Query Execution (Part 1)

Recap

= Dalx 2/46

Join Algorithms: Summary

Join Algorithm IO Cost Example
Simple Nested Loop Join M + (m x N) 1.3 hours
Block Nested Loop Join M + (M x N) 50 seconds
Index Nested Loop Join M+ (M xC) Variable
Sort-Merge Join M + N + (sort cost) 0.75 seconds
Hash Join 3x (M +N) 0.45 seconds

I
Query Plan

e The operators are arranged in a tree.
e Data flows from the leaves of the tree
up towards the root.

e The output of the root node is the
result of the query.
SELECT R.id, S.cdate

FROM R, S
WHERE R.id = S.id AND S.value > 100

Recap

,l: R.id, S.value

t
MR.id:S.id
N

G value>100
N

S

] Recap
Today’s Agenda

e Processing Models
e Access Methods

e Expression Evaluation

Processing Models

Processing Model

A DBMS’s processing model defines how the system executes a query plan.
> Different trade-offs for different workloads.

Approach 1: Iterator Model

Approach 2: Materialization Model
Approach 3: Vectorized / Batch Model

) processing Models
Iterator Model

e Each query plan operator implements a Next function.
> On each invocation, the operator returns either a single tuple or a null marker if there are
no more tuples.
> The operator implements a loop that calls next on its children to retrieve their tuples and
then process them.

e Also called volcano or pipeline model.

] ProcessingModels
[terator Model

Next() [for t in child.Next():
emit(projection(t))

SELECT R.id, S.cdate
k.,. FROM R JOIN S
ON R.id = S.id
“te., _WHERE S.value > 100

Next() [for t, in left.NextO:
buildHashTable(t;)
for t, in right.Next(): ?-
if probe(t,): emit(t,pdt;)

3
...'qt R.id, S.value
1

]
-
.....
“a
a,

Next()

ey

N e

for t in child.Next(): |< MR‘M S
s

if evalPred(t): emit(t)

Next() [for t in r: Next() [for t in s:
emit(t) emit(t) \ "---....-.R.__

s s S NSNS EEEEEEEEEEEEEEEEEEEEEEnEEEEnmnnn’

Do 9/46

] ProcessingModels
[terator Model

o & DGR, SELECT R.id, S.cdate
enit(projedtion(t)) | FROM R JOIN S

o \ ON R.id = S.id

- WHERE S.value > 100
for t ft.Next():
e by dHashTable(t?

fof t, in right.Neqt(): .
if probe(t,): emft(t,>dt,) TC R.id, S.value

for ¢ in child Next(): MR'ldzs‘ld
if evalPred(t): emit(t) \
value>100

I Single Tuple l
for t in R:
emit(t)

= 9Dae 10/ 46

] ProcessingModels
Iterator Model

5 & i CIToo: SELECT R.id, S.cdate
emi:(proje*ion(q)' | FROM R JOIN S
\ \ ON R.id = S.id

- WHERE S.value > 100
for t, in left.Next():
buildHashTable(t,) L

for t, in right.Next(): ’l R.id, S.value

if probe(t, X emit(t,Mt,) \ T
for t in child.Next(): \ Ia NR-ld=S<ld

if evalPre*t): enft(t)

value>100
for t in S \
emit(t) R s

= = = 9Dae 11/46

) processing Models
Iterator Model

This is used in almost every DBMS. Allows for tuple pipelining.

e Some operators have to block until their children emit all of their tuples.
These operators are known as pipeline breakers

> Joins, Subqueries, Order By

Output control (e.g., LIMIT) works easily with this approach.
Examples: SQLite, MySQL, PostgreSQL

Materialization Model

e Each operator processes its input all at once and then emits its output all at once.

