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Recap
Versioned Latch Coupling

Optimistic coupling scheme where writers are not blocked on readers.

Provides the benefits of optimistic coupling without wasting too much work.

Every latch has a version counter.
Writers traverse down the tree like a reader
> Acquire latch in target node to block other writers.
> Increment version counter before releasing latch.
> Writer thread increments version counter and acquires latch in a single
compare-and-swap instruction.

Reference


https://dl.acm.org/doi/10.1145/2933349.2933352
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Bw-Tree

Latch-free B+Tree index built for the Microsoft Hekaton project.
Key Idea 1: Delta Updates

> No in-place updates.
» Reduces cache invalidation.

Key Idea 2: Mapping Table
> Allows for CaS of physical locations of pages.

Reference


https://www.microsoft.com/en-us/research/publication/the-bw-tree-a-b-tree-for-new-hardware/
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Today’s Agenda

e Trie Index

e Trie Variants
> Judy Arrays (HP)
> ART Index (HyPer)
> Masstree (Silo)
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Observation

e The inner node keys in a B+Tree cannot tell you whether a key exists in the index.
e You must always traverse to the leaf node.

e This means that you could have (at least) one buffer pool page miss per level in the tree
just to find out a key does not exist.



Modern OLTP Indexes (Part 2)

Trie Index

e Use a digital representation of keys to
examine prefixes one-by-one instead of
comparing entire key.

> a.k.a., Digital Search Tree, Prefix Tree.

Trie Index

Keys: [HELLOJ HAT, HAVE
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Properties

e Shape only depends on key space and lengths.
> Does not depend on existing keys or insertion order.
> Does not require rebalancing operations.
e All operations have O(k) complexity where k is the length of the key.

> The path to a leaf node represents the key of the leaf
> Keys are stored implicitly and can be reconstructed from paths.




Tri Index
Key Span

e The span of a trie level is the number of bits that each partial key / digit represents.

> If the digit exists in the corpus, then store a pointer to the next level in the trie branch.
» Otherwise, store null.

e This determines the fan-out of each node and the physical height of the tree.




Key Span

P Indexes (Part 2)

1-bit Span Trie
K10+ 00000000 00001010
K25+ 00000000 00011001
K31+ 00000000 00011111
Tt Node
Poi:cpel:H Pointer &>
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Key Span
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1-bit Span Trie

K10-|0po000oo 00001010
K25-|0p000000 00011001
K31-|0poo0ooo 00011111
elol1|y|le|yl1]|o|e|o|1]y
Ielgll|¢I|0|¢|1IvII0|¢I1|vI
Pm'—’ Pm‘—’
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Key Span
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1-bit Span Trie

K10 00000000 00001010
K25- 00000000 00011001
K31 00000000 00011111
e|g|1|y|lelgl1|o|le|d|1]y
|9|g|1|¢|I0|¢I1IYII0|¢I1|v|
PnTi:PmkH Pointer >
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Key Span
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1-bit Span Trie

K10 00000000 00401010
K25- 00000000 00411001
K31-> 00000000 004q1)111
e|g[1|gfle|g(r(o|e|o[1]y
loy[1]ol[e[o|1]yl[e]o]1]y]
v - v v
Pointer ®—>  Pointer @
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Key Span
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1-bit Span Trie

K10+ 00000000 000ef1010]
K25- 00000000 00011001
K31-> 00000000 00011111
lefo1]yllely[1]0]le[o]2
lofyl1[olJe[o[1]y][e[o]1]y]
L— ' '
Pointer > Pointer &>
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1-bit Span Trie
olyl1|o
0 1|0 | Repeat 10x
0 1y K10~ 00000000 00001010
0l0]1]z To0]1]5] K25 00000000 0001Iep1
T K31-> 00000000 000111)11
9 Egl1 Q /8|1 ¥
[o]o]1[s] nnn BF
IGIglllwllelmlllgllowlllgl
PaTi;-‘Pul:‘—’ Pm._’
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Key Span
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1-bit Span Trie

rig
|4 | 0 | Repeat 10x

K10+ 00000000 00001010
K25- 00000000 00011001
K31+ 00000000 00011111
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Trie Index
Radix Tree

