Tree)

N 'ches Overview

Latches Overview

Locks vs. Latches

e Locks
> Protects the database’s logical contents from other txns.
»> Held for the duration of the transaction.
> Need to be able to rollback changes.

e Latches

> Protects the critical sections of the DBMS’s internal physical data structures from other
threads.

> Held for the duration of the operation.

> Do not need to be able to rollback changes.

Locks vs. Latches

Locks Latches
Separate... User transactions Threads
Protect... Database Contents In-Memory Data Structures
During... Entire Transactions Critical Sections
Modes. .. Shared, Exclusive, Update, Intention Read, Write (a.k.a., Shared, Exclusive)
Deadlock Detection & Resolution Avoidance
...by... Waits-for, Timeout, Aborts Coding Discipline
Keptin... Lock Manager Protected Data Structure

Reference

https://dl.acm.org/doi/10.1145/1806907.1806908

I tatches Overview
Latch Modes

e Read Mode

> Multiple threads can read the same object at the same time.
> A thread can acquire the read latch if another thread has it in read mode.

e Write Mode

> Only one thread can access the object.
> A thread cannot acquire a write latch if another thread holds the latch in any mode.

Read Write

Read VvV X
Write X X

N 'ches Overview

Latch Implementations

e Blocking OS Mutex
e Test-and-Set Spin Latch
e Reader-Writer Latch

N 'ches Overview

Latch Implementations

e Approach 1: Blocking OS Mutex

> Simple to use
> Non-scalable (about 25 ns per lock/unlock invocation)

> Example: std::mutex

std::mutex m;

m.lock();
// Do something special...
m.unlock();

https://en.cppreference.com/w/cpp/thread/mutex

Latch Implementations

e Approach 2: Test-and-Set Spin Latch (TAS)

> Very efficient (single instruction to latch/unlatch)

Non-scalable, not cache friendly

Example: std::atomic<T>

Unlike OS mutex, spin latches do not suspend thread execution

Atomic operations are faster if contention between threads is sufficiently low

>
>
>
>

std::atomic_flag latch; // atomic of boolean type (lock-free)

while (latch.test_and_set(...)) {
// Retry? Yield? Abort?
}

https://en.cppreference.com/w/cpp/atomic/atomic

Latch Implementations

e Approach 3: Reader-Writer Latch

> Allows for concurrent readers

> Must manage read/write
queues to avoid starvation

> Can be implemented on top of
spinlocks

Latches Overview

a a -~

L

tch

a

read

£-

N 'ches Overview

Latch Implementations

e Approach 3: Reader-Writer Latch

> Allows for concurrent readers g a a Latch

> Must manage read/write ﬂ_ﬁ_ﬁ_.ﬂ
queues to avoid starvation read

> Can be implemented on top of E 1

spinlocks

Hash Table Latching

] Hash Table Latching
Hash Table Latching

e Easy to support concurrent access due to the limited ways in which threads access the
data structure.
> All threads move in the same direction and only access a single page/slot at a time.
> Deadlocks are not possible.

e To resize the table, take a global latch on the entire table (i.e., in the header page).

] Hash Table Latching
Hash Table Latching

e Approach 1: Page Latches

> Each page has its own reader-write latch that protects its entire contents.
> Threads acquire either a read or write latch before they access a page.

e Approach 2: Slot Latches

> Each slot has its own latch.
> Can use a single mode latch to reduce meta-data and computational overhead.

Hash Table - Page Laches

T;: Find D
hash(D)

A

20/129

Hash Table - Page Laches

g T,: Insert E

hash(E)

A

21/129

Hash Table - Page Laches

g T,: Insert E

hash(E)

A

22/129

Hash Table - Page Laches

A

23 /129

Hash Table - Page Laches

It’s safe to release the

latch on Page #1.

