Modern OLTP Indexes (Part 1)

Modern OLTP Indexes (Part 1)

Modern OLTP Indexes (Part 1)

Recap

2/85

Recep
Concurrency Control

e We need to allow multiple threads to safely access our data structures to take
advantage of additional CPU cores and hide disk I/O stalls.

e A concurrency control protocol is the method that the DBMS uses to ensure "correct”
results for concurrent operations on a shared object.

e Physical Correctness: Is the internal representation of the data structure valid?

Modern OLTP Indexes (Part 1)

Today’s Agenda

e T-Tree
e Versioned Latch Coupling
e Latch-Free Bw-Tree

Recap

Modern OLTP Indexes (Part 1)

T-Tree

a1
—
[o2)
a1

Modern OLTP Indexes (Part 1) T-Tree

Observation

e The original B+Tree was designed for efficient access of data stored on slow disks.

e Is there an alternative data structure that is specifically designed for
in-memory databases?

e We assume that both the index and the actual data are fully kept in memory

Modern OLTP Indexes (Part 1) T-Tree

T-Tree

Based on AVL Tree.
Proposed in 1986 from Univ. of Wisconsin

Used in early in-memory DBMSs during the 1990s (e.g., TimesTen, DataBlitz).

Reference

https://dl.acm.org/doi/10.5555/645913.671312

Modern OLTP Indexes (Part 1) T-Tree
T-Tree

e Instead of storing keys in nodes, store pointers to the tuples (a.k.a., data pointers).
e The nodes are still sorted order based on the keys.

e In order to find out the actual value of the key, you have to follow the tuple pointer.

T-Tree

P Indexes (Part 1)

Data
Pointers

o

Max-K

9/85

T-Tree

P Indexes (Part 1)

A

10/ 85

T-Tree

Modern OLTP Indexes (Part 1)

T-Tree Node
Parent
"""" 1Pninter
Node Data
Boundaries X | Pointers
Min-K e} o jo Sl Max-K
FE
. Left Child Right Child
Pointer Pointer
KEY DATA
K5 -
K2 -
K9 -
K8 -

11/85

T-Tree: Find K2

Modern OLTP Indexes (Part 1)

A

12/85

Modern OLTP Indexes (Part 1)

T-Tree: Find K2

Data Table
n l ‘k ‘ n _ DTA

" —_—) K5
SRR ¢) ERTEES -

13/85

I

il
it
S
el
Q

Modern OLTP Indexes (Part 1)

T-Tree: Find K2

Data Table
ENENES

x
x
=
Ul
oo oo

Da 14 /85

Modern OLTP Indexes (Part 1)

T-Tree: Find K2

K2<K4 . Data Table
» « [EHIENEN < |

[= K2 | -

K3 -

K4 -

' X K5 -

[« FEEEEE < § - EAEREE - | o
oo oo k8 | -

K9 -

il
it
S
el
Q

15/85

T-Tree: Find K2

K2>K1

Modern OLTP Indexes (Part 1)

»n

[
[« EREREN « |
|u
't KZ<K3 X
Ed < § © X
oo oo

A

16/ 85

Modern OLTP Indexes (Part 1)

T-Tree: Find K2

Data Table
]
K4 X o e m KZ:KI K1 -
[x K2
K3

A0 oo k8

x

x

A=

(5] N
AL

= 9Dale 17/ 85

Modern OLTP Indexes (Part 1)

T-Tree: Find K2

DA 18 /85

T-Tree
T-Tree: Advantages

e Uses less memory because it does not store raw keys inside of each node.

e The DBMS evaluates all predicates on a table at the same time when accessing a tuple
(i.e., not just the predicates on indexed attributes).

Modern OLTP Indexes (Part 1) T-Tree

T-Tree: Disadvantages

e Difficult to rebalance.

e Difficult to support safe concurrent access.

e Must chase pointers when scanning range or performing binary search inside of a
node.

> This greatly hurts cache locality.

WICEENOHVANCIERIZENEI Versioned Latch Coupling

Versioned Latch Coupling

Versioned Latch Coupling
Latch Coupling

e Protocol to allow multiple threads to access/modify B+Tree at the same time.
e Basic Idea:

> Get latch for parent.
> Get latch for child
> Release latch for parent if “safe”.

» A safe node is one that will not split or merge when updated.

