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Recep
Concurrency Control

e We need to allow multiple threads to safely access our data structures to take
advantage of additional CPU cores and hide disk I/O stalls.

e A concurrency control protocol is the method that the DBMS uses to ensure "correct”
results for concurrent operations on a shared object.

e Physical Correctness: Is the internal representation of the data structure valid?
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Today’s Agenda

e T-Tree
e Versioned Latch Coupling
e Latch-Free Bw-Tree
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Observation

e The original B+Tree was designed for efficient access of data stored on slow disks.

e Is there an alternative data structure that is specifically designed for
in-memory databases?

e We assume that both the index and the actual data are fully kept in memory
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T-Tree

Based on AVL Tree.
Proposed in 1986 from Univ. of Wisconsin

Used in early in-memory DBMSs during the 1990s (e.g., TimesTen, DataBlitz).

Reference


https://dl.acm.org/doi/10.5555/645913.671312
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T-Tree

e Instead of storing keys in nodes, store pointers to the tuples (a.k.a., data pointers).
e The nodes are still sorted order based on the keys.

e In order to find out the actual value of the key, you have to follow the tuple pointer.



T-Tree

P Indexes (Part 1)

Data
Pointers

o

Max-K

9/85



T-Tree

P Indexes (Part 1)

A

10/ 85



T-Tree
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T-Tree: Find K2
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T-Tree: Find K2
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T-Tree: Find K2
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T-Tree: Find K2

K2>K1
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T-Tree: Find K2
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T-Tree
T-Tree: Advantages

e Uses less memory because it does not store raw keys inside of each node.

e The DBMS evaluates all predicates on a table at the same time when accessing a tuple
(i.e., not just the predicates on indexed attributes).
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T-Tree: Disadvantages

e Difficult to rebalance.

e Difficult to support safe concurrent access.

e Must chase pointers when scanning range or performing binary search inside of a
node.

> This greatly hurts cache locality.
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Versioned Latch Coupling
Latch Coupling

e Protocol to allow multiple threads to access/modify B+Tree at the same time.
e Basic Idea:

> Get latch for parent.
> Get latch for child
> Release latch for parent if “safe”.

» A safe node is one that will not split or merge when updated.

> Not full (on insertion)
> More than half-full (on deletion)



Versioned Latch Coupling
Latch Coupling

e Find: Start at root and go down; repeatedly,

> Acquire read (R) latch on child
» Then unlock the parent node.

e Insert/Delete: Start at root and go down, obtaining write (W) latches as needed. Once
child is locked, check if it is safe:
> If child is safe, release all locks on ancestors.
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Latch Coupling: Insert 40

C has room if its child has to split, so
we can release the latch on A.
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Latch Coupling: Insert 40

C has room if its child has to split, so
we can release the latch on A.

G must split, so we can't release the
latch on C.
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Latch Coupling: Insert 40

C has room if its child has to split, so
we can release the latch on A.

G must split, so we can'’t release the
latch on C.
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Latch Coupling: Insert 40

C has room if its child has to split, so
we can release the latch on A

G must split, so we can’t release the
latch on C
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Versioned Latch Coupling
Better Latch Coupling

e The basic latch crabbing algorithm always takes a write latch on the root for any
update.

> This makes the index essentially single threaded.
e A better approach is to optimistically assume that the target leaf node is safe.

> Take R latches as you traverse the tree to reach it and verify.
> If leaf is not safe, then do previous algorithm.

e Reference


https://dl.acm.org/doi/10.1007/BF00263762
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Better Latch Coupling: Delete 44

We assume that C is safe, so we can
release the latch on A.
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Better Latch Coupling: Delete 44

We assume that C is safe, so we can
release the latch on A.

Acquire an exclusive latch on G.
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Better Latch Coupling: Delete 44

We assume that C is safe, so we can
release the latch on A.

Acquire an exclusive latch on G.
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Versioned Latch Coupling
Versioned Latch Coupling

Optimistic coupling scheme where writers are not blocked on readers.