R T,: Insert E

hash(E)

A

24 /129

Hash Table - Page Laches

g T,: Insert E

hash(E)

A

25/129

N Floch TobleLatching.
Hash Table - Page Laches
T Find D

hash(D)

T,: Insert E

hash(E)

A

26/129

Hash Table - Page Laches

T,: Insert E

hash(E)

A

27 /129

Hash Table - Page Laches

Ty Find D
hash(D)

T,: Insert E

hash(E)

A

28 /129

Hash Table - Slot Laches

A

29 /129

Hash Table - Slot Laches

T,: Insert E

hash(E)

A

30/129

Hash Table - Slot Laches

T, Find D
hash(D)

T,: Insert E

hash(E)

A

31/129

Hash Table - Slot Laches

r latchon A
hash(D)

T,: Insert E

hash(E)

A

32/129

Hash Table - Slot Laches

T, Find D
hash(D)

T,: Insert E

hash(E)

A

33 /129

Hash Table - Slot Laches

T,: Insert E

hash(E)

A

34 /129

Hash Table - Slot Laches

A

35/129

Hash Table - Slot Laches

T,: Insert E

hash(E)

A

36/129

Y © ' Co~currency Contol

B+Tree Concurrency Control

B+Tree Concurrency Control

e We want to allow multiple threads to read and update a B+Tree at the same time.
e We need to handle two types of problems:

> Threads trying to modify the contents of a node at the same time.
> One thread traversing the tree while another thread splits/merges nodes.

Y Befree Concurrency Control
B+Tree Concurrency Control: Example

T;: Delete 44

Lell [[f2f I [f23] [lc [[ss]la«]|D
| S\]
|3]4He6]9l10]11[12]13H20]22H2331H35[36{38]41§44
E F

D |
H

“ax 39/129

B+Tree Concurrency Control: Example

Lo ll I (o2 1 [zs]] llc [ss]lee[D

13[4l 6]9Hie]11[{12]13]H20]22H23]31}{35]36 {38]41€44
E F G H

T,: Delete 44

D |

= wax 40/129

B+Tree Concurrency Control: Example

- T;: Delete 44
10 35 B
6 12

s Jc |

38|44 ||D

| [\
(346 re[11}{12[13H20]22}23[31}{35[36 {38]41a]) | 4m
E F G H |

A

41/129

Y Befree Concurrency Control
B+Tree Concurrency Control: Example

20

T;: Delete 44
35 B
6 12

sl Jc

38|44 (/D

| L\ N\
(3[4 }{6] o Hre[11}r2[13H20[22H23]31Has[s6 s8] a1} [| 4m
E F G H |

Do 42/129

B+Tree Concurrency Control: Example

T,: Delete 44

Lol I [b=l I [a3] [lc [ss]]s«]D

Rebalance!

(3[4 f{6] o re[11Hr2[13H20[22H23]31}3536H{38[41H | | 4m
E F G H |

= wax 43/129

B+Tree Concurrency Control: Example

2l 1A T,: Delete 44
T,: Find 41
10 35 B
6 12 23] Jlc [[s8][44]|D g
Rebalance!
[3]4He6[ol1e[1112]13H20[22H23]31H35[36 H34{41] @
E F G |

“Dax 44/129

B+Tree Concurrency Control: Example

T: Delete 44
T,: Find 41

Lol 1 [z 1

[23]

Jc

138][44]|D g
! \4 \ / S, j ‘ Rebalance!
|3|4H6|9H1°|”H12|13H2°||522H23I|:31H35|é‘5 341] | <

= wacx 45/129

Y Befree Concurrency Control
B+Tree Concurrency Control: Example

T,: Delete 44
T,: Find 41
ILe

E

F

“ax 46/129

B+Tree Concurrency Control: Example

T;: Delete 44
T,: Find 41

Tel 1 [] [z Tc [[zs]+]o 4m

Rebalance!

\
[3]4H6[oHro[11}12[13H20]22H23]31H35[36 {3d{41 <
E F G |

= wax 47/129

Y Befree Concurrency Control
B+Tree Concurrency Control: Example

T;: Delete 44

T,: Find 41
Lol 1 [z 1 /||23|& ||Cj|38||41||'3
Rebalance!
|3|4H6|9H1o|11H12|13H20||522|-|23I|:31|-|35|36 41I| K.

S X

48 /129

N 51 Concurrncy Contrl
Latch Crabbing/Coupling

e Protocol to allow multiple threads to access/modify B+Tree at the same time.
e Basic Idea:

> Get latch for parent.
> Get latch for child
> Release latch for parent if “safe”.

* A safe node is one that will not split or merge when updated.

> Not full (on insertion)
> More than half-full (on deletion)

N 51 Concurrncy Contrl
Latch Crabbing/Coupling

e Find: Start at root and go down; repeatedly,
> Acquire R latch on child
> Then unlatch parent
e Insert/Delete: Start at root and go down, obtaining W latches as needed. Once child is
latched, check if it is safe:
> If child is safe, release all latches on ancestors.