> Not full (on insertion)
> More than half-full (on deletion)

Versioned Latch Coupling
Latch Coupling

e Find: Start at root and go down; repeatedly,

> Acquire read (R) latch on child
» Then unlock the parent node.

e Insert/Delete: Start at root and go down, obtaining write (W) latches as needed. Once
child is locked, check if it is safe:
> If child is safe, release all locks on ancestors.

Modern OLTP Indexes (Part 1)
Latch Coupling: Insert 40

[Le |l

¢\
|D [[x2]]
N

N N
JE [[=][[|[F [[ss][«]G
A A

24 /85

Modern OLTP Indexes (Part 1)
Latch Coupling: Insert 40

C has room if its child has to split, so
we can release the latch on A.

[Le 1]

N
|D [[r2]]
N

N N
JE ([l [|F [[s]l«]G
S N

25/85

Modern OLTP Indexes (Part 1)
Latch Coupling: Insert 40

C has room if its child has to split, so
we can release the latch on A.

G must split, so we can't release the
latch on C.

[Le]

26/85

Modern OLTP Indexes (Part 1)
Latch Coupling: Insert 40

C has room if its child has to split, so
we can release the latch on A

G must split, so we can’t release the
latch on C

el

N
|D [[o=]]
A

27 /85

Modern OLTP Indexes (Part 1)
Latch Coupling: Insert 40

C has room if its child has to split, so
we can release the latch on A.

G must split, so we can'’t release the
latch on C.

[Le |l

¢\
|D [[r2]]
N

28 /85

Modern OLTP Indexes (Part 1)
Latch Coupling: Insert 40

C has room if its child has to split, so
we can release the latch on A

G must split, so we can’t release the
latch on C

[Le Il

N
|D [[r2]] IIE [zl IIF
N

[ss][+]|G [[s] JH

29/85

Versioned Latch Coupling
Better Latch Coupling

e The basic latch crabbing algorithm always takes a write latch on the root for any
update.

> This makes the index essentially single threaded.
e A better approach is to optimistically assume that the target leaf node is safe.

> Take R latches as you traverse the tree to reach it and verify.
> If leaf is not safe, then do previous algorithm.

e Reference

https://dl.acm.org/doi/10.1007/BF00263762

Modern OLTP Indexes (Part 1)

Better Latch Coupling: Delete 44

We assume that C is safe, so we can
release the latch on A.

B[J|C
N N N
Lel[[|D [[+o]l [JE [[as][[|F [[ss][«]IG
N U \/

31/85

Modern OLTP Indexes (Part 1)

Better Latch Coupling: Delete 44

We assume that C is safe, so we can
release the latch on A.

Acquire an exclusive latch on G.

[Ls]

32/85

Modern OLTP Indexes (Part 1)

Better Latch Coupling: Delete 44

We assume that C is safe, so we can
release the latch on A.

Acquire an exclusive latch on G.

el

33/85

Versioned Latch Coupling
Versioned Latch Coupling

Optimistic coupling scheme where writers are not blocked on readers.

Provides the benefits of optimistic coupling without wasting too much work.

Every latch has a version counter.
Writers traverse down the tree like a reader
> Acquire latch in target node to block other writers.
> Increment version counter before releasing latch.
> Writer thread increments version counter and acquires latch in a single
compare-and-swap instruction.

Reference

https://dl.acm.org/doi/10.1145/2933349.2933352

Versioned Latch Coupling
Versioned Latch Coupling

e Readers do not acquire latches.

* Readers traverse down the tree optimistically.

e Detect concurrent modifications by checking version counter.
e If version does not match, need to restart operation.

e May lead to unnecessary aborts if the node modification does not actually affect the
reader thread.

* Rely on epoch-based garbage collector of old nodes to ensure node pointers are valid.

Modern OLTP Indexes (Part 1)

Versioned Latch Coupling: Find 44

@ A A: Read v3

A: Examine Node

B: Read v5
@C A: Recheck v3

B: Examine Node

C: Read v9
@G B: Recheck v5

C: Examine Node

36/85

Modern OLTP Indexes (Part 1)

Versioned Latch Coupling: Find 44

@ A A: Read v3

A: Examine Node

B: Read v5
@C A: Recheck v3

B: Examine Node

C: Read v9
@G B: Recheck v5

C: Examine Node
A

37/85

Modern OLTP Indexes (Part 1)

Versioned Latch Coupling: Find 44

@ A A: Read v3

A: Examine Node

B: Read v5
@C A: Recheck v3

B: Examine Node

A

38/85

Ve st Gl
Test-and-Set (TAS)

Takes one parameter: an address

Sets the contents of the address to one, and returns the old value

Used for implementing a spin latch

Very efficient (single instruction to latch/unlatch)

e Example: std::atomic<T>

std::atomic_flag latch; // atomic of boolean type (lock-free)
while (latch.test_and_set(...)) {

// Retry? Yield? Abort?
}

https://en.cppreference.com/w/cpp/atomic/atomic

Vel A L Gl
Compare-and-Swap (CAS)

e More flexible and slower than test-and-set instruction.