1-bit Span Radix Tree

)

e Omit all nodes with only a single child. § 10| Repeat 0%

» a.k.a., Patricia Tree. T L:D
e Can produce false positives ~
¢ So the DBMS always checks the Y Y
original tuple to see whether a key
matches.
Tuple Node

Pointer > Pointer &>



Trie Variants

e Judy Arrays (HP)
e ART Index (HyPer)
e Masstree (Silo)
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Trie Index
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izt
Judy Arrays

Variant of a 256-way radix tree (since a byte is 8 bits)

Goal: Minimize the amount of cache misses per lookup

First known radix tree that supports adaptive node representation.

Three array types
> Judy1l: Bit array that maps integer keys to true/false.
> JudyL: Map integer keys to integer values.
> JudySL: Map variable-length keys to integer values.

Open-Source Implementation (LGPL).
Patented by HP in 2000. Expires in 2022.

Reference


http://judy.sourceforge.net/

izt
Judy Arrays

¢ Do not store meta-data about node in its header.
> This could lead to additional cache misses.
> Instead store meta-data in the pointer to that node.
e Pack meta-data about a node in 128-bit fat pointers stored in its parent node.
> Node Type
> Population Count

> Child Key Prefix / Value (if only one child below)
> 64-bit Child Pointer

e Reference


https://ieeexplore.ieee.org/document/7113370/

Judy Arays
Node Types

e Every node can store up to 256 digits.

e Not all nodes will be 100% full though.
e Adapt node’s organization based on its keys.

> Linear Node: Sparse Populations (i.e., small number of digits at a level)
> Bitmap Node: Typical Populations
> Uncompressed Node: Dense Population
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Linear Nodes

Linear Node
e Store sorted list of partial prefixes up o 1 5
to two cache lines. ‘KQ‘KZ‘...‘,@ n‘n‘...‘n‘
> Original spec was one cache line Sorted Digits  Child Pointers

e Store separate array of pointers to g .
children ordered according to prefix 6x I-byte = 6 x I6-bytes =
6 bytes 96 bytes
sorted.
o (;an do a linear scan on sorted digits to 102 bytes
find a match. 128 bytes (padded)
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Bitmap Nodes

Bitmap Node
Prefix Bitmaps

. . Q-7 8-15 248-255
e 256-bit map to mark whether a prefix 4|Wm| & [Joossssa] = |- fooroono] =

(i.e., digit) is present in node.

e Bitmap is divided into eight one-byte

unn‘n u‘n n""‘n‘u

chunks

¢ Each chunk has a pointer to a Digit
sub-array with pointers to child nodes. 1 -o0o0a001 5-0a000101

100000001 500000101
200000010 600000110
300000011 7-00000111

Offset
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Bitmap Nodes
Bitmap Node
Prefix Bitmaps Sub-Array Pointers
P nwan 0-7 8-15 248-255
¢ To look up a dlglt (e'g" 1 ) eroo0i1o| g ‘oeoaoaoa‘ 5 ‘ eommao‘ ¥ ‘
e Check at offset 1 in prefix bitmap
e Count the number of 1s that came [ o:
before offset HE “l;hﬂ;PI'“ =fla]=]
ointers

e Position to jump into the chunk’s
sub-array



Modern OLTP Indexes (Part 2) BNECVFNGEYES

Bitmap Nodes
Bitmap Node
Prefix Bitmaps Sub-Array Pointers
0 7 RIS 248-255
e There is a maximum size for the child forecerr] ear

00100100
pointer array __/- // /

e Although we could present 256 digits
in the prefix bitmap, we don’t have Child Pomters
enough space to store pointers for all
of them
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L D
Adaptive Radix Tree (ART)

e Developed for TUM’s HyPer DBMS in 2013.
e 256-way radix tree that supports different node types based on its population.
> Stores meta-data about each node in its header.

e Reference


https://ieeexplore.ieee.org/document/6544812

ART vs. JUDY

e Difference 1: Node Types

> Judy has three node types with different organizations.
> ART has four nodes types that (mostly) vary in the maximum number of children.

e Difference 2: Value Type

> Judy is a general-purpose associative array. It "owns" the keys and values.
> ART is a table index and does not need to cover the full keys. Values are pointers to tuples.