Example 1 - Find 38

Tl I [l 1 [lzs][_Jc [[ss]aa]}D
AR AN
13[4l 6]9f10[1112]13H20]22H23]31H35|36[{38]41 F{44

E F G H I

= 9Dale 51/129

Example 1 - Find 38

Lol I (o2 I [2sl] [ic [[ss][+]D

B RE H1é|11H12I13H20|22H23|31H35|36H38|41 44
E F G H |

= waex 52/129

Y Befree Concurrency Control
Example 1 - Find 38

R
20 A
R
10 35 B«
It s safe to release the
latch on A.
2)] T ||C [[38]]44] D
| VoLV N
13[4l 6]9lre]11}{12]13H20]22H23]31H{35]36 {38]41H44]
E F |

53 /129

Y Befree Concurrency Control
Example 1 - Find 38

20 A

10 35 B«
sl [[z 23] [c [[s8][44]|D

I3]4f6]oH1e[11H12[13H20|22H23]31}35]36H{38]41 K44
E F G H |

= vax 54/129

Y Befree Concurrency Control
Example 1 - Find 38

<R>
Lol 1 [z][] T $esf[as]D 4m

|3]4f6]0 H1é|11H12|13H20|22H23|31H35|36H38|41H44| |
E F G H |

= wace 55/129

) emreeConcurrency Conwol
Example 1 - Find 38

E

F

Y Befree Concurrency Control
Example 1 - Find 38

el I (o2l I [l23]] [l [[ss][+]D

E F

= wace 57/129

Y Befree Concurrency Control
Example 1 - Find 38

(o] |

2]

/||23|| Ic

[38]]44]|D
[3]4fl6]o H1;>|11H12|13H20|22|—|23|31H35|36 38} |4
E F G H |

58 /129

N ° cc Corcorency Contol
Example 2 - Delete 38

el [[2]] | 23| J|c [[38]44]|D

[3]4fs6]o0 H1é|11H12|13H20|22H23|31 H3s|36H38[41H44] |
E F G H I

= wax 59/129

N ° cc Corcorency Contol
Example 2 - Delete 38

[ell I (P2 [(3] [lc [ss]«]D

|3]4He6|9l10]11[12[13H20|22H23]31H35]36 {38]41 44| |
E F G H |

= vacx 60/129

N ° cc Corcorency Contol
Example 2 - Delete 38

6 |

SR
(We may need to coalesce B, so
N.

we can't release the latch on A.
RS |- ||m||\4 |353|\““*||D
|3|4H6|9H1<:)|11H12|13H20|22H23|31|-|35|36H38|41 44| |
E F G H

A

61/129

N ° cc Corcorency Contol
Example 2 - Delete 38

<W>
e 1 [z T [fz2] I peefas]D 4m

[3]4fl6]o H1é|11H12|13H20|22H23|31H35|36H38|41H44| |
F G H |

= ©aex 62/129

N ° cc Corcorency Contol
Example 2 - Delete 38

W e know that D will not need
to merge with C, so it s safe to
release latches on A and B.

38|41{44] |
- «— H |

A

63 /129

N ° cc Corcorency Contol
Example 2 - Delete 38

[e] 1

2] |
y
[3]4f6]0H0e]r

W
[2s]] T=pes [44]D @
W e know that D will not need
to merge with C, so it’s safe to
release latches on A and B.

38[a1H4a4] |
- «— H |

“Dax 64/129

N ° cc Corcorency Contol
Example 2 - Delete 38

[e]l

|38]]44]|D

[3]4Hs6]o0 H1;)|11H12|13H20|22H23|31 35

41
E F G H

A

65/129

Example 2 - Delete 38

E F

66 /129

Example 2 - Delete 38

[35]] |8
| 6 |

G

20| 22]123]31}{35(36 |]
E F é Yy

Hac 67/129

N ° cc Corcorency Contol
Example 3 - Insert 45

[ell 1

2]

