Sorting + Aggregation

Sorting + Aggregation

Sorting + Aggregation

Recap

2/45

+ Aggregat

A More Detailed Architecture

Query Interface
SQL,.

Record Interface

FIND NEXT record,
STORE record

Record Access

write record,
insert in B-tree,

DB Buffer
access page j,
release page j

File Interface

read block k,
write block k

Device Interface

Recap

granularity:

data structures:

granularity:

relation, view, ..
logical schema,
integrity constraints
logical record, key,

granularity:

data structures:

granularity:

logical record, key, ..
access path,
physical schema .
physical record,

granularity:

data structures:

physical record,...
free space inventory,
page indexes

granularity: page, segment
granularity: page, segment
data structures: page table,
block map
granularity: block, file
granularity: block, file

data structures:

granularity:

free space inventory,
extent table
track, cylinder, ...

application

logical data

access paths

physical data

page structure

storage allocation

external storage

Recep
Anatomy of a Database System [Monologue]

Process Manager
> Connection Manager + Admission Control
Query Processor
> Query Parser
> Query Optimizer (a.k.a., Query Planner)
> Query Executor
Transactional Storage Manager
> Lock Manager
> Access Methods (a.k.a., Indexes)
> Buffer Pool Manager
> Log Manager
Shared Utilities

> Memory, Disk, and Networking Manager

https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf

Sorting + Aggregation [ENIEIYe)

Query Execution

e We are now going to talk about how to execute queries using table heaps and indexes.
e Coming weeks:

> Operator Algorithms
> Query Processing Models
> Runtime Architectures

Sorting + Aggregation

Query Plan

e The operators are arranged in a tree.
e Data flows from the leaves of the tree
up towards the root.

e The output of the root node is the
result of the query.
SELECT A.id, B.value

FROM A, B
WHERE A.id = B.id AND B.value > 100

Recap

A

n A.id, B.value

t
MA.id:B.id
N

G value>100
N

Recap
Disk-Oriented DBMS

e We cannot assume that the results of a query fits in memory.

e We are going use the buffer pool to implement query execution algorithms that need
to spill to disk.

e We are also going to prefer algorithms that maximize the amount of sequential access.

Sorting + Aggregation

Today’s Agenda

e External Merge Sort
e Tree-based Sorting

o Aggregation

Recap

BOGHERWNCE SOl External Merge Sort

External Merge Sort

BOGIWERWNCEC LT External Merge Sort

Why do we need to sort?

e Tuples in a table have no specific order.
e But queries often want to retrieve tuples in a specific order.

> Trivial to support duplicate elimination (DISTINCT).
> Bulk loading sorted tuples into a B+Tree index is faster.
> Aggregation (GROUP BY).

BOGIWERWNCEC LT External Merge Sort

Sorting Algorithms

e If data fits in memory, then we can use a standard in-memory sorting algorithm like
quick-sort.

e If data does not fit in memory, then we need to use a technique that is aware of the cost
of writing data out to disk.

External Merge Sort
External Merge Sort

e Divide-and-conquer sorting algorithm that splits the data set into separate runs and
then sorts them individually.

e Phase 1 - Sorting

> Sort blocks of data that fit in main-memory and then write back the sorted blocks to a file
on disk.

e Phase 2 - Merging

> Combine sorted sub-files into a single larger file.

External Merge Sort
2-Way External Merge Sort

e We will start with a simple example of a 2-way external merge sort.
> "2" represents the number of runs that we are going to merge into a new run for each pass.

e Data set is broken up into N pages.

e The DBMS has a finite number of B buffer pages to hold input and output data.

BOGIWERWNCEC LT External Merge Sort

2-Way External Merge Sort

e Pass 0

> Read every B pages of the table into memory

> Sort pages into runs and write them back to disk.
e Passes 1,2,3,...

> Recursively merge pairs of runs into runs twice as long.
> Use three buffer pages (2 for input pages, 1 for output).

Sorting + Aggregation
2-Way External Merge Sort

Disk =
Page#l Page#2

Disk

ﬂ
Page#l Page#2

Memory
Disk

Page#l Page#2

Page#l Page#2

Memory
—
Sorted Run

A

BOGWEEWNC ol Ol External Merge Sort

2-Way External Merge Sort

Memory

- Memory
Disk | = BBH—EE—
Page#l Pages2 Sorted Run

-]

Disk | = B {+—E—
Page#l Page#2 Sorted Run

=

Page#l Page#2 Sorted Run

Memory

i) b

-,

S
Ems) Final Result

S EsE -0

) (&) @
5'

B

BOGHERWNCE SOl External Merge Sort

2-Way External Merge Sort

e In each pass, we read and write each page in file.
e Number of passes =1 + [logz N |
e Total I/O cost = 2N x (Number of passes)

