
1 / 56

Scheduling

Scheduling

JA



2 / 56

Recap

Recap



3 / 56

Recap

Process Model

• A DBMS’s process model defines how the system is architected to support concurrent
requests from a multi-user application.

• A worker is the DBMS component running on the server that is responsible for
executing tasks on behalf of the client and returning the results.

• Approaches
▶ Approach 1: Process per DBMS Worker
▶ Approach 2: Process Pool
▶ Approach 3: Thread per DBMS Worker

JA

JA

JA



4 / 56

Recap

Execution Parallelism

• Inter-Query: Different queries are executed concurrently.
▶ Increases throughput & reduces latency.

• Intra-Query: Execute the operations of a single query in parallel.
▶ Decreases latency for long-running queries.

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



5 / 56

Recap

I/O Parallelism

• Split the DBMS installation across multiple storage devices.
▶ Multiple Disks per Database
▶ One Database per Disk
▶ One Relation per Disk
▶ Split Relation across Multiple Disks

JA

JA

JA

JA

JA

JA

JA

JA



6 / 56

Recap

Query Execution

• A query plan is comprised of
operators.

• An operator instance is an invocation
of an operator on some segment of
data.

• A task is the execution of a sequence of
one or more operator instances (a.k.a., a
pipeline).

SELECT R.id, S.cdate
FROM R, S
WHERE R.id = S.id AND S.value > 100

JA

JA

JA

JA

JA

JA

JA

JA



7 / 56

Recap

Scheduling

• For each query plan, the DBMS must decide where, when, and how to execute it.
▶ How many tasks should it use?
▶ How many CPU cores should it use?
▶ What CPU core should the tasks execute on?
▶ Where should a task store its output?

• The DBMS always knows more than the OS.

JA

JA

JA



8 / 56

Recap

Today’s Agenda

• Data Placement
• Worker Allocation
• Scheduling

▶ Hyper
▶ HANA
▶ SQL Server

• Flow Control

JA

JA

JA

JA



9 / 56

Data Placement

Data Placement



10 / 56

Data Placement

Observation

• Regardless of what worker allocation or task assignment policy the DBMS uses, it’s
important that workers operate on local data.

• The DBMS’s scheduler must be aware of its hardware memory layout.
▶ Uniform vs. Non-Uniform Memory Access

• Reference

https://vldb.org/pvldb/vol5/p1447_danicaporobic_vldb2012.pdf
JA

JA

JA

JA



11 / 56

Data Placement

Uniform Memory Access

• Cost of accessing data from a CPU core to any memory bank is roughly the same.
• Need to access data through the system bus.
• a.k.a., Symmetric multi-processors (SMP).
• If two CPUs have a memory location in their caches and one of them does a write, then

that CPU must send a cache invalidation message over the bus to the other CPU.

JA

JA

JA

JA

JA

JA



12 / 56

Data Placement

Uniform Memory Access

JA

JA

JA

JA

JA

JA

JA



13 / 56

Data Placement

Non-Uniform Memory Access

• Every core has its own L1/L2 cache.
• All cores on the same socket share an L3 cache.
• Cost of accessing data from a CPU core to any memory bank is not uniform.

▶ Intel (2008): QuickPath Interconnect
▶ Intel (2017): UltraPath Interconnect
▶ AMD (2017): Infinity Fabric

JA

JA

JA

JA

JA

JA



14 / 56

Data Placement

Non-Uniform Memory Access

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



15 / 56

Data Placement

Data Placement

• The DBMS can partition memory for a database and assign each partition to a CPU.
• Same problem arises in distributed DBMSs.
• By controlling and tracking the location of partitions, it can schedule operators to

execute on workers at the closest CPU core.
• Linux Support

▶ move_pages: moves the specified pages to the given memory nodes
▶ numactl: runs processes with a specific NUMA scheduling or memory placement policy.
▶ cpunodebind: Only execute command on the CPUs of given nodes.
▶ membind: Only allocate memory from nodes.

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



16 / 56

Data Placement

Memory Allocation

• What happens when the DBMS calls malloc?
▶ Assume that the allocator doesn’t already have a chunk of memory that it can give out.

• Almost nothing:
▶ The allocator will extend the process’ data segment.
▶ But this new virtual memory is not immediately backed by physical memory.
▶ The OS only allocates physical memory when there is a page fault on access.

• Now after a page fault, where does the OS allocate physical memory in a NUMA
system?

JA

JA

JA

JA

JA

JA

JA

JA

JA



17 / 56

Data Placement

Memory Allocation Location

• Approach 1: Interleaving
▶ Distribute allocated memory uniformly across CPUs.
▶ Default policy that works well for most applications.

• Approach 2: First-Touch
▶ At the CPU of the thread that accessed the memory location that caused the page fault.
▶ Better policy for DBMSs.

• The OS can try to move memory to another NUMA region from observed access
patterns.