Adaptive Radix Tree (AR
Inner Node Types

e Store only the 8-bit digits that exist at a Noded

given node in a sorted array. oL

Ko | K2 | K3 | K8
e The offset in sorted digit array

corresponds to offset in value array.

e Pack in multiple digits into a single

node to improve cache locality. Nodels
e First two node types support a small 0 -
number of digits at that node. alal e

e Use SIMD to quickly find a matching
digit per node.

(S

S
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Inner Node Types
Node48
Pointer Array Offsets
Ko K1 K2 K255 @ 1 47

[eloT=FTe]=]=]"]=]
e Instead of storing 1-byte digits, A ——
maintain an array of 1-byte offsets to a
child pointer array that is indexed on
the digit bits.
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Inner Node Types
Node48
Pointer Array Offsets
Ko KI K2 K255 0 1 47

ot @ fo B A i o} ol o B R
e Instead of storing 1-byte digits, u’J\L_JE

me‘unteur} an array of 1-bytf: offsets to a 256 % I-byte= 48 x 8-bytes =
child pointer array that is indexed on 256 bytes 384 bytes

the digit bits. ~—~—

640 bytes
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Inner Node Types

e Store an array of 256 pointers to child
nodes.

e This covers all possible values in 8-bit
digits.

e Same as the Judy Array’s
Uncompressed Node.

Adaptive Radix Tree (ART)

Node256
Ko Ki K2 K3 K4 K5 K6 K255
#|o]alalo|a]af]=]
— e
——
256 x 8-byte =
2048 bytes



Adaptive Radix Tree (AR
Binary Comparable Keys

e Not all attribute types can be decomposed into binary comparable digits for a radix
tree.

> Unsigned Integers: Byte order must be flipped for little endian machines.

> Signed Integers: Flip two’s-complement so that negative numbers are smaller than
positive.

> Floats: Classify into group (neg vs. pos, normalized vs. denormalized), then store as
unsigned integer.

> Compound: Transform each attribute separately.
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Binary Comparable Keys

8-bit Span Radix Tree

Int Key: 168496141

$

Hex Key: 0A 0B 0C 0D

Find 658205
Hex QA®@B 1D

@
Little Big
Endian Endian

A
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Binary Comparable Keys

8-bit Span Radix Tree

Int Key: 168496141

$

Hex Key: 0A 0B 0C 0D

Find 658205
Hex QA QB 1D

Endian
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MassTree

Do 38/43



Modern OLTP Indexes (Part 2) MassTree

Masstree

e Instead of using different layouts for
each trie node based on its size, use an  Masstree
entire B+Tree.

Bytes [0-7]
e Part of the Harvard Silo project. S

> Each B+tree represents 8-byte span. e alwle

> Optimized for long keys (e.g., URLs). (')

> Uses a latching protocol that is B Byzesiiealsl
similar to versioned latches. R 5=

> In any trie node, you can have f ok h A ko
pointers to tuples in the leaf nodes of
the B+tree

e Reference


https://dl.acm.org/doi/10.1145/2168836.2168855
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In-Memory Indexes: Performance

Processor: 1socket, 10 cores w/ 2xHT
Workload: 50m Random Integer Keys (64-bit)

B Open Bw-Tree M Skip List M B+Tree M Masstree 1 ART

P
(=)

515
429

15
(=

Operations/sec (M)

o

Read/Update


https://www.microsoft.com/en-us/research/publication/the-bw-tree-a-b-tree-for-new-hardware/
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In-Memory Indexes: Performance

Processor: 1 socket, 10 cores w/ 2xHT
Workload: 50m Keys

B Open Bw-Tree M Skip List M B+Tree M Masstree ART
5

ISy

w

Memory (GB)
[3S]

—_

Mono Int Rand Int Emails

Source


https://dl.acm.org/doi/10.1145/3183713.3196895
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Conclusion

e Bw-Tree vs ART.
e Radix trees have interesting properties, but a well-written B+tree is still a solid design
choice.
e Next Class
> Executing a query
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