2-Way External Merge Sort

Bl IS IS T

S 4 13 4 13 4 4 i 4
[G.4T26T49 78 56132 [0]

1-PAGE pAgs
RU

#0

PASS
#1

A
e [
>
>
o [~
®
o
o [
| e W
Nefe

s
Aw [

1-PAGE
RUNS

2-PAGE
RUNS

it
S
el
Q
—_
o)
—
S
a1

2-Way External Merge Sort

PASS
#0
PASS
#1

PASS
#2

S s W Gy S S Sy
[Goal26]a97,8][56[1,3] 2 [0]
| A W S S S -

1-PAGE
RUNS

Iy
<

2-PAGE
RUNS

4-PAGE
RUNS

PASS S —— 1-PAGE
#0 34126497856 1,3] 2 [0] RUNS
pass v NN
#1 RUNS
PASS 4-PAGE
#2 RUNS
PASS 8-PAGE
#3 RUNS

Da 19/45

BOGIWERWNCEC LT External Merge Sort

2-Way External Merge Sort

e This algorithm only requires three buffer pages to perform the sorting (B=3).

e But even if we have more buffer space available (B>3), it does not effectively utilize
them.

BOGHERWNCE SOl External Merge Sort

Double Buffering Optimization

e Prefetch the next run in the

background and store it in a second
buffer while the system is processing Disk | e B
the current run. Page #2

» Reduces the wait time for I/O

requests at each step by continuously
utilizing the disk.

Sorting + Aggregation

General External Merge Sort

e Pass 0

> Use B buffer pages.
> Produce N / B sorted runs of size B

Pass 1,2,3,...

> Merge B-1 runs (i.e., K-way merge).
Number of passes =1 + [logg_1 N/B]
Total I/O Cost = 2N x (Number of passes)

External Merge Sort

BOGIWERWNCEC LT External Merge Sort

K-Way Merge Algorithm

e Input: K sorted sub-arrays
e Output: 1 sorted array

> Efficiently compute the minimum element of all K sub-arrays.
> Repeatedly transfer that element to output array

e Internally maintain a heap to efficiently compute minimum element.

BOGIWERWNCEC LT External Merge Sort

Example

e Sort 108 pages with 5 buffer pages: N=108, B=5
> Pass 0: N/B =108 /5 = 22 sorted runs of 5 pages each (last run is only 3 pages).
> Pass 1: N’/ B-1 =22 /4 = 6 sorted runs of 20 pages each (last run is only 8 pages).
> Pass2: N” [/ B-1=6/4 =2 sorted runs, first one has 80 pages and second one has 28 pages.
> Pass 3: Sorted file of 108 pages.

e 1+ logg—1 N/B =1+ [10gs22 | =1+ [2.229 | = 4 passes

SOGHWERWNCE S0 Tree-based Sorting

Tree-based Sorting

Using B+Trees for Sorting

e If the table that must be sorted already has a B+Tree index on the sort attribute(s), then
we can use that to accelerate sorting.
e Retrieve tuples in desired sort order by simply traversing the leaf pages of the tree.

e Cases to consider:

» Clustered B+Tree
» Unclustered B+Tree

Sorting + Aggregation

Case 1 — Clustered B+Tree

e Traverse to the left-most leaf page, and

then retrieve tuples from all leaf pages.

e This is always better than external
sorting because there is no
computational cost and all disk access
is sequential.

Tree-based Sorting

B+Tree Index

Tuple Pages

SOGHWERWNCE S0 Tree-based Sorting

Case 2 — Unclustered B+Tree

B+Tree Index

e Chase each pointer to the page that —
contains the data. =~ . > S A
\ K

e This is almost always a bad idea. In
general, one I/O per data record.

Tuple Pages

Sorting + Aggregation AL

Aggregation

Sorting + Aggregation AL

Aggregation

e Collapse multiple tuples into a single scalar value.
e Two implementation choices:

> Sorting
> Hashing

Aggregation
Sorting Aggregation

enrolled(sid,cid,grade)
SELECT DISTINCT cid

FROM enrolled 53666 |15-445 |C
WHERE grade IN ('B','C") 53688 |15-721 |A
ORDER BY cid 53688 [15-826 B

53666 [15-721 |C
53655 |15-445 |c
sid cid grade cid d
53666 |15-445|C T T
- 53688 |15-826/8 - 15-826 - 15-445
Filter [52666_|15-721]c 15-721 Sort 15-721
53655 |15-445]C Remove 15-445 15-826

Columns

Sorting + Aggregation AL

Sorting Aggregation

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B',’'C")
ORDER BY cid

sid cid grade
53666 |15-445|C
53688 |15-826

H 53666 [15-721
Filter
53655 [15-445

oo®

-)

Remove
Columns

enrolled(sid,cid,grade)

15-445

15-826

15-721

15-445

sid cid grade
53666 |15-445 |C
53688 |15-721 |A
53688 |15-826 |B
53666 [15-721 |C
53655 [15-445 |C

d

15-445

lll" 15945

15-721

Sort 15-826

Eliminate

Dupes

Sorting + Aggregation IS elilon

Alternatives to Sorting

e What if we do not need the data to be ordered?
> Forming groups in GROUP BY (no ordering)
> Removing duplicates in DISTINCT (no ordering)
e Hashing is a better alternative in this scenario.

