
1 / 73

Join

Join Algorithms

2 / 73

Recap

Recap

3 / 73

Recap

External Merge Sort

• Divide-and-conquer sorting algorithm that splits the data set into separate runs and
then sorts them individually.

• Phase 1 – Sorting
▶ Sort blocks of data that fit in main-memory and then write back the sorted blocks to a file

on disk.
• Phase 2 – Merging

▶ Combine sorted sub-files into a single larger file.

4 / 73

Recap

Aggregation

• Collapse multiple tuples into a single scalar value.
• Two implementation choices:

▶ Sorting
▶ Hashing

5 / 73

Recap

Hashing Aggregate

• Populate an ephemeral hash table as the DBMS scans the table.
• For each record, check whether there is already an entry in the hash table:

▶ GROUP BY: Perform aggregate computation.
▶ DISTINCT: Discard duplicates.

• If everything fits in memory, then it is easy.
• If the DBMS must spill data to disk, then we need to be smarter.

6 / 73

Recap

Today’s Agenda

• Overview
• Nested Loop Join
• Sort-Merge Join
• Hash Join

7 / 73

Overview

Overview

8 / 73

Overview

Why do we need to join?

• We normalize tables in a relational database to avoid unnecessary repetition of
information.

• We use the join operator to reconstruct the original tuples without any information loss.

9 / 73

Overview

Denormalized Tables

Artists (ID, Artist, Year, City)
Albums (ID, Album, Artist, Year)

Artists
ID Artist Year City

1 Mozart 1756 Salzburg
2 Beethoven 1770 Bonn

Albums

ID Album Artist Year

1 The Marriage of Figaro Mozart 1786
2 Requiem Mass In D minor Mozart 1791
3 Für Elise Beethoven 1867

10 / 73

Overview

Normalized Tables

Artists (ID, Artist, Year, City)
Albums (ID, Album, Year)
ArtistAlbum (Artist_ID, Album_ID)

ArtistAlbum

Artist_ID Album_ID

1 1
2 1
2 2

11 / 73

Overview

Join Algorithms

• We will focus on combining two tables at a time with inner equi-join algorithms.
▶ These algorithms can be tweaked to support other types of joins.

• In general, we want the smaller table to always be the left table (outer table) in the
query plan.

12 / 73

Overview

Join Operators

• Decision 1: Output
▶ What data does the join operator emit

to its parent operator in the query
plan tree?

• Decision 2: Cost Analysis Criteria
▶ How do we determine whether one

join algorithm is better than another?

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id

WHERE S.value > 100

13 / 73

Overview

Join Operator Output

• For a tuple r ∈ R and a tuple s ∈ S that match on join attributes, concatenate r and s
together into a new tuple.

• Contents can vary:
▶ Depends on query processing model
▶ Depends on storage model
▶ Depends on the query

14 / 73

Overview

Join Operator Output: Data

• Copy the values for the attributes in
outer and inner tuples into a new
output tuple.

• Subsequent operators in the query
plan never need to go back to the base
tables to get more data.

15 / 73

Overview

Join Operator Output: Record Ids

• Only copy the joins keys along with
the record ids of the matching tuples.

• Ideal for column stores because the
DBMS does not copy data that is not
need for the query.

• This is called late materialization.

16 / 73

Overview

I/O Cost Analysis

• Assume:
▶ M pages in table R, m tuples in R
▶ N pages in table S, n tuples in S

• Cost Metric: Number of IO operations to compute join
• We will ignore output costs (since that depends on the data and we cannot compute

that yet).

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id

WHERE S.value > 100

17 / 73

Overview

Join vs Cross-Product

• R 1 S is the most common operation and thus must be carefully optimized.
• R × S followed by a selection is inefficient because the cross-product is large.
• There are many algorithms for reducing join cost, but no algorithm works well in all

scenarios.