Provides the benefits of optimistic coupling without wasting too much work.

Every latch has a version counter.
Writers traverse down the tree like a reader
> Acquire latch in target node to block other writers.
> Increment version counter before releasing latch.
> Writer thread increments version counter and acquires latch in a single
compare-and-swap instruction.

Reference


https://dl.acm.org/doi/10.1145/2933349.2933352

Versioned Latch Coupling
Versioned Latch Coupling

e Readers do not acquire latches.

* Readers traverse down the tree optimistically.

e Detect concurrent modifications by checking version counter.
e If version does not match, need to restart operation.

e May lead to unnecessary aborts if the node modification does not actually affect the
reader thread.

* Rely on epoch-based garbage collector of old nodes to ensure node pointers are valid.
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Versioned Latch Coupling: Find 44
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Versioned Latch Coupling: Find 44
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Versioned Latch Coupling: Find 44
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Ve st Gl
Test-and-Set (TAS)

Takes one parameter: an address

Sets the contents of the address to one, and returns the old value

Used for implementing a spin latch

Very efficient (single instruction to latch/unlatch)

e Example: std::atomic<T>

std::atomic_flag latch; // atomic of boolean type (lock-free)
while (latch.test_and_set(...)) {

// Retry? Yield? Abort?
}


https://en.cppreference.com/w/cpp/atomic/atomic

Vel A L Gl
Compare-and-Swap (CAS)

e More flexible and slower than test-and-set instruction.

 Takes three parameters: an address, an expected value for that address, and a
new value for the address

e Atomically compare the contents of the address to an expected value and swap in the
new value if and only if the comparison is true.




Versioned Latch Coupling
Compare-and-Swap (CAS)

e Atomically compare the contents of the location to an expected value and swap in the
new value if and only if the comparison is true.

std::atomic<int> ai;
int tst_val= 4;

int new_val= 5;

bool exchanged= false;

ai= 3;

// tst_val != ai ==> tst_val is modified
exchanged= ai.compare_exchange_strong( tst_val, new_val );

// tst_val == ai ==> ai is modified
exchanged= ai.compare_exchange_strong( tst_val, new_val );



Modern OLTP Indexes (Part 1) Latch-Free Bw-Tree

Latch-Free Bw-Tree



Modern OLTP Indexes (Part 1) Latch-Free Bw-Tree

Observation

e Because CaS only updates a single address at a time, this limits the design of our data
structures

e We cannot build a latch-free B+Tree because we need to update multiple pointers on
node split/merge operations.

e What if we had an indirection layer that allowed us to update multiple addresses
atomically?
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Bw-Tree

Latch-free B+Tree index built for the Microsoft Hekaton project.
Key Idea 1: Delta Updates

> No in-place updates.
» Reduces cache invalidation.

Key Idea 2: Mapping Table
> Allows for CaS of physical locations of pages.

Reference


https://www.microsoft.com/en-us/research/publication/the-bw-tree-a-b-tree-for-new-hardware/
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Bw-Tree: Mapping Table

Mapping Table
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Bw-Tree: Delta Updates

e Each update to a page produces a new
delta record.

e Delta record physically points to base
page.
e Install delta record’s address in

physical address slot of mapping table
using CaS.
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Bw-Tree: Delta Updates

Mapping Table Mapping Table Mapping Table
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Bw-Tree: Find

Mapping Table
e Traverse tree like a regular B-+tree. Delete
¢ If mapping table points to delta chain, 102
stop at first occurrence of search key. o
e Otherwise, perform binary search on Logical Fage 102

base page. ey —
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Bw-Tree: Contflicting Updates

e Threads may try to install updates to
same page.

e Winner succeeds, any losers must retry
or abort
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Bw-Tree: Contflicting Updates

Mapping Table
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Bw-Tree: Node Consolidation

e Consolidate updates by creating new page with deltas applied.
¢ CaS-ing the mapping table address ensures no deltas are missed.

e Old page + deltas are marked as garbage.



