
1 / 51

Query Execution (Part 2)

Query Execution (Part 2)



2 / 51

Recap

Recap



3 / 51

Recap

Processing Model

• A DBMS’s processing model defines how the system executes a query plan.
▶ Different trade-offs for different workloads.

• Approach 1: Iterator Model
• Approach 2: Materialization Model
• Approach 3: Vectorized / Batch Model



4 / 51

Recap

Multi-Index Scan

• If there are multiple indexes that the DBMS can use for a query:
▶ Compute sets of record ids using each matching index.
▶ Combine these sets based on the query’s predicates (union vs. intersect).
▶ Retrieve the records and apply any remaining predicates.

• Postgres calls this Bitmap Scan.



5 / 51

Recap

Expression Evaluation

• The DBMS represents a WHERE clause
as an expression tree.

• The nodes in the tree represent
different expression types:
▶ Comparisons (=, <, >, !=)
▶ Conjunction (AND), Disjunction (OR)
▶ Arithmetic Operators (+, -, *, /, %)
▶ Constant Values
▶ Tuple Attribute References

SELECT R.id, S.cdate
FROM R, S
WHERE R.id = S.id AND S.value > 100



6 / 51

Recap

Query Execution

• We discussed last class how to
compose operators together to execute
a query plan.

• We assumed that the queries execute
with a single worker (e.g., thread).

• We now need to talk about how to
execute with multiple workers.

SELECT R.id, S.cdate
FROM R, S
WHERE R.id = S.id AND S.value > 100



7 / 51

Recap

Today’s Agenda

• Overview
• Process Models
• Execution Parallelism
• I/O Parallelism



8 / 51

Overview

Overview



9 / 51

Overview

Why care about Parallel Execution?

• Increased performance.
▶ Throughput
▶ Latency

• Increased responsiveness and availability.
• Potentially lower total cost of ownership (TCO).



10 / 51

Overview

Parallel vs. Distributed

• Database is spread out across multiple resources to improve different aspects of the
DBMS.

• Appears as a single database instance to the application.
▶ SQL query for a single-resource DBMS should generate same result on a parallel or

distributed DBMS.



11 / 51

Overview

Parallel vs. Distributed

• Parallel DBMSs:
▶ Resources are physically close to each other.
▶ Resources communicate with high-speed interconnect.
▶ Communication is assumed to cheap and reliable.
▶ Typically rely on shared memory.

• Distributed DBMSs:
▶ Resources can be far from each other.
▶ Resources communicate using slow(er) interconnect.
▶ Communication cost and problems cannot be ignored.
▶ Typically rely on message passing.



12 / 51

Process Model

Process Model



13 / 51

Process Model

Process Model

• A DBMS’s process model defines how the system is architected to support concurrent
requests from a multi-user application.

• A worker is the DBMS component running on the server that is responsible for
executing tasks on behalf of the client and returning the results.



14 / 51

Process Model

Process Models

• Approach 1: Process per DBMS Worker
• Approach 2: Process Pool
• Approach 3: Thread per DBMS Worker



15 / 51

Process Model

Process per DBMS Worker

• Each worker is a separate OS process.
▶ Relies on OS scheduler.
▶ Use shared-memory for global data structures.
▶ A process crash doesn’t take down entire system.
▶ Examples: IBM DB2, Postgres, Oracle



16 / 51

Process Model

Process per DBMS Worker



17 / 51

Process Model

Process Pool

• A worker uses any process that is free in a pool
▶ Still relies on OS scheduler and shared memory.
▶ Bad for CPU cache locality.
▶ Examples: IBM DB2, Postgres (2015)



18 / 51

Process Model

Process Pool



19 / 51

Process Model

Thread per DBMS Worker

• Single process with multiple worker threads.
▶ DBMS manages its own scheduling.
▶ May or may not use a dispatcher thread.
▶ Thread crash (may) kill the entire system.
▶ Examples: IBM DB2, MSSQL, MySQL, Oracle (2014)



20 / 51

Process Model

Thread per DBMS Worker



21 / 51

Process Model

Process Models

• Using a multi-threaded architecture has several advantages:
▶ Less overhead per context switch.
▶ Do not have to manage shared memory.

• The thread per worker model does not mean that the DBMS supports intra-query
parallelism.

• Most DBMSs in the last decade use threads (unless they are Postgres forks).



22 / 51

Process Model

Scheduling

• For each query plan, the DBMS decides where, when, and how to execute it.
▶ How many tasks should it use?
▶ How many CPU cores should it use?
▶ What CPU core should the tasks execute on?
▶ Where should a task store its output?

• The DBMS always knows more than the OS.



23 / 51

Execution Parallelism

Execution Parallelism



24 / 51

Execution Parallelism

Inter- VS. Intra-Query Parallelism

• Inter-Query: Different queries are executed concurrently.
▶ Increases throughput & reduces latency.

• Intra-Query: Execute the operations of a single query in parallel.
▶ Decreases latency for long-running queries.



25 / 51

Execution Parallelism

Inter-Query Parallelism

• Improves overall performance by allowing multiple queries to execute simultaneously.
• If queries are read-only, then this requires little coordination between queries.
• If multiple queries are updating the database at the same time, then this is hard to do

correctly.
• ACID: Isolation of concurrent workers to ensure correctness.