18 / 73

Overview

Join Algorithms

• Nested Loop Join
▶ Naïve
▶ Block
▶ Index

• Sort-Merge Join
• Hash Join

19 / 73

Nested Loop Join

Nested Loop Join

20 / 73

Nested Loop Join

Nested Loop Join

R (id, name)
S (id, value, cdate)

operator NestedLoopJoin(R, S):
for each tuple r ∈ R: // Outer Table

for each tuple s ∈ S: // Inner Table
emit, if r and s match

21 / 73

Nested Loop Join

Naïve Nested Loop Join

• Why is this algorithm naïve?
▶ For every tuple in R, it scans S once

• R: M pages, m tuples
• S: N pages, n tuples
• Cost: M + (m x N)

22 / 73

Nested Loop Join

Naïve Nested Loop Join

• Example Database:
▶ Table R: M = 1000 pages, m = 100,000 tuples
▶ Table S: N = 500 pages, n = 40,000 tuples
▶ Each page = 4 KB =⇒ Database size = 6 MB

• Cost Analysis:
▶ M + (m x N) = 1000 + (100000 x 500) = 50,001,000 IOs
▶ At 0.1 ms/IO, Total time ≈ 1.3 hours

• What if smaller table (S) is used as the outer table?
▶ N + (n x M) = 500 + (40000 x 1000) = 40,000,500 IOs
▶ At 0.1 ms/IO, Total time ≈ 1.1 hours

23 / 73

Nested Loop Join

Block Nested Loop Join

R (id, name)
S (id, value, cdate)

operator BlockNestedLoopJoin(R, S):
for each block bR ∈ R: // Outer Table

for each block bS ∈ S: // Inner Table
for each tuple r ∈ bR:

for each tuple s ∈ bS:
emit, if r and s match

24 / 73

Nested Loop Join

Block Nested Loop Join

• This algorithm performs fewer disk accesses.
▶ For every block in R, it scans S once

• Cost: M + (M x N)

25 / 73

Nested Loop Join

Block Nested Loop Join

• Which one should be the outer table?
▶ The smaller table in terms of number of pages

26 / 73

Nested Loop Join

Block Nested Loop Join

• Example Database:
▶ Table R: M = 1000 pages, m = 100,000 tuples
▶ Table S: N = 500 pages, n = 40,000 tuples

• Cost Analysis:
▶ M + (M x N) = 1000 + (1000 x 500) = 501,000 IOs
▶ At 0.1 ms/IO, Total time ≈ 50 seconds

27 / 73

Nested Loop Join

External Block Nested Loop Join

• What if we have B buffers available?
▶ Use B-2 buffers for scanning the outer table.
▶ Use one buffer for the inner table, one buffer for storing output.

28 / 73

Nested Loop Join

External Block Nested Loop Join

R (id, name)
S (id, value, cdate)

operator ExternalBlockNestedLoopJoin(R, S):
for each B-2 block bR ∈ R: // Outer Table

for each block bS ∈ S: // Inner Table
for each tuple r ∈ bR:

for each tuple s ∈ bS:
emit, if r and s match

29 / 73

Nested Loop Join

Block Nested Loop Join

• This algorithm uses B-2 buffers for scanning R.
• Cost: M + (⌈M / (B-2) ⌉ x N)
• What if the outer relation completely fits in memory (i.e., B-2 >M)?

▶ Cost: M + N = 1000 + 500 = 1500 IOs
▶ At 0.1 ms/IO, Total time ≈ 0.15 seconds

30 / 73

Nested Loop Join

Nested Loop Join

• Why do basic nested loop joins suck?
▶ For each tuple in the outer table, we must do a sequential scan to check for a match in the

inner table.
• We can avoid sequential scans by using an index to find inner table matches.

▶ Use an existing index for the join.
▶ Or build an index on the fly (e.g., hash table, B+Tree).

31 / 73

Nested Loop Join

Index Nested Loop Join

R (id, name)
S (id, value, cdate)
Index on S (id)

operator IndexNestedLoopJoin(R, S):
for each tuple r ∈ R: // Outer Table

for each tuple s ∈ Index(ri = si): // Index on Inner Table
emit, if r and s match

32 / 73

Nested Loop Join

Index Nested Loop Join

• Assume the cost of each index probe is some constant C per tuple.
• Cost: M + (m x C)

33 / 73

Nested Loop Join

Summary

• Pick the smaller table as the outer table.
• Buffer as much of the outer table in memory as possible.
• Loop over the inner table or use an index if available.

