Scheduling

Recap

= Dalx 2 /56

Y Reaap
Process Model

e A DBMS’s process model defines how the system is architected to support concurrent
requests from a multi-user application.

e A worker is the DBMS component running on the server that is responsible for
executing tasks on behalf of the client and returning the results.
e Approaches

> Approach 1: Process per DBMS Worker
> Approach 2: Process Pool
> Approach 3: Thread per DBMS Worker

Execution Parallelism

e Inter-Query: Different queries are executed concurrently.
> Increases throughput & reduces latency.
e Intra-Query: Execute the operations of a single query in parallel.

> Decreases latency for long-running queries.

N 2P
I/O Parallelism

e Split the DBMS installation across multiple storage devices.
> Multiple Disks per Database
> One Database per Disk
> One Relation per Disk
> Split Relation across Multiple Disks

Query Execution

e A query plan is comprised of

operators. n R.id, S.value

e An operator instance is an invocation T
of an operator on some segment of M R.id=S.id
data. N

¢ A task is the execution of a sequence of O alues100
one or more operator instances (a.k.a., a "\
pipeline). R s

SELECT R.id, S.cdate

FROM R, S
WHERE R.id = S.id AND S.value > 100

] Recap
Scheduling

e For each query plan, the DBMS must decide where, when, and how to execute it.
> How many tasks should it use?
» How many CPU cores should it use?
» What CPU core should the tasks execute on?
> Where should a task store its output?

e The DBMS always knows more than the OS.

] Recap
Today’s Agenda

Data Placement

Worker Allocation
Scheduling

> Hyper

> HANA

> SQL Server

Flow Control

Data Placement

Observation

e Regardless of what worker allocation or task assignment policy the DBMS uses, it’s
important that workers operate on local data.
e The DBMS’s scheduler must be aware of its hardware memory layout.
» Uniform vs. Non-Uniform Memory Access

e Reference

https://vldb.org/pvldb/vol5/p1447_danicaporobic_vldb2012.pdf

Uniform Memory Access

Cost of accessing data from a CPU core to any memory bank is roughly the same.

Need to access data through the system bus.

a.k.a., Symmetric multi-processors (SMP).

If two CPUs have a memory location in their caches and one of them does a write, then
that CPU must send a cache invalidation message over the bus to the other CPU.

Uniform Memory Access

Non-Uniform Memory Access

e Every core has its own L1/L2 cache.
e All cores on the same socket share an L3 cache.

e Cost of accessing data from a CPU core to any memory bank is not uniform.

> Intel (2008): QuickPath Interconnect
> Intel (2017): UltraPath Interconnect
> AMD (2017): Infinity Fabric

N pata Placement
Data Placement

The DBMS can partition memory for a database and assign each partition to a CPU.

Same problem arises in distributed DBMSs.

By controlling and tracking the location of partitions, it can schedule operators to
execute on workers at the closest CPU core.
Linux Support

> move_pages: moves the specified pages to the given memory nodes

> numactl: runs processes with a specific NUMA scheduling or memory placement policy.
> cpunodebind: Only execute command on the CPUs of given nodes.

> membind: Only allocate memory from nodes.

Memory Allocation

e What happens when the DBMS calls malloc?
> Assume that the allocator doesn’t already have a chunk of memory that it can give out.
e Almost nothing:

> The allocator will extend the process” data segment.
> But this new virtual memory is not immediately backed by physical memory.
> The OS only allocates physical memory when there is a page fault on access.

e Now after a page fault, where does the OS allocate physical memory in a NUMA
system?

Memory Allocation Location

e Approach 1: Interleaving

> Distribute allocated memory uniformly across CPUs.
> Default policy that works well for most applications.

e Approach 2: First-Touch
> At the CPU of the thread that accessed the memory location that caused the page fault.
> Better policy for DBMSs.
e The OS can try to move memory to another NUMA region from observed access
patterns.

I Data Placement
Data Placement - OLTP

Workload: TPC-C Payment using 4 Workers
Processor: NUMA with 4 sockets (6 cores each)

12000

B 30% improvement over OS

<

£ 8000

N

H

‘§o 4000 |

-~

s

0 - : : :

Spread Group Mix (O]
A 2]l2
EHEH |EH ua| 2 2

N pata Placement
Data Placement - OLTP

Spread: assigns each thread to a core in a different socket.
e Group: assigns all threads to the same socket.
e Mix: assigns two cores per socket.

OS: let the operating system dothe scheduling.

Data Placement - OLAP

30000

20000

10000

Tuples Read Per Second (M)

Sequential Scan on 10m tuples
Processor: 8 sockets, 10 cores per node (2x HT)

--Random Partition -s-Local Partition Only
A SISy T TR T
EI{yper—Tﬁreading
T T T T T T T T T T
8 24 40 56 72 88 104 120 136 152
Threads

20/ 56

A

N pata Placement
Data Placement - OLAP

We are always processing the same number of tuples.

Performance gap is smaller with fewer threads since more tuples are local to the core.

With hyper-threading, no significant performance improvement since we are
bottlenecked by memory bandwidth.

So adding more logical cores doesn’t help (already waiting for cacheline fills).

Partitioning vs. Placement Schemes

e A partitioning scheme is used to split the database based on some policy.

> Round-robin

> Attribute Ranges

> Hashing

» Partial/Full Replication

e A placement scheme then tells the DBMS where to put those partitions.