JA

JA

JA



18 / 56

Data Placement

Data Placement - OLTP

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



19 / 56

Data Placement

Data Placement - OLTP

• Spread: assigns each thread to a core in a different socket.
• Group: assigns all threads to the same socket.
• Mix: assigns two cores per socket.
• OS: let the operating system dothe scheduling.

JA

JA

JA



20 / 56

Data Placement

Data Placement - OLAP

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



21 / 56

Data Placement

Data Placement - OLAP

• We are always processing the same number of tuples.
• Performance gap is smaller with fewer threads since more tuples are local to the core.
• With hyper-threading, no significant performance improvement since we are

bottlenecked by memory bandwidth.
• So adding more logical cores doesn’t help (already waiting for cacheline fills).

JA

JA

JA

JA

JA

JA

JA

JA



22 / 56

Data Placement

Partitioning vs. Placement Schemes

• A partitioning scheme is used to split the database based on some policy.
▶ Round-robin
▶ Attribute Ranges
▶ Hashing
▶ Partial/Full Replication

• A placement scheme then tells the DBMS where to put those partitions.
▶ Place the partition on a single socket
▶ Distribute the partition across all sockets

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



23 / 56

Worker Allocation

Worker Allocation



24 / 56

Worker Allocation

Observation

• Determining the right number of workers to use for a query plan depends on:
▶ the number of CPU cores.
▶ the size of the data.
▶ the functionality of the operators.

JA

JA

JA

JA

JA



25 / 56

Worker Allocation

Worker Allocation

• Approach 1: One Worker per Core
▶ Each core is assigned one thread that is pinned to that core in the OS.
▶ sched_setaffinity

• Approach 2: Multiple Workers per Core
▶ Use a pool of workers per core (or per socket).
▶ Allows CPU cores to be fully utilized in case one worker at a core blocks.

https://man7.org/linux/man-pages/man2/sched_setaffinity.2.html
JA

JA

JA

JA

JA

JA

JA

JA



26 / 56

Worker Allocation

Task Assignment

• Approach 1: Push
▶ A centralized dispatcher assigns tasks to workers and monitors their progress.
▶ When the worker notifies the dispatcher that it is finished, it is given a new task.

• Approach 2: Pull
▶ Workers pull the next task from a queue, process it, and then return to get the next task.

JA

JA

JA

JA

JA

JA



27 / 56

Scheduling – Hyper

Scheduling – Hyper



28 / 56

Scheduling – Hyper

Observation

• We have the following so far:
▶ Process Model
▶ Task Assignment Model
▶ Data Placement Policy

• But how do we decide how to create a set of tasks from a logical query plan?
▶ This is relatively easy for OLTP queries.
▶ Much harder for OLAP queries.

JA

JA

JA

JA



29 / 56

Scheduling – Hyper

Static Scheduling

• The DBMS decides how many threads to use to execute the query when it generates
the plan.

• It does not change while the query executes.
▶ The easiest approach is to just use the same number of tasks as the number of cores.
▶ Can still assign tasks to threads based on data location to maximize local data processing.

• Limitation: our assumption about the distribution of data can be wrong.
• This leads to stragglers.

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



30 / 56

Scheduling – Hyper

Dynamic Scheduling

• Dynamic scheduling of tasks that operate over horizontal partitions called morsels
that are distributed across cores.
▶ One worker per core
▶ Pull-based task assignment
▶ Round-robin data placement

• Supports parallel, NUMA-aware operator implementations.
• Duplicate or steal tasks to avoid stragglers.
• Reference

https://dl.acm.org/doi/10.1145/2588555.2610507
JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



31 / 56

Scheduling – Hyper

Architecture

• No centralized dispatcher thread (i.e., pull model)
• The workers perform cooperative scheduling for each query plan using a single task

queue.
▶ Each worker tries to select tasks that will execute on morsels that are local to it.
▶ If there are no local tasks, then the worker just pulls the next task from the global work

queue.

JA

JA

JA

JA

JA



32 / 56

Scheduling – Hyper

Data Partioning

• Morsel is a Hyper term.
• Number of tuples to provide the right

amount of parallelism (e.g., 100 K
tuples)

• Slightly bigger than a block, smaller
than a partition.

JA

JA

JA

JA

JA



33 / 56

Scheduling – Hyper

Morsel-Driven Dynamic Scheduling

• Because there is only one worker per core, HyPer must use work stealing because
otherwise threads could sit idle waiting for stragglers.

• The DBMS uses a lock-free hash table to maintain the global work queues.

JA

JA



34 / 56

Scheduling – Hyper

Example

JA

JA

JA

JA

JA

JA

JA

JA



35 / 56

Scheduling – Hyper

Morsel-Driven Dynamic Scheduling

• Each worker will have the morsels stored locally.
• As the workers execute tasks, they will store the output in their local buffers (rather

than a shared global buffer).
• When they select the next task, they try to pick ones that will maximize the reuse of

morsels in their local buffers.
• This scheduling policy minimizes cross-communication between workers.