26 / 51

Execution Parallelism

Inta-Query Parallelism

• Improve the performance of a single query by executing its operators in parallel.
• Think of organization of operators in terms of a producer/consumer paradigm.
• There are parallel algorithms for every relational operator.

▶ Can either have multiple threads access centralized data structures in a
synchronized manner or use partitioning to divide work up.



27 / 51

Execution Parallelism

Parallel Grace Hash Join

• Use a separate worker to perform the join for each level of buckets for R and S after
partitioning.



28 / 51

Execution Parallelism

Parallel Grace Hash Join

• Use a separate worker to perform the join for each level of buckets for R and S after
partitioning.



29 / 51

Execution Parallelism

Intra-Query Parallelism

• Approach 1: Intra-Operator (Horizontal)
• Approach 2: Inter-Operator (Vertical)
• Approach 3: Bushy



30 / 51

Execution Parallelism

Intra-Operator Parallelism

• Intra-Operator (Horizontal)
▶ Decompose operators into independent fragments that perform the same function on

different subsets of data.

• The DBMS inserts an exchange operator into the query plan to coalesce results from
children operators.

• Exchange operator encapsulates parallelism and data transfer.



31 / 51

Execution Parallelism

Intra-Operator Parallelism



32 / 51

Execution Parallelism

Intra-Operator Parallelism



33 / 51

Execution Parallelism

Intra-Operator Parallelism



34 / 51

Execution Parallelism

Exchange Operator

• Exchange Type 1 – Gather
▶ Combine the results from multiple workers into a single output stream.
▶ Query plan root must always be a gather exchange.
▶ N input pipelines, 1 output pipeline.

• Exchange Type 2 – Repartition
▶ Reorganize multiple input streams across multiple output streams.
▶ N input pipelines, M output pipelines.

• Exchange Type 3 – Distribute
▶ Split a single input stream into multiple output streams.
▶ 1 input pipeline, M output pipelines.



35 / 51

Execution Parallelism

Intra-Operator Parallelism



36 / 51

Execution Parallelism

Intra-Operator Parallelism



37 / 51

Execution Parallelism

Intra-Operator Parallelism



38 / 51

Execution Parallelism

Inter-Operator Parallelism

• Inter-Operator (Vertical)
▶ Operations are overlapped in order to pipeline data from one stage to the next without

materialization.

• Also called pipelined parallelism.



39 / 51

Execution Parallelism

Inter-Operator Parallelism



40 / 51

Execution Parallelism

Inter-Operator Parallelism



41 / 51

Execution Parallelism

Bushy Parallelism

• Bushy Parallelism
▶ Extension of inter-operator

parallelism where workers execute
multiple operators from different
segments of a query plan
at the same time.

▶ Still need exchange operators to
combine intermediate results from
segments.

SELECT *
FROM A JOIN B JOIN C JOIN D



42 / 51

I/O Parallelism

I/O Parallelism



43 / 51

I/O Parallelism

Observation

• Using additional processes/threads to execute queries in parallel won’t help if the disk
is always the main bottleneck.
▶ Can make things worse if each worker is reading different segments of disk.



44 / 51

I/O Parallelism

I/O Parallelism

• Split the DBMS installation across multiple storage devices.
▶ Multiple Disks per Database
▶ One Database per Disk
▶ One Relation per Disk
▶ Split Relation across Multiple Disks



45 / 51

I/O Parallelism

Multi-Disk Parallelism

• Configure OS/hardware to store the
DBMS’s files across multiple storage
devices.
▶ Storage Appliances
▶ RAID Configuration

• This is transparent to the DBMS.



46 / 51

I/O Parallelism

Multi-Disk Parallelism

• Configure OS/hardware to store the
DBMS’s files across multiple storage
devices.
▶ Storage Appliances
▶ RAID Configuration

• This is transparent to the DBMS.



47 / 51

I/O Parallelism

Database Partitioning

• Some DBMSs allow you specify the disk location of each individual database.
▶ The buffer pool manager maps a page to a disk location.

• This is also easy to do at the filesystem level if the DBMS stores each database in a
separate directory.
▶ The log file might be shared though



48 / 51

I/O Parallelism

Database Partitioning

• Split single logical table into disjoint physical segments that are stored/managed
separately.

• Ideally partitioning is transparent to the application.
▶ The application accesses logical tables and does not care how things are stored.
▶ Not always true in distributed DBMSs.



49 / 51

I/O Parallelism

Vertical Relation Partitioning

• Store a table’s attributes in a separate location (e.g., file, disk volume).
• Have to store tuple information to reconstruct the original record.

CREATE TABLE foo (
attr1 INT,
attr2 INT,
attr3 INT,
attr4 TEXT

);



50 / 51

I/O Parallelism

Horizontal Relation Partitioning

• Divide the tuples of a table up into disjoint segments based on some partitioning key.
▶ Hash Partitioning
▶ Range Partitioning
▶ Predicate Partitioning

CREATE TABLE foo (
attr1 INT,
attr2 INT,
attr3 INT,
attr4 TEXT

);



51 / 51

I/O Parallelism

Conclusion

• Parallel execution is important.
• (Almost) every DBMS supports this.
• This is really hard to get right.

▶ Coordination Overhead
▶ Scheduling
▶ Concurrency Issues
▶ Resource Contention

• Next Class
▶ Scheduling


	Query Execution (Part 2)
	Recap
	Overview
	Process Model
	Execution Parallelism
	I/O Parallelism

