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A More Detailed Architecture

Query Interface
SQL,.

Record Interface

FIND NEXT record,
STORE record

Record Access

write record,
insert in B-tree,

DB Buffer
access page j,
release page j

File Interface

read block k,
write block k

Device Interface
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granularity:

data structures:

granularity:

relation, view, ..
logical schema,
integrity constraints
logical record, key,

granularity:

data structures:

granularity:

logical record, key, ..
access path,
physical schema .
physical record,

granularity:

data structures:

physical record,...
free space inventory,
page indexes

granularity: page, segment
granularity: page, segment
data structures: page table,
block map
granularity: block, file
granularity: block, file

data structures:

granularity:

free space inventory,
extent table
track, cylinder, ...

application

logical data

access paths

physical data

page structure

storage allocation

external storage



Recep
Anatomy of a Database System [Monologue]

Process Manager
> Connection Manager + Admission Control
Query Processor
> Query Parser
> Query Optimizer (a.k.a., Query Planner)
> Query Executor
Transactional Storage Manager
> Lock Manager
> Access Methods (a.k.a., Indexes)
> Buffer Pool Manager
> Log Manager
Shared Utilities

> Memory, Disk, and Networking Manager


https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf
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Query Execution

e We are now going to talk about how to execute queries using table heaps and indexes.
e Coming weeks:

> Operator Algorithms
> Query Processing Models
> Runtime Architectures
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Query Plan

e The operators are arranged in a tree.
e Data flows from the leaves of the tree
up towards the root.

e The output of the root node is the
result of the query.
SELECT A.id, B.value

FROM A, B
WHERE A.id = B.id AND B.value > 100

Recap
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Recap
Disk-Oriented DBMS

e We cannot assume that the results of a query fits in memory.

e We are going use the buffer pool to implement query execution algorithms that need
to spill to disk.

e We are also going to prefer algorithms that maximize the amount of sequential access.
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Today’s Agenda

e External Merge Sort
e Tree-based Sorting

o Aggregation

Recap
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External Merge Sort
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Why do we need to sort?

e Tuples in a table have no specific order.
e But queries often want to retrieve tuples in a specific order.

> Trivial to support duplicate elimination (DISTINCT).
> Bulk loading sorted tuples into a B+Tree index is faster.
> Aggregation (GROUP BY).
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Sorting Algorithms

e If data fits in memory, then we can use a standard in-memory sorting algorithm like
quick-sort.

e If data does not fit in memory, then we need to use a technique that is aware of the cost
of writing data out to disk.
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External Merge Sort

e Divide-and-conquer sorting algorithm that splits the data set into separate runs and
then sorts them individually.

e Phase 1 - Sorting

> Sort blocks of data that fit in main-memory and then write back the sorted blocks to a file
on disk.

e Phase 2 - Merging

> Combine sorted sub-files into a single larger file.
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2-Way External Merge Sort

e We will start with a simple example of a 2-way external merge sort.
> "2" represents the number of runs that we are going to merge into a new run for each pass.

e Data set is broken up into N pages.

e The DBMS has a finite number of B buffer pages to hold input and output data.
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2-Way External Merge Sort

e Pass 0

> Read every B pages of the table into memory

> Sort pages into runs and write them back to disk.
e Passes 1,2,3,...

> Recursively merge pairs of runs into runs twice as long.
> Use three buffer pages (2 for input pages, 1 for output).
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2-Way External Merge Sort
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2-Way External Merge Sort
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2-Way External Merge Sort

e In each pass, we read and write each page in file.
e Number of passes =1 + [ logz N |
e Total I/O cost = 2N x (Number of passes)



2-Way External Merge Sort
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2-Way External Merge Sort
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2-Way External Merge Sort

e This algorithm only requires three buffer pages to perform the sorting (B=3).

e But even if we have more buffer space available (B>3), it does not effectively utilize
them.
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Double Buffering Optimization

e Prefetch the next run in the

background and store it in a second
buffer while the system is processing Disk | e B
the current run. Page #2

» Reduces the wait time for I/O

requests at each step by continuously
utilizing the disk.



Sorting + Aggregation

General External Merge Sort

e Pass 0

> Use B buffer pages.
> Produce N / B sorted runs of size B

Pass 1,2,3,...

> Merge B-1 runs (i.e., K-way merge).
Number of passes =1 + [ logg_1 N/B ]
Total I/O Cost = 2N x (Number of passes)

External Merge Sort
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K-Way Merge Algorithm

e Input: K sorted sub-arrays
e Output: 1 sorted array

> Efficiently compute the minimum element of all K sub-arrays.
> Repeatedly transfer that element to output array

e Internally maintain a heap to efficiently compute minimum element.
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Example

e Sort 108 pages with 5 buffer pages: N=108, B=5
> Pass 0: N/B =108 /5 = 22 sorted runs of 5 pages each (last run is only 3 pages).
> Pass 1: N’/ B-1 =22 /4 = 6 sorted runs of 20 pages each (last run is only 8 pages).
> Pass2: N” [/ B-1=6/4 =2 sorted runs, first one has 80 pages and second one has 28 pages.
> Pass 3: Sorted file of 108 pages.

e 1+ logg—1 N/B =1+ [10gs22 | =1+ [ 2.229 | = 4 passes
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Tree-based Sorting



Using B+Trees for Sorting

e If the table that must be sorted already has a B+Tree index on the sort attribute(s), then
we can use that to accelerate sorting.
e Retrieve tuples in desired sort order by simply traversing the leaf pages of the tree.

e Cases to consider:

» Clustered B+Tree
» Unclustered B+Tree
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Case 1 — Clustered B+Tree

e Traverse to the left-most leaf page, and

then retrieve tuples from all leaf pages.

e This is always better than external
sorting because there is no
computational cost and all disk access
is sequential.