S
/

|38][44]|D
[3]4f6]o H1é|11 H12]13H20|22H2331H{35]36 {3841 H44] |

E F

G H I

S

68 /129

Example 3 - Insert 45

]] @
W e know that if D needs to

split, B has room so it's safe

to release the latch on A. II C

Ed
\ T\ /|
[3]4f6]9H0]11

F G

RN
H‘2|13H20||522H23|31H35|36H38|41H44| |

“Dax 69/129

N ° cc Corcorency Contol
Example 3 - Insert 45

<W>
[e 1 (21 [e hee[a«]D 4m

[3]4Hs6]o0 H1é|11H12|13H20|22H23|31H35|36H38|41 Haa| |
E F G H |

= wacx 70/129

Example 3 - Insert 45

Lo 1

[a2]|_1]

23]

[T 38 | 44] D
| [\]
|3]4He6|9l10]11H12][13H20]22H23]31H{35]36}{38

Node I wont split, so we
can release B+D.

71/129

Example 3 - Insert 45

, /|
|3]4He6|oH1e[11f12]13H20[22H23]31}35]36} 38

Node I wont split, so we
can release B+D.

Do 72/129

N ° cc Corcorency Contol
Example 3 - Insert 45

, !
[3]4He6|oH1e[1112]13H20]22H23]31H35]36 38|41

E

F G H

“acx 73/129

Y Befree Concurrency Control
Example 4 - Insert 25

[ell 1

2]] [C [[8]44]|D
N S\
[3]4He6|oKie[11112[13H20]22H

23]

23]31H35]36H38[41H44] |
E F

G H

74/129

Y Befree Concurrency Control
Example 4 - Insert 25

[44]|D

6]

[3]4l6]0 H1(;|11H12|13H20|22|-|23|31 H3s|36} 3841 Ha4| |
E F G H I

= wax 75/129

Y Befree Concurrency Control
Example 4 - Insert 25

[6|

44D

o

76 /129

Example 4 - Insert 25

[6 [I [[af] [— s [[C [[ss]44]D
/ L\,
3/alle]oHiel11l12]13

We need to split F so we need to

hold the latch on its parent node.

77 [129

Y Befree Concurrency Control
Example 4 - Insert 25

44]|D

W e need to split F so we need to
hold the latch on its parent node.

\ N\
12113 H20Y77 ‘36H38|41H44| |

78 /129

Y Befree Concurrency Control
Example 4 - Insert 25

oo [24)
We need to split F so we need to = % i
hold the latch on its parent node.

Bl

79 /129

Y © ' Co~currency Contol

Observation

e What was the first step that all the update examples did on the B+Tree?

e Taking a write latch on the root every time becomes a bottleneck with higher
concurrency.

e Can we do better?

Delete 38 Insert 45 Insert 25

LY L) L)
A B2 [JA B A

N B+ Tree Concurrency Control
Better Latching Algorithm

Assume that the leaf node is safe.

Use read latches and crabbing to reach it, and then verify that it is safe.

If leaf is not safe, then do previous algorithm using write latches.

Reference

https://dl.acm.org/doi/10.1007/BF00263762

N ° cc Corcorency Contol
Example 2 - Delete 38

[e] 1

2]

o] Jc
/

|38]]44]|D
[3]4} 6|9H1éh1H12h3}{2d22H2ﬂ31H35b6H3ﬂ41H44

E F

|
G H |

82/129

N ° cc Corcorency Contol
Example 2 - Delete 38

hss] e 4m
[e |

|38][44]|D
[3]4fl6]09 H1;)|11H12|13H20|22H23|31H35|36|—|38|41H44| |

E F G

83/129

N ° cc Corcorency Contol
Example 2 - Delete 38

3| I | pas[[44]D 4u

B RE H1é|11H12|13H20|22H23|31H35|36H38|41H44| |
E F G H |

= wax 84/129

N ° cc Corcorency Contol
Example 2 - Delete 38

[B
<R>
[e]l [[l 1 /”23”\ T Wss |44] D
[3]4fl6]o H1é|11H12|13}{20|22H23|31 35

41
E F G

85/129

N ° cc Corcorency Contol
Example 2 - Delete 38

H will not need to coalesce, so
we're safe!

86 /129

Example 4 - Insert 25

6 |

2] |

23
\)\
|3]4ll6]9He]1112[13H20]22H23]31
[H will not need to coalesce, so
we're safe!