» The operator "materializes" its output as a single result.
» The DBMS can push down hints into to avoid scanning too many tuples (e.g., LIMIT).
> Can send either a materialized row or a single column.

e The output can be either whole tuples (NSM) or subsets of columns (DSM)

Materialization Model

out =[]
for t in child.Output(): 3
out. add(projection(t)) SELECT R.id, S.cdate
return out FROM R JOIN S
ON R.id = S.id
out =[]
for t, in left.Output(): WHERE S.value > 100
buildHashTable(t,;)
for t, in right.Output(): .
if probe(t,): out.add(t>t,) Tt R.id, S.value
return out T
AT MRJd:S.ld
for t in child.Output():
if evalPred(t): out.add(t) N
return out Gvalue>100
out =[] out =[] \
for t in R: for t in S: R s
out.add(t) out.add(t)
return out return out

Materialization Model

out =[]
for t in child.Output(): s
o< ol ad(prosection(t)) SELECT R.id, S.cdate
FROM R JOIN S
~N ON R.id = S.id
out =[]
for ¢, in left.OutputQ): WHERE S.value > 100
buildHashTable(t,)
for t, in right.Outputf): .
°1¢ Brobe(ty): ot adhiCe bat,) TU r.id, s.value
return out

/ t
7=[] NR.id:sjd

fgr t in child.Output(): \
if evalPred(t): out.add(t)
Yotim ot o R
out =[] out =[] \
for t in R: for t in S: R s
out.add(t) out.add(t)
return out return out

Materialization Model

out = []

for t in child.Output():
< out.add(projectioff(t))

D —

N
out =[]

'for t, in left.Outpyt():
buildHashTable(t
for t, in right.Oyfput():
if probe(t,): 5

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

out = []

for t in child.Outp
if evalPredft): od

t()

Jadd(t)

out =[]
for t in R:

out =[]

for t in S:

out.add(t) out.add(t)
return out return out

Tc R.id, S.value
t
D<]r.1d=s.1d

/ N
value>100
N

R S

A

16 /46

Materialization Model

e Better for OLTP workloads because queries only access a small number of tuples at a
time.

> Lower execution / coordination overhead.
> Fewer function calls.

e Not good for OLAP queries with large intermediate results.
e Examples: MonetDB, VoltDB

Vectorization Model

e Like the Iterator Model where each operator implements a Next function in this model.
e Each operator emits a batch of tuples instead of a single tuple.

> The operator’s internal loop processes multiple tuples at a time.

> The size of the batch can vary based on hardware or query properties.
» Useful in in-memory DBMSs (due to fewer function calls)

> Useful in disk-centric DBMSs (due to fewer IO operations)

Vectorization Model

out =[]

for t in child.Next(): :
out. add(projectionts)) SELECT R.id, S.cdate
if |out|>n: emit(out) FROM R JOIN S

ON R.id = S.id
out =[]
for t, in left.Next(): WHERE S.value > 100
buildHashTable(t,)
for t, in right.Next():

if probe(t,): out.add(t,pdt,) Tt R.id, S.value
if |out|>n: emit(out)

t
SRS NR.id=s.id

for t in child.Next():

if evalPred(t): out.add(t) \
if |out|>n: emit(out) value>100
out =[] out =[] \

for t in R: for t in S:
out.add(t) out.add(t)

if |out|>n: emit(out) if |out|>n: emit(out)

Da 19/46

Vectorization Model

out =[]

(:*“ Snfchild Next O SELECT R.id, S.cdate

FROM R JOIN S

out.add(projection(t))

Wﬂ emit(out)
Y ON R.id = S.id
out =[]
e bror ¢, in left.Next(): WHERE S.value > 100
buildHashTable(t'
for t, in right.Next(): N
if probe(ty): out] add(t,dt,) TC r.id, s.varue
if |out|>n: emitfout)

t
— NR.id:sjd

r t in child.Next():
if evalPred(t): out.add(t) \
if Jout|>n: emit(out) value>100

out =[]
for t in S:
out.add(t)

if |out|>n: emit(out)

- o

Tuple Batch
out.add(t) '

if |out|>n: emit(out)

DA 20/ 46

Vectorization Model

out =[]