34 / 73

Sort-Merge Join

Sort-Merge Join

35 / 73

Sort-Merge Join

Sort-Merge Join

• Phase 1: Sort
▶ Sort both tables on the join key(s).

• Phase 2: Merge
▶ We can then use the external merge sort algorithm to join the sorted tables.
▶ Step through the two sorted tables with cursors and emit matching tuples.
▶ May need to backtrack depending on the join type.

36 / 73

Sort-Merge Join

Sort-Merge Join
R (id, name)
S (id, value, cdate)

operator SortMergeJoin(R, S):
sort R,S on join keys
cursorR← Rsorted, cursorS← Ssorted
while cursorR and cursorS:

if cursorR > cursorS:
increment cursorS

else if cursorR < cursorS:
increment cursorR

else if cursorR and cursorS match:
emit
increment cursorS

37 / 73

Sort-Merge Join

Sort-Merge Join

38 / 73

Sort-Merge Join

Sort-Merge Join

39 / 73

Sort-Merge Join

Sort-Merge Join

40 / 73

Sort-Merge Join

Sort-Merge Join

41 / 73

Sort-Merge Join

Sort-Merge Join

42 / 73

Sort-Merge Join

Sort-Merge Join

43 / 73

Sort-Merge Join

Sort-Merge Join

44 / 73

Sort-Merge Join

Sort-Merge Join

45 / 73

Sort-Merge Join

Sort-Merge Join

• Sort Cost (R): 2M x (1 + ⌈ logB−1 ⌈M / B⌉ ⌉)
• Sort Cost (S): 2N x (1 + ⌈ logB−1 ⌈N / B⌉ ⌉)
• Merge Cost: (M + N)
• Total Cost: Sort +Merge

46 / 73

Sort-Merge Join

Sort-Merge Join

• Example Database:
▶ Table R: M = 1000 pages, m = 100,000 tuples
▶ Table S: N = 500 pages, n = 40,000 tuples

• With B=100 buffer pages, both R and S can be sorted in two passes:
▶ Sort Cost (R) = 2000 x (1 + ⌈ log99 1000 /100⌉) = 4000 IOs
▶ Sort Cost (S) = 1000 x (1 + ⌈ log99 500 / 100⌉) = 2000 IOs
▶ Merge Cost = (1000 + 500) = 1500 IOs
▶ Total Cost = 4000 + 2000 + 1500 = 7500 IOs
▶ At 0.1 ms/IO, Total time ≈ 0.75 seconds

47 / 73

Sort-Merge Join

Sort-Merge Join

• The worst case for the merging phase is when the join attribute of all of the tuples in
both relations contain the same value.

• Cost: (M x N) + (sort cost)

48 / 73

Sort-Merge Join

When is Sort-Merge Join Useful?

• One or both tables are already sorted on join key.
• Output must be sorted on join key.
• The input relations may be sorted by either by an explicit sort operator, or by scanning

the relation using an index on the join key.

49 / 73

Hash Join

Hash Join

50 / 73

Hash Join

Hash Join

• If tuple r ∈ R and a tuple s ∈ S satisfy the join condition, then they have the same value
for the join attributes.

• If that value is hashed to some partition i, the R tuple must be in ri and the S tuple in si.
• Therefore, R tuples in ri need only to be compared with S tuples in si.

51 / 73

Hash Join

Basic Hash Join Algorithm

• Phase 1: Build
▶ Scan the outer table and populate a hash table using the hash function h1 on the join

attributes.
• Phase 2: Probe

▶ Scan the inner table and use h1 on each tuple to jump to a location in the hash table and
find a matching tuple.

52 / 73

Hash Join

Basic Hash Join Algorithm

R (id, name)
S (id, value, cdate)

operator BasicHashJoin(R, S):
build hash table HTR for R
for each tuple s ∈ S

emit, if h1(s) in HTR

53 / 73

Hash Join

Basic Hash Join Algorithm

54 / 73

Hash Join

Hash Table Contents

• Key: The attribute(s) that the query is joining the tables on.
• Value: Depends on what the parent operator above the join in the query plan expects

as its input.
▶ Approach 1: Full Tuple

▶ Avoid having to retrieve the outer table’s tuple contents on a match.
▶ Takes up more space in memory.