“acx 87/129

Y Befree Concurrency Control
Example 4 - Insert 25

[ss]_|®
6]

Jc j” 3 ||\:*4||D
B RE H1;)|11H12|13H20|22H23|31 H3s|36H38]41H44] |

E

F G

88 /129

Y Befree Concurrency Control
Example 4 - Insert 25

[ell I (2l [[[c [[ss]+«]P

y
[3]4l6]9lie]11]{12]13H20]22H23]31{35]36 {38]41H44] |
E F G H I

= wax 89/129

Y Befree Concurrency Control
Example 4 - Insert 25

44D
o i e s n' ‘
MLH(We need to split F so we "ﬂm “6H38|41 H44| |
have to restart and re- G H |
execute like before.

S

Qe

90/129

N B+ Tree Concurrency Control
Better Latching Algorithm

e Find: Same as before.

e Insert/Delete:
> Set latches as if for search, get to leaf, and set W latch on leaf.
> If leaf is not safe, release all latches, and restart thread using previous insert/delete
protocol with W latches.
e This approach optimistically assumes that only leaf node will be modified; if not, R
latches set on the first pass to leaf are wasteful.

Leaf Node Scans

Observation

e The threads in all the examples so far have acquired latches in a top-down manner.

> A thread can only acquire a latch from a node that is below its current node.
> If the desired latch is unavailable, the thread must wait until it becomes available.

e But what if we want to move from one leaf node to another leaf node?

e Leaf nodes can include hint keys to approximate the next key at your sibling.

N, - oS
Leaf Node Scan - Example 1

T,: Find Keys < 4

©“ac 94/129

Leaf Node Scan - Example 1

T;: Find Keys < 4

A

95/129

N, - oS
Leaf Node Scan - Example 1

T;: Find Keys < 4

DA 96/129

N, - oS
Leaf Node Scan - Example 1

T;: Find Keys < 4
Do not release latch on C
until thread has latch on B

©ac 97/129

N, - oS
Leaf Node Scan - Example 1

T;: Find Keys < 4
Do not release latch on C
until thread has latch on B

v

“Dax 98/129

Leaf Node Scan - Example 1

T;: Find Keys < 4

©“ac 99/129

N, - oS
Leaf Node Scan - Example 2

T;: Find Keys < 4

"

T,: Find Keys > 1

“acx 100/129

N, - oS
Leaf Node Scan - Example 2

T;: Find Keys < 4
T,: Find Keys > 1

“ac 101/129

N, - oS
Leaf Node Scan - Example 2

T;: Find Keys < 4
T,: Find Keys > 1

“ac 102/129

N, - oS
Leaf Node Scan - Example 2

Both T, and T, now hold

T;: Find Keys < 4
T,: Fi
Both T, and T, now hold ¥ Find Keys 2
this read latch. this read latch.
B H c

A

103 /129

N, - oS
Leaf Node Scan - Example 2

Only T, holds
this read latch.

T,: Find Keys < 4
Only T, holds
this read latch.

T,: Find Keys > 1

A

104 /129

N |co(NodeSeans
Leaf Node Scan - Example 3

T,: Delete 4

" dm

T,: Find Keys > 1

A

105/129

N |co(NodeSeans
Leaf Node Scan - Example 3

T;: Delete 4
T,: Find Keys > 1

“acx 106/129

N |co(NodeSeans
Leaf Node Scan - Example 3

T;: Delete 4

T, cannot acquire
the read latch on C

T,: Find Keys > 1

A

107 /129

Leaf Node Scan - Example 3

T;: Delete 4

T, cannot acquire
the read latch on C

T,: Find Keys > 1

T, does not know

what T, is doing...

A

108/ 129

N |co(NodeSeans
Leaf Node Scan - Example 3

T;: Delete 4
3

T,: Find Keys > 1
T, cannot acquire

the read latch on C
(r) v

¢ I3
B

C4«

, does not know
what T, is doing...

A

109 / 129

I Leaf Node Scans
Leaf Node Scans

Latches do not support deadlock detection or avoidance.

The only way we can deal with this problem is through coding discipline.

The leaf node sibling latch acquisition protocol must support a fail-fast no-wait mode.

B+Tree implementation must cope with failed latch acquisitions.

BlUnk_Tree

= wace 111/129

BUnk_Tree

e Every time a leaf node overflows, we must update at least three nodes.