(Part 1) Latch-Free Bw-Tree

Bw-Tree: Node Consolidation

Mapping Table Mapping Table Mapping Table
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Latch-Free Bw-Tree
Garbage Collection

e We need to know when it is safe to reclaim memory for deleted nodes in a latch-free
index.
e Approaches for thread-safe garbage collection:

> Reference Counting
> Epoch-based Reclamation
» Hazard Pointers
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Garbage Collection
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Reference Counting

e Maintain a counter for each node to keep track of the number of threads that are
accessing it.

> Increment the counter before accessing.
> Decrement it when finished.
> A node is only safe to delete when the count is zero.
e This has bad performance for multi-core CPUs
> Incrementing/decrementing counters causes a lot of cache coherence traffic.
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Observation

e We don’t care about the actual value of the reference counter. We only need to know
when it reaches zero.

e We don’t have to perform garbage collection immediately when the counter reaches
zero.



LatchFree B Tiee
Epoch-based Garbage Collection

e Maintain a global epoch counter that is periodically updated (e.g., every 10 ms).

> Keep track of what threads enter the index during an epoch and when they leave.
e Mark the current epoch of a node when it is marked for deletion.
> The node can be reclaimed once all threads have left that epoch (and all preceding epochs).

e a.k.a., Read-Copy-Update (RCU) in Linux.




Latehfree By Tree
Bw-Tree: Epoch-based Garbage Collection

Operations are tagged with an epoch number

Each epoch tracks the threads that are part of it and the objects that can be reclaimed.

Thread joins an epoch prior to each operation

Garbage for an epoch reclaimed only when all threads have exited the epoch.
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Bw-Tree: Epoch-based Garbage Collection
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Mapping Table
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Bw-Tree: Epoch-based Garbage Collection
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Bw-Tree: Epoch-based Garbage Collection
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Bw-Tree: Epoch-based Garbage Collection
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Bw-Tree: Epoch-based Garbage Collection
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Bw-Tree: Epoch-based Garbage Collection
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Bw-Tree: Epoch-based Garbage Collection
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Bw-Tree: Epoch-based Garbage Collection
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Bw-Tree: Structure Modification Operations

e Split Delta Record

> Mark that a subset of the base page’s key range is now located at another page.
> Use a logical pointer to the new page.

e Separator Delta Record

> Provide a shortcut in the modified page’s parent on what ranges to find the new page.
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Bw-Tree: Structure Modification Operations
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Bw-Tree: Structure Modification Operations
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Bw-Tree: Structure Modification Operations
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Bw-Tree: Structure Modification Operations
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Bw-Tree: Structure Modification Operations
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Bw-Tree: Structure Modification Operations
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Bw-Tree: Structure Modification Operations

Mapping Table
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Bw-Tree: Structure Modification Operations
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Bw-Tree: Structure Modification Operations
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Latch-Free Bw-Tree

Bw-Tree: Structure Modification Operations
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Bw-Tree: Structure Modification Operations
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Bw-Tree: Structure Modification Operations
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Bw-Tree: Structure Modification Operations
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Bw-Tree: Performance

Operations/sec (M)

—_
(=}

—_
5]

S N A~ O

Processor: 1 socket, 4 cores w/ 2xHT

M Bw-Tree M Skip List M B+Tree

Xbox Synthetic Deduplication

Source

A

82/85


https://www.microsoft.com/en-us/research/publication/the-bw-tree-a-b-tree-for-new-hardware/
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Bw-Tree: Performance

Processor: 1socket, 10 cores w/ 2xHT
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https://dl.acm.org/doi/10.1145/3183713.3196895
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Conclusion

e Managing a concurrent index looks a lot like managing a database.
e Versioning and garbage collection are widely used mechanisms for increasing
concurrency.
e BwTree illustrates how to design complex, latch-free data structures with only CaS
instruction.
e Next Class
> We will learn about modern trie data structures.
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