 Takes three parameters: an address, an expected value for that address, and a
new value for the address

e Atomically compare the contents of the address to an expected value and swap in the
new value if and only if the comparison is true.

Versioned Latch Coupling
Compare-and-Swap (CAS)

e Atomically compare the contents of the location to an expected value and swap in the
new value if and only if the comparison is true.

std::atomic<int> ai;
int tst_val= 4;

int new_val= 5;

bool exchanged= false;

ai= 3;

// tst_val != ai ==> tst_val is modified
exchanged= ai.compare_exchange_strong(tst_val, new_val);

// tst_val == ai ==> ai is modified
exchanged= ai.compare_exchange_strong(tst_val, new_val);

Modern OLTP Indexes (Part 1) Latch-Free Bw-Tree

Latch-Free Bw-Tree

Modern OLTP Indexes (Part 1) Latch-Free Bw-Tree

Observation

e Because CaS only updates a single address at a time, this limits the design of our data
structures

e We cannot build a latch-free B+Tree because we need to update multiple pointers on
node split/merge operations.

e What if we had an indirection layer that allowed us to update multiple addresses
atomically?

Modern OLTP Indexes (Part 1) Latch-Free Bw-Tree

Bw-Tree

Latch-free B+Tree index built for the Microsoft Hekaton project.
Key Idea 1: Delta Updates

> No in-place updates.
» Reduces cache invalidation.

Key Idea 2: Mapping Table
> Allows for CaS of physical locations of pages.

Reference

https://www.microsoft.com/en-us/research/publication/the-bw-tree-a-b-tree-for-new-hardware/

Modern OLTP Indexes (Part 1)

Bw-Tree: Mapping Table

Mapping Table
Page 101
101 o— 102 104
102 *— P Moo
103 ¥
------- 102
o o]) — |
Page 102 Page 104
Logical
Pointer ==~
Physical
Pointer

Modern OLTP Indexes (Part 1)

Bw-Tree: Delta Updates

e Each update to a page produces a new
delta record.

e Delta record physically points to base
page.
e Install delta record’s address in

physical address slot of mapping table
using CaS.

Mapping Table

PID Addr

101

Latch-Free Bw-Tree

102

|

103

104

Logical

Pointer ~

Physical
Pointer

-

—

\‘ Page 102

(Part 1) Latch-Free Bw-Tree

Bw-Tree: Delta Updates

Mapping Table Mapping Table Mapping Table
101 101 101

102 [e—] 102 102 i .
103 103 ° 103
104 104 104

. Page 102
Logical Page 102 Logical Page 102 Logical . \—
Pointer ~~~"" Pointer =™~ Pointer

Physical Physical Physical

Pointer — Pointer — Pointer

Modern OLTP Indexes (Part 1) Latch-Free Bw-Tree

Bw-Tree: Find

Mapping Table
e Traverse tree like a regular B-+tree. Delete
¢ If mapping table points to delta chain, 102
stop at first occurrence of search key. o
e Otherwise, perform binary search on Logical Fage 102

base page. ey —

Modern OLTP Indexes (Part 1)

Bw-Tree: Contflicting Updates

e Threads may try to install updates to
same page.

e Winner succeeds, any losers must retry
or abort

Mapping Table

PID Addr

101
102 *—
103
104

Logical
Pointer ==~
Physical
Pointer

-»

—

Latch-Free Bw-Tree

Delete K8 Insert K6

Insert Ko

Page 102

Modern OLTP Indexes (Part 1) Latch-Free Bw-Tree

Bw-Tree: Contflicting Updates

Mapping Table
. pm Addr Delete K8

e Threads may try to install updates to 101
102
same page. 05
104

e Winner succeeds, any losers must retry 7 page 102

Pointer ~=~"" N

or abort s

Pointer >

Modern OLTP Indexes (Part 1) Latch-Free Bw-Tree

Bw-Tree: Node Consolidation

e Consolidate updates by creating new page with deltas applied.
¢ CaS-ing the mapping table address ensures no deltas are missed.

e Old page + deltas are marked as garbage.

