Modern OLTP Indexes (Part 2)

Modern OLTP Indexes (Part 2)

Modern OLTP Indexes (Part 2)

Recap

2/43

Recap
Versioned Latch Coupling

Optimistic coupling scheme where writers are not blocked on readers.

Provides the benefits of optimistic coupling without wasting too much work.

Every latch has a version counter.
Writers traverse down the tree like a reader
> Acquire latch in target node to block other writers.
> Increment version counter before releasing latch.
> Writer thread increments version counter and acquires latch in a single
compare-and-swap instruction.

Reference

https://dl.acm.org/doi/10.1145/2933349.2933352

Modern OLTP Indexes (Part 2) BEIEEIE

Bw-Tree

Latch-free B+Tree index built for the Microsoft Hekaton project.
Key Idea 1: Delta Updates

> No in-place updates.
» Reduces cache invalidation.

Key Idea 2: Mapping Table
> Allows for CaS of physical locations of pages.

Reference

https://www.microsoft.com/en-us/research/publication/the-bw-tree-a-b-tree-for-new-hardware/

Modern OLTP Indexes (Part 2)

Today’s Agenda

e Trie Index

e Trie Variants
> Judy Arrays (HP)
> ART Index (HyPer)
> Masstree (Silo)

Recap

Modern OLTP Indexes (Part 2)

Trie Index

6/43

Modern OLTP Indexes (Part 2) Trie Index

Observation

e The inner node keys in a B+Tree cannot tell you whether a key exists in the index.
e You must always traverse to the leaf node.

e This means that you could have (at least) one buffer pool page miss per level in the tree
just to find out a key does not exist.

Modern OLTP Indexes (Part 2)

Trie Index

e Use a digital representation of keys to
examine prefixes one-by-one instead of
comparing entire key.

> a.k.a., Digital Search Tree, Prefix Tree.

Trie Index

Keys: [HELLOJ HAT, HAVE

Modern OLTP Indexes (Part 2) Trie Index

Properties

e Shape only depends on key space and lengths.
> Does not depend on existing keys or insertion order.
> Does not require rebalancing operations.
e All operations have O(k) complexity where k is the length of the key.

> The path to a leaf node represents the key of the leaf
> Keys are stored implicitly and can be reconstructed from paths.

Tri Index
Key Span

e The span of a trie level is the number of bits that each partial key / digit represents.

> If the digit exists in the corpus, then store a pointer to the next level in the trie branch.
» Otherwise, store null.

e This determines the fan-out of each node and the physical height of the tree.

Key Span

P Indexes (Part 2)

1-bit Span Trie
K10+ 00000000 00001010
K25+ 00000000 00011001
K31+ 00000000 00011111
Tt Node
Poi:cpel:H Pointer &>

11/43

Key Span

Modern OLTP Indexes (Part 2)

1-bit Span Trie

K10-|0po000oo 00001010
K25-|0p000000 00011001
K31-|0poo0ooo 00011111
elol1|y|le|yl1]|o|e|o|1]y
Ielgll|¢I|0|¢|1IvII0|¢I1|vI
Pm'—’ Pm‘—’

12/43

Key Span

Modern OLTP Indexes (Part 2)

1-bit Span Trie

K10 00000000 00001010
K25- 00000000 00011001
K31 00000000 00011111
e|g|1|y|lelgl1|o|le|d|1]y
|9|g|1|¢|I0|¢I1IYII0|¢I1|v|
PnTi:PmkH Pointer >

13 /43

Key Span

Modern OLTP Indexes (Part 2)

1-bit Span Trie

K10 00000000 00401010
K25- 00000000 00411001
K31-> 00000000 004q1)111
e|g[1|gfle|g(r(o|e|o[1]y
loy[1]ol[e[o|1]yl[e]o]1]y]
v - v v
Pointer ®—> Pointer @

14/43

Key Span

Modern OLTP Indexes (Part 2)

1-bit Span Trie

K10+ 00000000 000ef1010]
K25- 00000000 00011001
K31-> 00000000 00011111
lefo1]yllely[1]0]le[o]2
lofyl1[olJe[o[1]y][e[o]1]y]
L— ' '
Pointer > Pointer &>

Key Span

Modern OLTP Indexes (Part 2)

1-bit Span Trie
olyl1|o
0 1|0 | Repeat 10x
0 1y K10~ 00000000 00001010
0l0]1]z To0]1]5] K25 00000000 0001Iep1
T K31-> 00000000 000111)11
9 Egl1 Q /8|1 ¥
[o]o]1[s] nnn BF
IGIglllwllelmlllgllowlllgl
PaTi;-‘Pul:‘—’ Pm._’

16 /43

Key Span

Modern OLTP Indexes (Part 2)