(‘f“ g I Qi oe SELECT R.id, S.cdate

FROM R JOIN S
ON R.id = S.id
e out = [] WHERE S.value > 100

ffor t, in left.Next():
buildHashTable(t'
": R.id, S.value

for t, in right.Next():
if probe(t,): out}add(t,pdt)
if |out|>n: emitfout) T
A NR.1d=S.1d
r t in child.Next():
< if evalPred(t): out.add(t) \
12g; emit(out) value>100

Tuple Batch
out.add(t) '

if |out|>n: emit(out)

out.add(projection(t))
>n: emit(out)

%o

out =[]
for t in S:

out.add(t)

if |out|>n: emit(out)

DA 21/46

) processing Models
Vectorization Model

e Ideal for OLAP queries because it greatly reduces the number of invocations per
operator.

e Allows for operators to use vectorized (SIMD) instructions to process batches of tuples.
e Examples: Vectorwise, Snowflake, SQL Server, Oracle, Amazon RedShift

Plan Processing Direction

e Approach 1: Top-to-Bottom

> Start with the root and "pull” data up from its children.
> Tuples are always passed with function calls.

e Approach 2: Bottom-to-Top

> Start with leaf nodes and push data to their parents.
> Allows for tighter control of caches/registers in pipelines.

Access Methods

I Access Methods
Access Methods

¢ An access method is a way that the TC =14, s.value
DBMS can access the data stored in a '
table. T
> Located at the bottom of the query M R.id=s.id
plan . . . \
> Not defined in relational algebra. O arues100
e Three basic approaches: "\
> Sequential Scan
> Index Scan R s

> Multi-Index / "Bitmap" Scan

Sequential Scan

e For each page in the table:

> Retrieve it from the buffer pool.

> Iterate over each tuple and check
whether to include it.

> Uses a buffer for materialization and
vectorization processing models

e The DBMS maintains an internal
cursor that tracks the last page / slot it
examined.

for page in table.pages:
for t in page.tuples:
if evalPred(t):
// Do Something!

Sequential Scan: Optimizations

e This is almost always the worst thing that the DBMS can do to execute a query.
e Sequential Scan Optimizations:
> Prefetching
> Buffer Pool Bypass
> Parallelization
> Zone Maps
> Late Materialization
> Heap Clustering

Zone Maps

e Pre-computed aggregates for the

attribute values in a page. Original Data Zone Map
e DBMS checks the zone map first to
decide whether it wants to access the 200 » max_| 400
300 AVG 280
page. 400 suM | 1400
400 COUNT 5
SELECT *
FROM R

WHERE val > 600

Late Materialization

SELECT AVG(foo.c)

YAVG(FOO.C) FROM foo JOIN bar

° ON foo.b = bar.b
DSM DBMSs can delay o e foo.b = bar

stitching together tuples until

*
the upper parts of the query / Offsets

plan. bar foo

w N =S

Late Materialization

e DSM DBMSs can delay
stitching together tuples until
the upper parts of the query
plan.

AVG(foo.c)

NFQO.b:bar.b

Q =100
N

bar

foo

1+
Offsets

i 3
Offsets

SELECT AVG(foo.c)
FROM foo JOIN bar
ON foo.b = bar.b

WHERE foo.a > 100

W=

Late Materialization

e DSM DBMSs can delay
stitching together tuples until
the upper parts of the query
plan.

| ¥ AVG(Foo.c)I

M foo.b=bar.b

/ N
.

bar foo

Result
*
Offsets
*
Offsets

SELECT AVG(foo.c)
FROM foo JOIN bar
ON foo.b = bar.b

WHERE foo.a > 100

W= e

Heap Clustering

e Tuples are sorted in the heap’s pages
based on the order specified by the
clustering index.

e If the query accesses tuples using the
clustering index’s attributes, then the
DBMS can jump directly to the pages
that it needs.

1\
Scan Direction

Index Scan

e The query optimizer picks an index to find the tuples that the query needs.

e Which index to use depends on:

What attributes the index contains

What attributes the query references

The attribute’s value domains

Predicate composition

Whether the index has unique or non-unique keys

v

>
>
>
>

Index Scan

e Suppose that we a single table with 100 tuples and two indexes:

> Index 1: age
> Index 2: dept

SELECT *
FROM students
WHERE age < 30
AND dept = 'CS'
AND country = 'US'

> Scenario 1: There are 99 people under the age of 30 but only 2 people in the CS
department.