(Part 1) Latch-Free Bw-Tree

Bw-Tree: Node Consolidation

Mapping Table Mapping Table Mapping Table
PP Insert K5 PPing Insert K5 Pping Insert K5
PID Addr PID Addr PID Addr
101 Delete K8 101 Delete K8 le1 Delete K8
102 o— 102 — 102 ~—|
103 Insert ko 103 Insert Ko 103 Insert ke
104 104 104
. Page 102 e 102 . Page 102
Logical ___ N ’g Logical Pag Logical ey g
Pointer =~ Pointer ~~~"" Pointer
Physical Physical Physical
Pointer o

Painter — New 102 Pointer — New 102

Latch-Free Bw-Tree
Garbage Collection

e We need to know when it is safe to reclaim memory for deleted nodes in a latch-free
index.
e Approaches for thread-safe garbage collection:

> Reference Counting
> Epoch-based Reclamation
» Hazard Pointers

Modern OLTP Indexes (Part 1)
Garbage Collection

k1] o k2| o{ k3] o k1] o k3| & =Y WEE
i 2 LV L7 L] L7 0@0 L]

DA 54 /85

Modern OLTP Indexes (Part 1) Latch-Free Bw-Tree

Reference Counting

e Maintain a counter for each node to keep track of the number of threads that are
accessing it.

> Increment the counter before accessing.
> Decrement it when finished.
> A node is only safe to delete when the count is zero.
e This has bad performance for multi-core CPUs
> Incrementing/decrementing counters causes a lot of cache coherence traffic.

Modern OLTP Indexes (Part 1) Latch-Free Bw-Tree

Observation

e We don’t care about the actual value of the reference counter. We only need to know
when it reaches zero.

e We don’t have to perform garbage collection immediately when the counter reaches
zero.

LatchFree B Tiee
Epoch-based Garbage Collection

e Maintain a global epoch counter that is periodically updated (e.g., every 10 ms).

> Keep track of what threads enter the index during an epoch and when they leave.
e Mark the current epoch of a node when it is marked for deletion.
> The node can be reclaimed once all threads have left that epoch (and all preceding epochs).

e a.k.a., Read-Copy-Update (RCU) in Linux.

Latehfree By Tree
Bw-Tree: Epoch-based Garbage Collection

Operations are tagged with an epoch number

Each epoch tracks the threads that are part of it and the objects that can be reclaimed.

Thread joins an epoch prior to each operation

Garbage for an epoch reclaimed only when all threads have exited the epoch.

Modern OLTP Indexes (Part 1) Latch-Free Bw-Tree

Bw-Tree: Epoch-based Garbage Collection

Mapping Table . Epoch Table
PID Addr
lel Delete K8
102 | o]

103 Insert Ko
104
Page 102
Logical e
Pointer ==~
Physical

Pointer

Modern OLTP Indexes (Part 1)

Mapping Table
PID Addr
101

102 o

Pointer —— New 102

Bw-Tree: Epoch-based Garbage Collection

Insert K5
Delete K8

Insert Ko

Page 102

CPU1

Latch-Free Bw-Tree

Epoch Table

CPU1

Modern OLTP Indexes (Part 1) Latch-Free Bw-Tree

Bw-Tree: Epoch-based Garbage Collection

Mapping Table
pping Insert K5 EpOChTable
101 Delete K8 PU1 CPU2

102 o

103 Insert Ko
104
Page 102
Logical e
Pointer ~~""”

P},‘ggfgf e New 102 #

CPU1

Modern OLTP Indexes (Part 1) Latch-Free Bw-Tree

Bw-Tree: Epoch-based Garbage Collection

Mapping Table

Insert K5 EpOChTable
PID Addr CPU2
101 Delete K8 CPU1 CPU2
102
103 Insert Ko
104
Logical Page 102
Pointer ==~

