Query Execution (Part 2)

Recap

= 9Dae 2/51

Processing Model

A DBMS’s processing model defines how the system executes a query plan.
> Different trade-offs for different workloads.

Approach 1: Iterator Model

Approach 2: Materialization Model
Approach 3: Vectorized / Batch Model

] Recap
Multi-Index Scan

e If there are multiple indexes that the DBMS can use for a query:

> Compute sets of record ids using each matching index.
> Combine these sets based on the query’s predicates (union vs. intersect).
> Retrieve the records and apply any remaining predicates.

e Postgres calls this Bitmap Scan.

Expression Evaluation

e The DBMS represents a WHERE clause
as an expression tree.

e The nodes in the tree represent
different expression types:
> Comparisons (=, <, >, =) /—/ \q
> Conjunction (AND), Disjunction (OR) - 2
> Arit]hrnetic Operators (+, -, %, /, %) / \\ / \
> Constant Values Artribute.1) | [Attribute(s. i) | [attributecvalue) | | constan(io0)
> Tuple Attribute References

SELECT R.id, S.cdate
FROM R, S
WHERE R.id = S.id AND S.value > 100

Query Execution

e We discussed last class how to
compose operators together to execute
a query plan.

e We assumed that the queries execute
with a single worker (e.g., thread).

e We now need to talk about how to
execute with multiple workers.

SELECT R.id, S.cdate
FROM R, S
WHERE R.id = S.id AND S.value > 100

Recap

n R.id, S.value
t
NR.id:S.id

/ K
G value>100
AN
R

S

] Recap
Today’s Agenda

Overview

Process Models

Execution Parallelism
I/O Parallelism

Overview

= Dalx 8/ 51

Ny v

Why care about Parallel Execution?

e Increased performance.
> Throughput
> Latency

e Increased responsiveness and availability.
e Potentially lower total cost of ownership (TCO).

B R Overview
Parallel vs. Distributed

e Database is spread out across multiple resources to improve different aspects of the
DBMS.
e Appears as a single database instance to the application.

> SQL query for a single-resource DBMS should generate same result on a parallel or
distributed DBMS.

B R Overview
Parallel vs. Distributed

e Parallel DBMSs:

> Resources are physically close to each other.

> Resources communicate with high-speed interconnect.
> Communication is assumed to cheap and reliable.

> Typically rely on shared memory.

e Distributed DBMSs:

> Resources can be far from each other.

> Resources communicate using slow(er) interconnect.
» Communication cost and problems cannot be ignored.
> Typically rely on message passing.

Process Model

I Process Model
Process Model

e A DBMS’s process model defines how the system is architected to support concurrent
requests from a multi-user application.

e A worker is the DBMS component running on the server that is responsible for
executing tasks on behalf of the client and returning the results.

Process Models

e Approach 1: Process per DBMS Worker
e Approach 2: Process Pool
e Approach 3: Thread per DBMS Worker

N o< Model
Process per DBMS Worker

e Each worker is a separate OS process.

> Relies on OS scheduler.

> Use shared-memory for global data structures.

> A process crash doesn’t take down entire system.
> Examples: IBM DB2, Postgres, Oracle

Process Model

Process per DBMS Worker

Dispatcher Worker

Process Pool

e A worker uses any process that is free in a pool
> Still relies on OS scheduler and shared memory.
> Bad for CPU cache locality.
> Examples: IBM DB2, Postgres (2015)

Process Model

Process Pool

2 -0

Dispatcher Worker Pool

Ny oo Modiel
Thread per DBMS Worker

e Single process with multiple worker threads.
> DBMS manages its own scheduling.
> May or may not use a dispatcher thread.

» Thread crash (may) kill the entire system.
> Examples: IBM DB2, MSSQL, MySQL, Oracle (2014)

Thread per DBMS Worker

Process Models

e Using a multi-threaded architecture has several advantages:

> Less overhead per context switch.
> Do not have to manage shared memory.

e The thread per worker model does not mean that the DBMS supports intra-query
parallelism.

e Most DBMSs in the last decade use threads (unless they are Postgres forks).

I Process Model
Scheduling

e For each query plan, the DBMS decides where, when, and how to execute it.
> How many tasks should it use?
» How many CPU cores should it use?
» What CPU core should the tasks execute on?
> Where should a task store its output?

e The DBMS always knows more than the OS.

Execution Parallelism

N L
Inter- VS. Intra-Query Parallelism

e Inter-Query: Different queries are executed concurrently.
> Increases throughput & reduces latency.
e Intra-Query: Execute the operations of a single query in parallel.

> Decreases latency for long-running queries.

Inter-Query Parallelism

e Improves overall performance by allowing multiple queries to execute simultaneously.

If queries are read-only, then this requires little coordination between queries.

If multiple queries are updating the database at the same time, then this is hard to do
correctly.

ACID: Isolation of concurrent workers to ensure correctness.

Inta-Query Parallelism

e Improve the performance of a single query by executing its operators in parallel.

e Think of organization of operators in terms of a producer/consumer paradigm.

e There are parallel algorithms for every relational operator.

> Can either have multiple threads access centralized data structures in a
synchronized manner or use partitioning to divide work up.

N
Parallel Grace Hash Join

e Use a separate worker to perform the join for each level of buckets for R and S after

partitioning.
R(id,name) . HTg HTg :
i) i S(id,value,cdate)
1 H
h, 2 h,
max

N
Parallel Grace Hash Join

e Use a separate worker to perform the join for each level of buckets for R and S after
partitioning.

