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Versioned Latch Coupling

• Optimistic coupling scheme where writers are not blocked on readers.
• Provides the benefits of optimistic coupling without wasting too much work.
• Every latch has a version counter.
• Writers traverse down the tree like a reader

▶ Acquire latch in target node to block other writers.
▶ Increment version counter before releasing latch.
▶ Writer thread increments version counter and acquires latch in a single

compare-and-swap instruction.

• Reference

https://dl.acm.org/doi/10.1145/2933349.2933352
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Bw-Tree

• Latch-free B+Tree index built for the Microsoft Hekaton project.
• Key Idea 1: Delta Updates

▶ No in-place updates.
▶ Reduces cache invalidation.

• Key Idea 2: Mapping Table
▶ Allows for CaS of physical locations of pages.

• Reference

https://www.microsoft.com/en-us/research/publication/the-bw-tree-a-b-tree-for-new-hardware/
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Today’s Agenda

• Trie Index
• Trie Variants

▶ Judy Arrays (HP)
▶ ART Index (HyPer)
▶ Masstree (Silo)
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Observation

• The inner node keys in a B+Tree cannot tell you whether a key exists in the index.
• You must always traverse to the leaf node.
• This means that you could have (at least) one buffer pool page miss per level in the tree

just to find out a key does not exist.
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Trie Index

• Use a digital representation of keys to
examine prefixes one-by-one instead of
comparing entire key.
▶ a.k.a., Digital Search Tree, Prefix Tree.
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Properties

• Shape only depends on key space and lengths.
▶ Does not depend on existing keys or insertion order.
▶ Does not require rebalancing operations.

• All operations have O(k) complexity where k is the length of the key.
▶ The path to a leaf node represents the key of the leaf
▶ Keys are stored implicitly and can be reconstructed from paths.
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Key Span

• The span of a trie level is the number of bits that each partial key / digit represents.
▶ If the digit exists in the corpus, then store a pointer to the next level in the trie branch.
▶ Otherwise, store null.

• This determines the fan-out of each node and the physical height of the tree.
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Radix Tree

• Omit all nodes with only a single child.

▶ a.k.a., Patricia Tree.

• Can produce false positives
• So the DBMS always checks the

original tuple to see whether a key
matches.
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Trie Variants

• Judy Arrays (HP)
• ART Index (HyPer)
• Masstree (Silo)
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Judy Arrays

• Variant of a 256-way radix tree (since a byte is 8 bits)
• Goal: Minimize the amount of cache misses per lookup
• First known radix tree that supports adaptive node representation.
• Three array types

▶ Judy1: Bit array that maps integer keys to true/false.
▶ JudyL: Map integer keys to integer values.
▶ JudySL: Map variable-length keys to integer values.

• Open-Source Implementation (LGPL).
• Patented by HP in 2000. Expires in 2022.
• Reference

http://judy.sourceforge.net/
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Judy Arrays

• Do not store meta-data about node in its header.
▶ This could lead to additional cache misses.
▶ Instead store meta-data in the pointer to that node.

• Pack meta-data about a node in 128-bit fat pointers stored in its parent node.
▶ Node Type
▶ Population Count
▶ Child Key Prefix / Value (if only one child below)
▶ 64-bit Child Pointer

• Reference

https://ieeexplore.ieee.org/document/7113370/
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Node Types

• Every node can store up to 256 digits.
• Not all nodes will be 100% full though.
• Adapt node’s organization based on its keys.

▶ Linear Node: Sparse Populations (i.e., small number of digits at a level)
▶ Bitmap Node: Typical Populations
▶ Uncompressed Node: Dense Population
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Linear Nodes

• Store sorted list of partial prefixes up
to two cache lines.
▶ Original spec was one cache line

• Store separate array of pointers to
children ordered according to prefix
sorted.

• Can do a linear scan on sorted digits to
find a match.
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Bitmap Nodes

• 256-bit map to mark whether a prefix
(i.e., digit) is present in node.

• Bitmap is divided into eight one-byte
chunks

• Each chunk has a pointer to a
sub-array with pointers to child nodes.
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Bitmap Nodes

• To look up a digit (e.g., "1")
• Check at offset 1 in prefix bitmap
• Count the number of 1s that came

before offset
• Position to jump into the chunk’s

sub-array
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Bitmap Nodes

• There is a maximum size for the child
pointer array

• Although we could present 256 digits
in the prefix bitmap, we don’t have
enough space to store pointers for all
of them
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Adaptive Radix Tree (ART)

• Developed for TUM’s HyPer DBMS in 2013.
• 256-way radix tree that supports different node types based on its population.

▶ Stores meta-data about each node in its header.

• Reference

https://ieeexplore.ieee.org/document/6544812
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ART vs. JUDY

• Difference 1: Node Types
▶ Judy has three node types with different organizations.
▶ ART has four nodes types that (mostly) vary in the maximum number of children.

• Difference 2: Value Type
▶ Judy is a general-purpose associative array. It "owns" the keys and values.
▶ ART is a table index and does not need to cover the full keys. Values are pointers to tuples.
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Inner Node Types

• Store only the 8-bit digits that exist at a
given node in a sorted array.

• The offset in sorted digit array
corresponds to offset in value array.

• Pack in multiple digits into a single
node to improve cache locality.

• First two node types support a small
number of digits at that node.

• Use SIMD to quickly find a matching
digit per node.
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Inner Node Types

• Instead of storing 1-byte digits,
maintain an array of 1-byte offsets to a
child pointer array that is indexed on
the digit bits.
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Inner Node Types

• Store an array of 256 pointers to child
nodes.

• This covers all possible values in 8-bit
digits.

• Same as the Judy Array’s
Uncompressed Node.
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Binary Comparable Keys

• Not all attribute types can be decomposed into binary comparable digits for a radix
tree.
▶ Unsigned Integers: Byte order must be flipped for little endian machines.
▶ Signed Integers: Flip two’s-complement so that negative numbers are smaller than

positive.
▶ Floats: Classify into group (neg vs. pos, normalized vs. denormalized), then store as

unsigned integer.
▶ Compound: Transform each attribute separately.
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Masstree

• Instead of using different layouts for
each trie node based on its size, use an
entire B+Tree.

• Part of the Harvard Silo project.
▶ Each B+tree represents 8-byte span.
▶ Optimized for long keys (e.g., URLs).
▶ Uses a latching protocol that is

similar to versioned latches.
▶ In any trie node, you can have

pointers to tuples in the leaf nodes of
the B+tree

• Reference

https://dl.acm.org/doi/10.1145/2168836.2168855
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In-Memory Indexes: Performance

Source

https://www.microsoft.com/en-us/research/publication/the-bw-tree-a-b-tree-for-new-hardware/
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In-Memory Indexes: Performance

Source

https://dl.acm.org/doi/10.1145/3183713.3196895
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Conclusion

• Bw-Tree vs ART.
• Radix trees have interesting properties, but a well-written B+tree is still a solid design

choice.
• Next Class

▶ Executing a query
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