Physical

Pointer — New 102

CPU1

Modern OLTP Indexes (Part 1) Latch-Free Bw-Tree

Bw-Tree: Epoch-based Garbage Collection

Mapping Table

PID Addr

101
102
103
104

Insert K5 Epoch Table

CPU2

Delete K8 CPU1 CPU2

Insert K5

Insert Ko

Delete k8

Page 102

Logu: al Page 102
Pointer
Physical
Pt — New 102

——

CPU1

Modern OLTP Indexes (Part 1) Latch-Free Bw-Tree

Bw-Tree: Epoch-based Garbage Collection

Mapping Table
pping T T Epoch Table
PID Addr CPU2
101 Delete K8 CPU2
102 —
103 Insert Ko
104
Logical Page 102 Page 102
Pointer ~~~"

Physical __, New 102

Modern OLTP Indexes (Part 1) Latch-Free Bw-Tree

Bw-Tree: Epoch-based Garbage Collection

Mapping Table

Insert K5 Epoch Table
PID Addr
101 Delete K8
102 —_
103 Insert Ko
104 nser
Page 102 « # Page 102
Logical
Pointer ===~ CPU2

Physical __, New 102

Modern OLTP Indexes (Part 1) Latch-Free Bw-Tree

Bw-Tree: Epoch-based Garbage Collection

Mapping Table
ppIng Insert K5
PID Addr
101 Delete K8
102 —
1e3 Insert Ko
104
) Page 102
Logical
Pointer =~~~

Physical __, New 102

Epoch Table

Page 102

Modern OLTP Indexes (Part 1)

Bw-Tree: Epoch-based Garbage Collection

Mapping Table Epoch Table
101
102 | e~
103
104
Logical Page 102
Pointer =~~~

",’,‘;ﬁ,’fﬁ e New 102

Da 67 /85

Modern OLTP Indexes (Part 1) Latch-Free Bw-Tree

Bw-Tree: Structure Modification Operations

e Split Delta Record

> Mark that a subset of the base page’s key range is now located at another page.
> Use a logical pointer to the new page.

e Separator Delta Record

> Provide a shortcut in the modified page’s parent on what ranges to find the new page.

Modern OLTP Indexes (Part 1) Latch-Free Bw-Tree

Bw-Tree: Structure Modification Operations

Mapping Table
102 o—| i .
103

- ~,

-~ ~,

104 o—| - ™
105

Logical ‘®® +----+®®"®@+___+@@* ‘
Pi::’;; -===b Page 102 /Wge 104

Pointer

Modern OLTP Indexes (Part 1)

Bw-Tree: Structure Modification Operations

Mapping Table

PID Addr

Page 101

101

102

i

103

104

105

=

-

’

Logical
Pointer
Physical
Pointer

—-—-->

.
......
=~

00 - 3035 00

Page 102

Mge o

= 9Dae 70/ 85

Modern OLTP Indexes (Part 1) Latch-Free Bw-Tree

Bw-Tree: Structure Modification Operations

Mapping Table
PID Addr Page 101
101 *—
102 o—| / \,
103

-7
-

104 o— ’
105

~~
S

== 0@ ‘+-000% G

®

Pointer ———-" Page 102 /age 103
Physical

Phge 104
4

/
s

Page 105

Modern OLTP Indexes (Part 1) Latch-Free Bw-Tree

Bw-Tree: Structure Modification Operations

Mapping Table

e

102 | e—] PARERS

103 [e~ @ N. ’ E S

104 o— /,/' i N
105 | o~ v

. 00 000> 00
Logical

Pointer ——==" Page 102 /ge 103 Aoge 104
4

oo — O®

Page 105

Modern OLTP Indexes (Part 1) Latch-Free Bw-Tree

Bw-Tree: Structure Modification Operations

Mapping Table
PID Addr Page 101
101 | @—
P Physical Left: [K3,K5)
102 /,'I ‘\ Logical Right: [K5K7)
103 | e~ @ N. p .
104 | o—] 7 : \
v
105 | e~ ° \
1
— 0% + 0003 00
Pointer ===~ Page 102 /ge Mge 104
/
Physical o
Pointer

Page 105

Modern OLTP Indexes (Part 1) Latch-Free Bw-Tree

Bw-Tree: Structure Modification Operations

Mapping Table
PID Addr Page 101
101 @
102 ° 7 ‘ Physical Left: [K3,K5)
4 \,
4 \
103 | o~ N\. ‘
104 —
105 L ‘
Logical
Pointer =~~~
Physical
Pointer