R(id, name)

S(id,value,cdate)

Intra-Query Parallelism

e Approach 1: Intra-Operator (Horizontal)
e Approach 2: Inter-Operator (Vertical)
e Approach 3: Bushy

Intra-Operator Parallelism

¢ Intra-Operator (Horizontal)

> Decompose operators into independent fragments that perform the same function on
different subsets of data.

e The DBMS inserts an exchange operator into the query plan to coalesce results from
children operators.

e Exchange operator encapsulates parallelism and data transfer.

Intra-Operator Parallelism

SELECT * FROM A
WHERE A.value > 99

Exchange

Gvalue>99

|
A

Intra-Operator Parallelism

SELECT * FROM A
WHERE A.value > 99

Gvalue>99

A

Exchange

it
S

R

W
N

a1

Intra-Operator Parallelism

SELECT * FROM A

WHERE A.value > 99 % ?‘ !f
A, A, A
Gvalue>99 a .
A

N - <:tion Paralclism
Exchange Operator

e Exchange Type 1 - Gather

> Combine the results from multiple workers into a single output stream.
> Query plan root must always be a gather exchange.
> N input pipelines, 1 output pipeline.

e Exchange Type 2 — Repartition

> Reorganize multiple input streams across multiple output streams.
> N input pipelines, M output pipelines.
e Exchange Type 3 — Distribute

> Split a single input stream into multiple output streams.
> 1 input pipeline, M output pipelines.

Intra-Operator Parallelism

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

n Exchange

[>'<]
2N (o) (0}
e

A B

Intra-Operator Parallelism

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

’ l : Exchange Exchange
M l BuildHT || Build HT | Build HT Partition il Partition
4

Intra-Operator Parallelism

Exchange

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id

WHERE A.value < 99 e Al
AND B.value > 100 probe T
- 1

Exchange

>

=
AN
]

Partition @ Partition

g ¢
RN B, B
A B o

Inter-Operator Parallelism

e Inter-Operator (Vertical)

> Operations are overlapped in order to pipeline data from one stage to the next without
materialization.

e Also called pipelined parallelism.

Inter-Operator Parallelism

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

~ for r, € outer:

for r, € inner:
emit(r,>dr,)

Inter-Operator Parallelism

FROM A JOIN B

SELECT A.id, B.value

ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

LB

T

T

P>
N
6]
/

A

~

. e
for r € incoming:

emit(7mr)

for r, € outer:
for r, € inner:
emit(r,>dr,)

A

40/ 51

I Execution Parallelism
Bushy Parallelism

e Bushy Parallelism : ' : O
> Extension of inter-operator ’ D‘q

parallelism where workers execute

multiple operators from different —ﬁ‘—_l
segments of a query plan e s
at the same time.

/
e

combine intermediate results from I \l

segments. A
SELECT *

> Still need exchange operators to
¢ D

: i ;

FROM A JOIN B JOIN C JOIN D

N /O Feralclism

I/O Parallelism

N /O Feralclism

Observation

e Using additional processes/threads to execute queries in parallel won't help if the disk
is always the main bottleneck.

> Can make things worse if each worker is reading different segments of disk.

- vl
I/O Parallelism

e Split the DBMS installation across multiple storage devices.
> Multiple Disks per Database
> One Database per Disk
> One Relation per Disk
> Split Relation across Multiple Disks

) Vo Paralielism
Multi-Disk Parallelism

¢ Configure OS/hardware to store the

DBMS'’s files across multiple storage

devices. — page3
> Storage Appliances
> RAID Configuration

e This is transparent to the DBMS. E E E

RAIDO(Smppmg)

) Vo Paralielism
Multi-Disk Parallelism

=

e Configure OS/hardware to store the y

DBMS's files across multiple storage
> Storage Appliances
> RAID Configuration i i

e This is transparent to the DBMS. a a E

RAID 1 (Mirrc.)ring)

N /O Feralclism

Database Partitioning

e Some DBMSs allow you specify the disk location of each individual database.
> The buffer pool manager maps a page to a disk location.
e This is also easy to do at the filesystem level if the DBMS stores each database in a
separate directory.
> The log file might be shared though

N /O Feralclism

Database Partitioning

e Split single logical table into disjoint physical segments that are stored/managed
separately.
e Ideally partitioning is transparent to the application.

> The application accesses logical tables and does not care how things are stored.
> Not always true in distributed DBMSs.

N /O Feralclism

Vertical Relation Partitioning

e Store a table’s attributes in a separate location (e.g., file, disk volume).
e Have to store tuple information to reconstruct the original record.

CREATE TABLE foo (

attrl INT,

attr2 INT,

attr3 INT,

attr4 TEXT
);

Partition #1 : Partition #2

Tuple#l attri attr2 attr3 é Tuple#1 attr4
Tuple#2 attril attr2 attr3 g Tuple#2 attr4
Tuple#3 attril attr2 attr3 é Tuple#3 attr4
Tuple#4 attril attr2 attr3 ; Tuple#4 attr4

N /O Feralclism

Horizontal Relation Partitioning

e Divide the tuples of a table up into disjoint segments based on some partitioning key.

> Hash Partitioning
> Range Partitioning
> Predicate Partitioning

CREATE TABLE foo (
attrl INT,
attr2 INT,
attr3 INT,
attr4 TEXT

b

Partition #1 Partition #2

Tuple#1 attr1 attr2 attr3 attr4 Tuple#3 attril attr2 attr3 attr4

Tuple#2 | attrl attr2 attr3 attr4 Tuple#4 | attrl attr2 attr3 attr4

N /O Feralclism

Conclusion

Parallel execution is important.
(Almost) every DBMS supports this.

This is really hard to get right.
> Coordination Overhead
> Scheduling
> Concurrency Issues
> Resource Contention
Next Class

> Scheduling

	Query Execution (Part 2)
	Recap
	Overview
	Process Model
	Execution Parallelism
	I/O Parallelism