JA

JA

JA

JA

JA

JA



36 / 56

Scheduling – Hyper

Example

JA

JA



37 / 56

Scheduling – Hyper

Example

JA

JA

JA

JA

JA

JA



38 / 56

Scheduling – Hyper

Example

JA

JA

JA

JA



39 / 56

Scheduling – HANA

Scheduling – HANA

JA



40 / 56

Scheduling – HANA

NUMA-Aware Scheduler

• Pull-based scheduling with multiple worker threads that are organized into groups.
▶ Each CPU can have multiple groups.
▶ The scheduler can scale up/down the number of threads in a group

• Uses a separate watchdog thread to check whether groups are saturated and can
reassign tasks dynamically.

• Reference

https://www.vldb.org/pvldb/vol8/p1442-psaroudakis.pdf
JA

JA

JA

JA

JA

JA

JA



41 / 56

Scheduling – HANA

Thread Groups

• Each thread group has a soft and hard priority queue.
▶ Soft queue: Threads can steal tasks from other groups’ soft queues.
▶ Hard queue: Threads cannot steal tasks from other groups’ hard queues (e.g., garbage

collection, networking).
• Four different pools of threads per group:

▶ Working: Actively executing a task.
▶ Inactive: Blocked inside of the kernel due to a latch.
▶ Free: Sleeps for a little, wake up to see whether there is a new task to execute.
▶ Parked: Like free but doesn’t wake up on its own.

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



42 / 56

Scheduling – HANA

NUMA-Aware Scheduler

• Dynamically adjust thread pinning based on whether a task is CPU or memory bound.
• Found that work stealing was not as beneficial for systems with a larger number of

sockets (e.g., 64 sockets).
• If you have too many sockets, then put all tasks in the hard queue to prevent stealing.
• Using thread groups allows cores to execute other tasks instead of just only queries.

JA

JA

JA

JA

JA

JA

JA

JA



43 / 56

Scheduling – HANA

Example

JA



44 / 56

Scheduling – HANA

Example

JA

JA



45 / 56

Scheduling – HANA

Example

JA



46 / 56

Scheduling – HANA

Example

JA



47 / 56

Scheduling – HANA

Example

JA



48 / 56

Scheduling – SQL Server

Scheduling – SQL Server



49 / 56

Scheduling – SQL Server

SQLOS

• SQLOS is a user-mode NUMA-aware OS layer that runs inside of the DBMS and
manages provisioned hardware resources.
▶ Determines which tasks are scheduled onto which threads.
▶ Also manages I/O scheduling and higher-level concepts like logical database locks.

• Non-preemptive thread scheduling through instrumented DBMS code.
• Reference

https://www.oreilly.com/library/view/microsoft-sql-server/9780735670174/
JA

JA

JA

JA

JA

JA

JA

JA

JA



50 / 56

Scheduling – SQL Server

SQLOS

• Quantum is the amount of time that the scheduler allows a thread to run before
making a new decision.

• SQLOS quantum is 4 ms but the scheduler cannot enforce that.
• Linux: Quantum length is not fixed. 100 ms for special-purpose real-time processes.
• DBMS developers must add explicit yield calls in various locations in the source code.

JA

JA

JA

JA

JA

JA

JA



51 / 56

Scheduling – SQL Server

SQLOS

SELECT *
FROM A
WHERE A.val = ?

last = now()
for t in range(table.num_tuples):
tuple = get_tuple(table, t)
if eval(predicate, tuple, params):
emit(tuple)

if now() – last > 4ms:
yield
last = now()

JA

JA

JA

JA



52 / 56

Flow Control

Flow Control



53 / 56

Flow Control

Observation

• If requests arrive at the DBMS faster than it can execute them, then the system becomes
overloaded.

• The OS cannot help us here because it does not know what threads are doing:
▶ CPU Bound: Do nothing
▶ Memory Bound: Out-of-memory error

• Easiest DBMS Solution: Crash

JA

JA

JA

JA



54 / 56

Flow Control

Flow Control

• Approach 1: Admission Control
▶ Abort new requests when the system believes that it will not have enough resources to

execute that request.
• Approach 2: Throttling

▶ Delay the responses to clients to increase the amount of time between requests.
▶ This assumes a synchronous submission scheme.

JA

JA

JA

JA

JA

JA



55 / 56

Conclusion

Conclusion



56 / 56

Conclusion

Conclusion

• A DBMS is a beautiful, strong-willed independent piece of software.
• But it must use hardware correctly.

▶ Data location is an important aspect of this.
▶ Tracking memory location in a single-node DBMS is the same as tracking shards in a

distributed DBMS

• Don’t let the OS ruin your life.
• Next Class

▶ Parallel Join Algorithms

JA

JA

JA


	Scheduling
	Recap
	Data Placement
	Worker Allocation
	Scheduling – Hyper
	Scheduling – HANA
	Scheduling – SQL Server
	Flow Control
	Conclusion