Page 105

Latch-Free Bw-Tree

Bw-Tree: Structure Modification Operations

Mapping Table
PID Addr Page 101
101 o—
s Physical Left: [K3,K5)
102 /’I \\ Logical Right: [K5K?7)
103 o— — e . R
104 | o—I Ve '. ™
105 O\ \
00 +-000% 60 |
Logical \
Pointer ~===" Page 102 Page 103 | ge 104
Physical
Pointer

Page 105

Modern OLTP Indexes (Part 1) Latch-Free Bw-Tree

Bw-Tree: Structure Modification Operations

Mapping Table
PID Addr Page 101
.
Physical Left: [K3,K5)
102 /'l , ‘\ Logical Right: [K5,K7)
103 ® — = p -
104 o— Ve ‘. S
105 o~ ¥ i
— Q0 000 |
Pngz;r -—=)> Page 102 Page 103 E ge 104
Physical Py
Pointer

Page 105

Latch-Free Bw-Tree

Bw-Tree: Structure Modification Operations

Mapping Table
PID Addr Page 101
101 o]
o— ~. Physical Left: [K3,K5)
102 /" ““‘:~ Logical Right: [K5K7)
103 [-
104 *—
105 .\ ‘
Logical
Pog::er ===k Page 102 ge 104
Physical
Pointer

Page 105

Modern OLTP Indexes (Part 1)

Latch-Free Bw-Tree

Bw-Tree: Structure Modification Operations

Mapping Table

PID Addr

101
102
103

104
105

Logical
Pointer
Physical
Pointer

*rlsleltls

Page 101

) [K3)K7) [K7,00)

Physical Left: [K3,K5)

Page 102

Page 105

Modern OLTP Indexes (Part 1) Latch-Free Bw-Tree

Bw-Tree: Structure Modification Operations

Mapping Table

[K5,K7)
Separator: Sy

~,

PID Addr ™
101
102
103
104
105

..
Physical Left: [K3,K5) >,

—_.\ . N N,
o8 Logical Right:[K5K7) N
\,

Pl

Logical
Pointer ~~~""
Physical

Pointer

Page 102

Page 105

Modern OLTP Indexes (Part 1) Latch-Free Bw-Tree

Bw-Tree: Structure Modification Operations

Mapping Table

™
i

P. Addr
101
102
103
104
105

ST

Logical
Pointer ~~~""
Physical
Pointer

[K5K7)
Separator: SEr

~<

- Physical Left: [}K;) -
" ~, Logical Right: [K5K7)

N,
N\,
N\,

©000 80

1
1
Page 103 |
1

90

Page 102

Page 105

Modern OLTP Indexes (Part 1) Latch-Free Bw-Tree

Bw-Tree: Structure Modification Operations

Mapping Table

PID Addr
101
102
103
104
105

Physical Left: [K3K5) >«

33+, Logical Right:[K5K7) >
\

/
/ r
]

o® : 0000 |

Page 102 Page 103 Page 104

ST

Logical

Pointer ==~
Physical

Pointer

Page 105

P Indexes (Part 1)

Bw-Tree: Performance

Operations/sec (M)

—_
(=}

—_
5]

S N A~ O

Processor: 1 socket, 4 cores w/ 2xHT

M Bw-Tree M Skip List M B+Tree

Xbox Synthetic Deduplication

Source

A

82/85

https://www.microsoft.com/en-us/research/publication/the-bw-tree-a-b-tree-for-new-hardware/

Modern OLTP Indexes (Part 1)

Bw-Tree: Performance

Processor: 1socket, 10 cores w/ 2xHT
Workload: 50m Random Integer Keys (64-bit)

B Open Bw-Tree M Skip List M B+Tree M Masstree 1 ART

60

P
(=)

Operations/sec (M)
(3]
[=)

o

515

449 429

29 305

Insert-Only Read-Only Read/Update

Source

A

83/85

https://dl.acm.org/doi/10.1145/3183713.3196895

Modern OLTP Indexes (Part 1) Conclusion

Conclusion

Modern OLTP Indexes (Part 1) Conclusion

Conclusion

e Managing a concurrent index looks a lot like managing a database.
e Versioning and garbage collection are widely used mechanisms for increasing
concurrency.
e BwTree illustrates how to design complex, latch-free data structures with only CaS
instruction.
e Next Class
> We will learn about modern trie data structures.

	Modern OLTP Indexes (Part 1)
	Recap
	T-Tree
	Versioned Latch Coupling
	Latch-Free Bw-Tree
	Conclusion