> The leaf node being split.
» The new leaf node being created.
> The parent node.

e Optimization: When a leaf node overflows, delay updating its parent node.
e Reference

https://dl.acm.org/doi/10.1145/319628.319663

Bl"k-Tree Example

T,: Insert 25

el I (2l I (23] _[lc [ss]]s«]D

/

[3]4H6]9l1e[1112[13H20]22H23]31H35]36{38[41H{44] |
E F G H |

= wacx 113/129

Bl"k-Tree Example

T;: Insert 25

el I (b=l I e g[44]|D

[3]4l6]09f10[11]12]13H20]22H23]31H35]36}{38]41H{44] |
E F G H |

= wac 114/129

T stinkmee
Bl"k-Tree Example

T1! Insert 25

sl

| o]

\ |
[3]a 6] fae[n1li2]1s

“6H38|41H44| |
G H |

o

115/129

T stinkmee
Bl"k-Tree Example

T,: Insert 25

Add the new leaf node as a
sibling to F, but do not update C

--m dm #6H38|41 H44| |

A

116 /129

. |uree
Bl"k-Tree Example

T;: Insert 25

5] 8
el 1

MU AN
\ﬂ[4H6|9H1<;|11|-|12113 Nl

Add the new leaf node as a
sibling to F, but do not update C

DA

117 /129

I Biintemee
Bl"k-Tree Example
T,: Insert 25

20 A
10 35 B
6 12 23 C ||38]|44||D
Add the newleafnode asa
sibling to F, but do not update C

A

118/129

N o' e
BYnk_Tree Example

T]: Insert 25

L]

E

Hao

119 /129

T stinkmee
Bl"k-Tree Example

T;: Insert 25

Update C the next time that a

thread takes a write latch on it.]
38([44[|D

E

A

120/ 129

Bl"k-Tree Example

T;: Insert 25

2] A 4 % C: Add 31
T,: Find 31
10 85 B
6 12 23 THC [38][44]|D
13[4l 6]9fe]11]12]13H20[2223]25][35]36 {3841 F44
E F - H

|
31 |

A

121/129

T stinkmee
Bl"k-Tree Example

T;: Insert 25
T,: Find 31

13[4l 6]9f10]11H12[13H20]22H23]25][35]36}{38]41 44| |
E F

H

©ac 122/129

T stinkmee
BUnk_Tree Example

T;: Insert 25

[2] JA 4 W C: Add 31
T,: Find 31
T;: Insert 33 II-I II-I
Lell [(b2 I [2s][oe]c [[ss]44]D
[3]4H 69 l10[11]12]13H20]2223]25][35]36 {38] 41 H44] |
E F H

|
3]

“Dacx 123/129

T stinkmee
Bl"k-Tree Example

T;: Insert 25

- 2]A 4@ % C: Add 31
T,: Find 31
T;: Insert 33 [Tq, 35 B
sl [[23[[k[C [38][44]|D
[3[4H6]9f10[1112]13H20[22H23]25|[3536 {3841 H44]]|
E F H

Dae 124/129

T stinkmee
Bl"k-Tree Example

T;: Insert 25

% C: Add 31
T,: Find 31
Ty: Insert 33 [Fa[[]| IR «
el I (o2l I [23]oellc [[ss][+]D

| RN
|3|4H6|9H10|11H12|13H20I|522H23I|:25||35|36H38|41H44I|

Bl

“Dac 125/129

T stinkmee
Bl"k-Tree Example

T;: Insert 25
T,: Find 31

T;: Insert 33

S p 96
[\

o
[3]4fl6]o H1é|11H12|13}{zo|22H23|25H35|36H38|41H44|

E F

H

|
31 |

A

126 /129

T stinkmee
BUnk_Tree Example

T;: Insert 25
T,: Find 31

T;: Insert 33

Lell [(2] 1 mTPeal 8][24]|D
/| LV VN
|3|4H6|9H1o|11H1z|13HzoI|EzzH23||:25‘{|35|36H38||:1H44| |

|
31 |

©“ac 127/129

N ol sion

Conclusion

N ol sion

Conclusion

e Making a data structure thread-safe is notoriously difficult in practice.
e We focused on B+Trees but the same high-level techniques are applicable to other data
structures.
e Next Class
> We will learn about modern access methods.

	Index Concurrency Control
	Recap
	Latches Overview
	Hash Table Latching
	B+Tree Concurrency Control
	Leaf Node Scans
	Blink-Tree
	Conclusion