Tree-based Sorting

B+Tree Index

Tuple Pages
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Case 2 — Unclustered B+Tree

B+Tree Index

e Chase each pointer to the page that —
contains the data. =~ . > S A
\ K

e This is almost always a bad idea. In
general, one I/O per data record.

Tuple Pages
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Aggregation
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Aggregation

e Collapse multiple tuples into a single scalar value.
e Two implementation choices:

> Sorting
> Hashing
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Sorting Aggregation

enrolled(sid,cid,grade)
SELECT DISTINCT cid

FROM enrolled 53666 |15-445 |C
WHERE grade IN ('B','C") 53688 |15-721 |A
ORDER BY cid 53688 [15-826 B

53666 [15-721 |C
53655 |15-445 |c
sid cid grade cid d
53666 |15-445|C T T
- 53688 |15-826/8 - 15-826 - 15-445
Filter  [52666_|15-721]c 15-721 Sort 15-721
53655 |15-445]C Remove 15-445 15-826

Columns
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Sorting Aggregation

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B',’'C")
ORDER BY cid

sid cid grade
53666 |15-445|C
53688 |15-826

H 53666 [15-721
Filter
53655 [15-445

oo®

-)

Remove
Columns

enrolled(sid,cid,grade)

15-445

15-826

15-721

15-445

sid cid grade
53666 |15-445 |C
53688 |15-721 |A
53688 |15-826 |B
53666 [15-721 |C
53655 [15-445 |C

d

15-445

lll" 15945

15-721

Sort 15-826

Eliminate

Dupes
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Alternatives to Sorting

e What if we do not need the data to be ordered?
> Forming groups in GROUP BY (no ordering)
> Removing duplicates in DISTINCT (no ordering)
e Hashing is a better alternative in this scenario.

> Only need to remove duplicates, no need for ordering.
> May be computationally cheaper than sorting.
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Hashing Aggregate

Populate an ephemeral hash table as the DBMS scans the table.

For each record, check whether there is already an entry in the hash table:

> GROUP BY: Perform aggregate computation.
» DISTINCT: Discard duplicates.

If everything fits in memory, then it is easy.
If the DBMS must spill data to disk, then we need to be smarter.
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External Hashing Aggregate

e Phase 1 — Partition

> Divide tuples into buckets based on hash key.
> Write them out to disk when they get full.

e Phase 2 - ReHash
» Build in-memory hash table for each partition and compute the aggregation.
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Phase 1 — Partition

e Use a hash function h; to split tuples into partitions on disk.

> We know that all matches live in the same partition.
> Partitions are spilled to disk via output buffers.

e Assume that we have B buffers.

e We will use B-1 buffers for the partitions and 1 buffer for the input data.
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Phase 1 — Partition

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C")

sid cid grade
53666 [15-445|C
(53688 [15-826

B
. [53666 [15-721]c
Filter [53655 |15-445]c

Remove
Columns

enrolled(sid,cid, grade)

sid cid grade
53666 [15-445 |C
53688 [15-721 |A
53688 [15-826 |B
53666 [15-721 |C
53655 [15-445 |C

B-1 partitions
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Phase 2 — ReHash

e For each partition on disk:

> Read it into memory and build an in-memory hash table based on a second hash function
ha.
> Then go through each bucket of this hash table to bring together matching tuples.

e This assumes that each partition fits in memory.
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Phase 2 — ReHash

enrolled(sid,cid,grade)

SELECT DISTINCT cid d d grad
FROM enrolled 53666 |15-445 |C
WHERE grade IN ('B','C’) 53688 [15-721 |A
53688 [15-826 [B
Phase #1 Buckets 53666 |15-721 |C
53655 |15-445 |C

15-445 15-445
5-

15-826
15-82¢

B-1
Partitions
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Phase 2 — ReHash

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C")

Phase #1 Buckets
15-445 15-445
15-445
15-826
15-826

»

Aggregation

enrolled(sid,cid,grade)

sid cid grade

53666 [15-445 |C

53688 [15-721 |A

53688 [15-826 |B

53666 [15-721 |C

53655 [15-445 |C
Final Result

15-445
15-826
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Phase 2 — ReHash

enrolled(sid,cid, grade)

SELECT DISTINCT cid d d grad
FROM enrolled 53666 |15-445 |C
WHERE grade IN ('B','C") Z;zz: 12:;; ;
Phase #1 Buckets [53666  [15-721 [c
[53655 [15-445 [c
}22322 Final Result

Hash Table

15-445

15-826

» 15-721 cid

15-721

5
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Hashing Summarization

e During the ReHash phase, store pairs of the form (GroupKey —; RunningVal)
e When we want to insert a new tuple into the hash table:

> If we find a matching GroupKey, just update the RunningVal appropriately
> Else insert a new GroupKey — RunningVal
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Hashing Summarization

Running Totals
SELECT cid, AVG(s.gpa) AVG(col) -
FROM student AS s, enrolled AS e (COUNT, SUM)
WHERE s.sid = e.sid MIN(col) - (MIN)
GROUP BY cid MAX(col) - (MAX)
SUM(col) - (SUM)
15-445 COUNT(COl) — (COUNT)

15-445 » Hash Table Final Result

e | ()
Buckets 15-445|(2, 7.32) - 15-445 (3.66
15-826 (1, 3.33) 15-826 [3.33

757737 » 15-721(1, 2.89) 15-721 [2.89
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Conclusion

e Choice of sorting vs. hashing is subtle and depends on optimizations done in each case.
e Next Class

> Nested Loop Join

> Sort-Merge Join

» Hash Join
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