> Only need to remove duplicates, no need for ordering.
> May be computationally cheaper than sorting.

Aggregation
Hashing Aggregate

Populate an ephemeral hash table as the DBMS scans the table.

For each record, check whether there is already an entry in the hash table:

> GROUP BY: Perform aggregate computation.
» DISTINCT: Discard duplicates.

If everything fits in memory, then it is easy.
If the DBMS must spill data to disk, then we need to be smarter.

Sorting + Aggregation IS elilon

External Hashing Aggregate

e Phase 1 — Partition

> Divide tuples into buckets based on hash key.
> Write them out to disk when they get full.

e Phase 2 - ReHash
» Build in-memory hash table for each partition and compute the aggregation.

Aggregation
Phase 1 — Partition

e Use a hash function h; to split tuples into partitions on disk.

> We know that all matches live in the same partition.
> Partitions are spilled to disk via output buffers.

e Assume that we have B buffers.

e We will use B-1 buffers for the partitions and 1 buffer for the input data.

Sorting + Aggregation AL

Phase 1 — Partition

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C")

sid cid grade
53666 [15-445|C
(53688 [15-826

B
. [53666 [15-721]c
Filter [53655 |15-445]c

Remove
Columns

enrolled(sid,cid, grade)

sid cid grade
53666 [15-445 |C
53688 [15-721 |A
53688 [15-826 |B
53666 [15-721 |C
53655 [15-445 |C

B-1 partitions

Sorting + Aggregation IS elilon

Phase 2 — ReHash

e For each partition on disk:

> Read it into memory and build an in-memory hash table based on a second hash function
ha.
> Then go through each bucket of this hash table to bring together matching tuples.

e This assumes that each partition fits in memory.

Sorting + Aggregation AL

Phase 2 — ReHash

enrolled(sid,cid,grade)

SELECT DISTINCT cid d d grad
FROM enrolled 53666 |15-445 |C
WHERE grade IN ('B','C’) 53688 [15-721 |A
53688 [15-826 [B
Phase #1 Buckets 53666 |15-721 |C
53655 |15-445 |C

15-445 15-445
5-

15-826
15-82¢

B-1
Partitions

Sorting + Aggregation

Phase 2 — ReHash

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C")

Phase #1 Buckets
15-445 15-445
15-445
15-826
15-826

»

Aggregation

enrolled(sid,cid,grade)

sid cid grade

53666 [15-445 |C

53688 [15-721 |A

53688 [15-826 |B

53666 [15-721 |C

53655 [15-445 |C
Final Result

15-445
15-826

Sorting + Aggregation AL

Phase 2 — ReHash

enrolled(sid,cid, grade)

SELECT DISTINCT cid d d grad
FROM enrolled 53666 |15-445 |C
WHERE grade IN ('B','C") Z;zz: 12:;; ;
Phase #1 Buckets [53666 [15-721 [c
[53655 [15-445 [c
}22322 Final Result

Hash Table

15-445

15-826

» 15-721 cid

15-721

5

Sorting + Aggregation IS elilon

Hashing Summarization

e During the ReHash phase, store pairs of the form (GroupKey —; RunningVal)
e When we want to insert a new tuple into the hash table:

> If we find a matching GroupKey, just update the RunningVal appropriately
> Else insert a new GroupKey — RunningVal

Sorting + Aggregation AL

Hashing Summarization

Running Totals
SELECT cid, AVG(s.gpa) AVG(col) -
FROM student AS s, enrolled AS e (COUNT, SUM)
WHERE s.sid = e.sid MIN(col) - (MIN)
GROUP BY cid MAX(col) - (MAX)
SUM(col) - (SUM)
15-445 COUNT(COl) — (COUNT)

15-445 » Hash Table Final Result

e | ()
Buckets 15-445|(2, 7.32) - 15-445 (3.66
15-826 (1, 3.33) 15-826 [3.33

757737 » 15-721(1, 2.89) 15-721 [2.89

Sorting + Aggregation @I

Conclusion

Sorting + Aggregation @I

Conclusion

e Choice of sorting vs. hashing is subtle and depends on optimizations done in each case.
e Next Class

> Nested Loop Join

> Sort-Merge Join

» Hash Join

	Sorting + Aggregation
	Recap
	External Merge Sort
	Tree-based Sorting
	Aggregation
	Conclusion