1-bit Span Trie

rig
|4 | 0 | Repeat 10x

K10+ 00000000 00001010
K25- 00000000 00011001
K31+ 00000000 00011111

17 /43

Trie Index
Radix Tree

1-bit Span Radix Tree

)

e Omit all nodes with only a single child. § 10| Repeat 0%

» a.k.a., Patricia Tree. T L:D
e Can produce false positives ~
¢ So the DBMS always checks the Y Y
original tuple to see whether a key
matches.
Tuple Node

Pointer > Pointer &>

Trie Variants

e Judy Arrays (HP)
e ART Index (HyPer)
e Masstree (Silo)

Modern OLTP Indexes (Part 2)

Trie Index

Modern OLTP Indexes (Part 2) BNECVFNGEYES

Judy Arrays

izt
Judy Arrays

Variant of a 256-way radix tree (since a byte is 8 bits)

Goal: Minimize the amount of cache misses per lookup

First known radix tree that supports adaptive node representation.

Three array types
> Judy1l: Bit array that maps integer keys to true/false.
> JudyL: Map integer keys to integer values.
> JudySL: Map variable-length keys to integer values.

Open-Source Implementation (LGPL).
Patented by HP in 2000. Expires in 2022.

Reference

http://judy.sourceforge.net/

izt
Judy Arrays

¢ Do not store meta-data about node in its header.
> This could lead to additional cache misses.
> Instead store meta-data in the pointer to that node.
e Pack meta-data about a node in 128-bit fat pointers stored in its parent node.
> Node Type
> Population Count

> Child Key Prefix / Value (if only one child below)
> 64-bit Child Pointer

e Reference

https://ieeexplore.ieee.org/document/7113370/

Judy Arays
Node Types

e Every node can store up to 256 digits.

e Not all nodes will be 100% full though.
e Adapt node’s organization based on its keys.

> Linear Node: Sparse Populations (i.e., small number of digits at a level)
> Bitmap Node: Typical Populations
> Uncompressed Node: Dense Population

Modern OLTP Indexes (Part 2) BNECVFNGEYES

Linear Nodes

Linear Node
e Store sorted list of partial prefixes up o 1 5
to two cache lines. ‘KQ‘KZ‘...‘,@ n‘n‘...‘n‘
> Original spec was one cache line Sorted Digits Child Pointers

e Store separate array of pointers to g .
children ordered according to prefix 6x I-byte = 6 x I6-bytes =
6 bytes 96 bytes
sorted.
o (;an do a linear scan on sorted digits to 102 bytes
find a match. 128 bytes (padded)

Modern OLTP Indexes (Part 2) BNECVFNGEYES

Bitmap Nodes

Bitmap Node
Prefix Bitmaps

. . Q-7 8-15 248-255
e 256-bit map to mark whether a prefix 4|Wm| & [Joossssa] = |- fooroono] =

(i.e., digit) is present in node.

e Bitmap is divided into eight one-byte

unn‘n u‘n n""‘n‘u

chunks

¢ Each chunk has a pointer to a Digit
sub-array with pointers to child nodes. 1 -o0o0a001 5-0a000101

100000001 500000101
200000010 600000110
300000011 7-00000111

Offset

Modern OLTP Indexes (Part 2) BNECVFNGEYES

Bitmap Nodes
Bitmap Node
Prefix Bitmaps Sub-Array Pointers
P nwan 0-7 8-15 248-255
¢ To look up a dlglt (e'g" 1) eroo0i1o| g ‘oeoaoaoa‘ 5 ‘ eommao‘ ¥ ‘
e Check at offset 1 in prefix bitmap
e Count the number of 1s that came [o:
before offset HE “l;hﬂ;PI'“ =fla]=]
ointers

e Position to jump into the chunk’s
sub-array

Modern OLTP Indexes (Part 2) BNECVFNGEYES

Bitmap Nodes
Bitmap Node
Prefix Bitmaps Sub-Array Pointers
0 7 RIS 248-255
e There is a maximum size for the child forecerr] ear

00100100
pointer array __/- // /

e Although we could present 256 digits
in the prefix bitmap, we don’t have Child Pomters
enough space to store pointers for all
of them

WL S5 HOI MU SNV Adaptive Radix Tree (ART)

Adaptive Radix Tree (ART)

L D
Adaptive Radix Tree (ART)

e Developed for TUM’s HyPer DBMS in 2013.
e 256-way radix tree that supports different node types based on its population.
> Stores meta-data about each node in its header.

e Reference

https://ieeexplore.ieee.org/document/6544812

ART vs. JUDY

e Difference 1: Node Types

> Judy has three node types with different organizations.
> ART has four nodes types that (mostly) vary in the maximum number of children.

e Difference 2: Value Type

> Judy is a general-purpose associative array. It "owns" the keys and values.
> ART is a table index and does not need to cover the full keys. Values are pointers to tuples.