> Scenario 2: There are 99 people in the CS department but only 2 people under the age of
30.

I Access Methods
Multi-Index Scan

e If there are multiple indexes that the DBMS can use for a query:

> Compute sets of record ids using each matching index.
> Combine these sets based on the query’s predicates (union vs. intersect).
> Retrieve the records and apply any remaining predicates.

e Postgres calls this Bitmap Scan.

Multi-Index Scan

e With an index on age and an index on dept,
> We can retrieve the record ids satisfying age < 30 using the first,
> Then retrieve the record ids satisfying dept = "CS’ using the second,
> Take their intersection
» Retrieve records and check country = "US’.

SELECT *
FROM students
WHERE age < 30
AND dept = 'CS'
AND country = 'US'

Y AcessMethods
Multi-Index Scan

e Set intersection can be done with
bitmaps, hash tables, or Bloom filters.

fetch records

country="US’

37 /46

N -~ <"
Index Scan Page Sorting

AN
Scan Direction
<
. . Saval,
e Retrieving tuples in the order that ... \}‘\‘«,‘i/
. . : AV IR
appear in an unclustered index is
inefficient.
. . B bage 102 Bl Page 101
o The DBMS can first figure out all the Wboce 104 P 1o
i d th t th mmPiEe 102 page 102
tuples that it needs and then sort them e ‘ ke
: : age
based on their page id. 52Ee 102 Page 103
Wl Page 101 Page 103
Bl Page 103 Bl Page 104
Ml Page 104 Page 104
Page 103 Page 104

Expression Evaluation

Expression Evaluation

e The DBMS represents a WHERE clause
as an expression tree.

e The nodes in the tree represent
different expression types:
> Comparisons (=, <, >, =)
> Conjunction (AND), Disjunction (OR) '/_/ \‘
> Arithmetic Operators (+, -, *, /, %) fJ \\ // \
» Constant Values Aetribute® 10| [Attributacs.1d) | [e souteceatus) | [constanecion
> Tuple Attribute References

SELECT R.id, S.cdate
FROM R, S
WHERE R.id = S.id
AND S.value > 100

Expression Evaluation

SELECT * FROM S

Execution Context
WHERE [B.value = 2 +1|

Current Tuple
(123, 1000)

Query Parameters

(int:999)

’Attribute(s.value)l

Table Schema

S-(int:id, int:value)

[+]

Parameter(0)

Constant(1)

41/ 46

Expression Evaluation

SELECT x FROM S

Execution Context
WHERE[B.value = 2 +1]

Current Tuple
(123, 1000)

Query Parameters
(int:999)

|Table Schema

S—(int:id, int:value)

»lAttribute(S.value)l

|
1000

Parameter(9)

Constant(1)

A

42 /46

Expression Evaluation

SELECT x FROM S

Execution Context
WHERE[B.value = ? +1|

Current Tuple
(123, 1000)

Query Parameters

Table Schema
(int:999)

S-(int:id, int:value)

[Attribute(s.value)| |
1000

Parameter (@)
999

Constant(1) «
1

43 /46

Expression Evaluation

e Evaluating predicates in this manner is
slow.

» The DBMS traverses the tree and for /-/ \

each node that it visits it must figure
out what the operator needs to do. Constant(1)| |Constant(1)

e Consider the predicate "WHERE 1=1" ‘
e A better approach is to just evaluate
the expression directly. 1=1

» Think Just-In-Time (JIT) compilation

N ol sion

Conclusion

N ol sion

Conclusion

The same query plan be executed in multiple ways.

(Most) DBMSs will want to use an index scan as much as possible.

Expression trees are flexible but slow.
Next Class
> Parallel Query Execution.

	Query Execution (Part 1)
	Recap
	Processing Models
	Access Methods
	Expression Evaluation
	Conclusion