▶ Approach 2: Tuple Identifier
▶ Ideal for column stores because the DBMS does not fetch data from disk unless needed.
▶ Also better if join selectivity is low.

55 / 73

Hash Join

Probe Phase Optimization

• Create a bloom filter during the build phase when the key is likely to not exist in the
hash table.
▶ Threads check the filter before probing the hash table.
▶ This will be faster since the filter will fit in CPU caches.
▶ a.k.a., sideways information passing.

56 / 73

Hash Join

Probe Phase Optimization

57 / 73

Hash Join

Hash Join

• What happens if we do not have enough memory to fit the entire hash table?
• We do not want to let the buffer pool manager swap out the hash table pages randomly.

58 / 73

Hash Join

Grace Hash Join

• Hash join when tables do not fit in
memory.
▶ Build Phase: Hash both tables on the

join attribute into partitions.
▶ Probe Phase: Compares tuples in

corresponding partitions for each
table.

• Named after the
GRACE database machine from
Japan in the 1980s.

59 / 73

Hash Join

Grace Hash Join

• Hash R into (0, 1, ..., max) buckets.
• Hash S into the same number of buckets with the same hash function.
• Join each pair of matching buckets between R and S.

60 / 73

Hash Join

Grace Hash Join

R (id, name)
S (id, value, cdate)

operator Grace Hash Join(R, S):
for bucket i ∈ [0, max]

for each tuple r ∈ bucket Ri

for each tuple s ∈ bucket Si
emit, if r and s match

61 / 73

Hash Join

Grace Hash Join

62 / 73

Hash Join

Grace Hash Join

• If the buckets do not fit in memory, then use recursive partitioning to split the tables
into chunks that will fit.
▶ Build another hash table for bucketR,i using hash function h2 (with h2 != h1).
▶ Then probe it for each tuple of the other table’s bucket at that level.

63 / 73

Hash Join

Recursive Partitioning

64 / 73

Hash Join

Recursive Partitioning

65 / 73

Hash Join

Recursive Partitioning

66 / 73

Hash Join

Recursive Partitioning

67 / 73

Hash Join

Recursive Partitioning

68 / 73

Hash Join

Grace Hash Join

• Partitioning Phase:
▶ Read+Write both tables
▶ 2 x (M + N) IOs

• Probing Phase:
▶ Read both tables
▶ M + N IOs

• Total Cost: 3 x (M + N)

69 / 73

Hash Join

Grace Hash Join

• Example Database:
▶ Table R: M = 1000 pages, m = 100,000 tuples
▶ Table S: N = 500 pages, n = 40,000 tuples

• Cost Analysis:
▶ 3 x (M + N) = 3 x(1000 + 500) = 4,500 IOs
▶ At 0.1 ms/IO, Total time ≈ 0.45 seconds

70 / 73

Hash Join

Observation

• If the DBMS knows the size of the outer table, then it can use a static hash table.
▶ Less computational overhead for build / probe operations.

• If we do not know the size, then we have to use a dynamic hash table or allow for
overflow pages.

71 / 73

Conclusion

Conclusion

72 / 73

Conclusion

Join Algorithms: Summary

Join Algorithm IO Cost Example

Simple Nested Loop Join M + (m x N) 1.3 hours
Block Nested Loop Join M + (M x N) 50 seconds
Index Nested Loop Join M + (M x C) Variable
Sort-Merge Join M + N + (sort cost) 0.75 seconds
Hash Join 3 x (M + N) 0.45 seconds

73 / 73

Conclusion

Conclusion

• Hashing is almost always better than sorting for operator execution.
• Caveats:

▶ Sorting is better on non-uniform data.
▶ Sorting is better when result needs to be sorted.

• Good DBMSs use either or both.
• Next Class

▶ Composing operators together to execute queries.

	Join
	Recap
	Overview
	Nested Loop Join
	Sort-Merge Join
	Hash Join
	Conclusion