Adaptive Radix Tree (AR
Inner Node Types

e Store only the 8-bit digits that exist at a Noded

given node in a sorted array. oL

Ko | K2 | K3 | K8
e The offset in sorted digit array

corresponds to offset in value array.

e Pack in multiple digits into a single

node to improve cache locality. Nodels
e First two node types support a small 0 -
number of digits at that node. alal e

e Use SIMD to quickly find a matching
digit per node.

(S

S

WL S5 HOI MU SNV Adaptive Radix Tree (ART)

Inner Node Types
Node48
Pointer Array Offsets
Ko K1 K2 K255 @ 1 47

[eloT=FTe]=]=]"]=]
e Instead of storing 1-byte digits, A ——
maintain an array of 1-byte offsets to a
child pointer array that is indexed on
the digit bits.

WL S5 HOI MU SNV Adaptive Radix Tree (ART)

Inner Node Types
Node48
Pointer Array Offsets
Ko KI K2 K255 0 1 47

ot @ fo B A i o} ol o B R
e Instead of storing 1-byte digits, u’J\L_JE

me‘unteur} an array of 1-bytf: offsets to a 256 % I-byte= 48 x 8-bytes =
child pointer array that is indexed on 256 bytes 384 bytes

the digit bits. ~—~—

640 bytes

Modern OLTP Indexes (Part 2)

Inner Node Types

e Store an array of 256 pointers to child
nodes.

e This covers all possible values in 8-bit
digits.

e Same as the Judy Array’s
Uncompressed Node.

Adaptive Radix Tree (ART)

Node256
Ko Ki K2 K3 K4 K5 K6 K255
#|o]alalo|a]af]=]
— e
——
256 x 8-byte =
2048 bytes

Adaptive Radix Tree (AR
Binary Comparable Keys

e Not all attribute types can be decomposed into binary comparable digits for a radix
tree.

> Unsigned Integers: Byte order must be flipped for little endian machines.

> Signed Integers: Flip two’s-complement so that negative numbers are smaller than
positive.

> Floats: Classify into group (neg vs. pos, normalized vs. denormalized), then store as
unsigned integer.

> Compound: Transform each attribute separately.

Modern OLTP Indexes (Part 2)

Binary Comparable Keys

8-bit Span Radix Tree

Int Key: 168496141

$

Hex Key: 0A 0B 0C 0D

Find 658205
Hex QA®@B 1D

@
Little Big
Endian Endian

A

36/43

Modern OLTP Indexes (Part 2)

Binary Comparable Keys

8-bit Span Radix Tree

Int Key: 168496141

$

Hex Key: 0A 0B 0C 0D

Find 658205
Hex QA QB 1D

Endian

37/43

Modern OLTP Indexes (Part 2)

MassTree

Do 38/43

Modern OLTP Indexes (Part 2) MassTree

Masstree

e Instead of using different layouts for
each trie node based on its size, use an Masstree
entire B+Tree.

Bytes [0-7]
e Part of the Harvard Silo project. S

> Each B+tree represents 8-byte span. e alwle

> Optimized for long keys (e.g., URLs). (')

> Uses a latching protocol that is B Byzesiiealsl
similar to versioned latches. R 5=

> In any trie node, you can have f ok h A ko
pointers to tuples in the leaf nodes of
the B+tree

e Reference

https://dl.acm.org/doi/10.1145/2168836.2168855

Modern OLTP Indexes (Part 2)

In-Memory Indexes: Performance

Processor: 1socket, 10 cores w/ 2xHT
Workload: 50m Random Integer Keys (64-bit)

B Open Bw-Tree M Skip List M B+Tree M Masstree 1 ART

P
(=)

515
429

15
(=

Operations/sec (M)

o

Read/Update

https://www.microsoft.com/en-us/research/publication/the-bw-tree-a-b-tree-for-new-hardware/

Modern OLTP Indexes (Part 2) MassTree

In-Memory Indexes: Performance

Processor: 1 socket, 10 cores w/ 2xHT
Workload: 50m Keys

B Open Bw-Tree M Skip List M B+Tree M Masstree ART
5

ISy

w

Memory (GB)
[3S]

—_

Mono Int Rand Int Emails

Source

https://dl.acm.org/doi/10.1145/3183713.3196895

Modern OLTP Indexes (Part 2) Conclusion

Conclusion

Modern OLTP Indexes (Part 2) Conclusion

Conclusion

e Bw-Tree vs ART.
e Radix trees have interesting properties, but a well-written B+tree is still a solid design
choice.
e Next Class
> Executing a query

	Modern OLTP Indexes (Part 2)
	Recap
	Trie Index
	Judy Arrays
	Adaptive Radix Tree (ART)
	MassTree
	Conclusion