> Place the partition on a single socket
> Distribute the partition across all sockets

Worker Allocation

Observation

e Determining the right number of workers to use for a query plan depends on:
> the number of CPU cores.
> the size of the data.
> the functionality of the operators.

Y Worker Allocation
Worker Allocation

e Approach 1: One Worker per Core

> Each core is assigned one thread that is pinned to that core in the OS.
> sched_setaffinity

e Approach 2: Multiple Workers per Core

> Use a pool of workers per core (or per socket).
> Allows CPU cores to be fully utilized in case one worker at a core blocks.

https://man7.org/linux/man-pages/man2/sched_setaffinity.2.html

Task Assignment

e Approach 1: Push

> A centralized dispatcher assigns tasks to workers and monitors their progress.
> When the worker notifies the dispatcher that it is finished, it is given a new task.

e Approach 2: Pull

> Workers pull the next task from a queue, process it, and then return to get the next task.

Y <eduling = Hyper

Scheduling — Hyper

Y <eduling = Hyper

Observation

e We have the following so far:
> Process Model
> Task Assignment Model
> Data Placement Policy
e But how do we decide how to create a set of tasks from a logical query plan?

> This is relatively easy for OLTP queries.
> Much harder for OLAP queries.

) scheduling — Hyper
Static Scheduling

The DBMS decides how many threads to use to execute the query when it generates
the plan.

It does not change while the query executes.

> The easiest approach is to just use the same number of tasks as the number of cores.
> Can still assign tasks to threads based on data location to maximize local data processing.

Limitation: our assumption about the distribution of data can be wrong.

This leads to stragglers.

] scheduling - Hyper
Dynamic Scheduling

e Dynamic scheduling of tasks that operate over horizontal partitions called morsels
that are distributed across cores.

> One worker per core

» Pull-based task assignment
» Round-robin data placement

Supports parallel, NUMA-aware operator implementations.

Duplicate or steal tasks to avoid stragglers.

Reference

https://dl.acm.org/doi/10.1145/2588555.2610507

Y <eduling = Hyper

Architecture

e No centralized dispatcher thread (i.e., pull model)
e The workers perform cooperative scheduling for each query plan using a single task
queue.
> Each worker tries to select tasks that will execute on morsels that are local to it.
> If there are no local tasks, then the worker just pulls the next task from the global work
queue.

R cvedling ~Tiyper

Data Partioning

Data Table
: Morsels

e Morsel is a Hyper term.

e Number of tuples to provide the right A.HEHEHE } #
amount of parallelism (e.g., 100 K I
tuples) AE—H } #

e Slightly bigger than a block, smaller A, } #

than a partition.

N e ling - Fiyper

Morsel-Driven Dynamic Scheduling

e Because there is only one worker per core, HyPer must use work stealing because
otherwise threads could sit idle waiting for stragglers.

e The DBMS uses a lock-free hash table to maintain the global work queues.

Example

Global Task Queue

T

N e ling - Fiyper

Morsel-Driven Dynamic Scheduling

Each worker will have the morsels stored locally.

As the workers execute tasks, they will store the output in their local buffers (rather
than a shared global buffer).

When they select the next task, they try to pick ones that will maximize the reuse of
morsels in their local buffers.

This scheduling policy minimizes cross-communication between workers.

Example

Global Task Queue

Y <eduling = Hyper

Example

Global Task Queue
t
P<
/N
OO O
7 ~
A B

Example

Global Task Queue
_AEEE

T i
P

/N

OO O

7 ~
A B

= Dalx 38 /56

R <ciing ~ HANA

Scheduling - HANA

] scheduling - HANA
NUMA-Aware Scheduler

e Pull-based scheduling with multiple worker threads that are organized into groups.

» Each CPU can have multiple groups.
» The scheduler can scale up/down the number of threads in a group

e Uses a separate watchdog thread to check whether groups are saturated and can
reassign tasks dynamically.

e Reference

https://www.vldb.org/pvldb/vol8/p1442-psaroudakis.pdf

N S ling ~ HANA
Thread Groups

e Each thread group has a soft and hard priority queue.

> Soft queue: Threads can steal tasks from other groups’ soft queues.
> Hard queue: Threads cannot steal tasks from other groups” hard queues (e.g., garbage
collection, networking).
e Four different pools of threads per group:
> Working: Actively executing a task.
> Inactive: Blocked inside of the kernel due to a latch.
> Free: Sleeps for a little, wake up to see whether there is a new task to execute.
> Parked: Like free but doesn’t wake up on its own.

] scheduling - HANA
NUMA-Aware Scheduler

Dynamically adjust thread pinning based on whether a task is CPU or memory bound.

Found that work stealing was not as beneficial for systems with a larger number of
sockets (e.g., 64 sockets).

If you have too many sockets, then put all tasks in the hard queue to prevent stealing.

Using thread groups allows cores to execute other tasks instead of just only queries.

Y scheduling—HANA
Example

Tasks
K
N

Thread Group
~ Soft Hard
Queue Queue
A B

éW%ﬂMQEhwaﬁm \Free
SO

| | §thm
S

S

43 /56

Example

\ Soft Hard o . : f
Queue ~Queue Working Inactive Free Parked

A B| gg Mmiss

T oac 44/56

Example

Parked

= Dalx 45 /56

Example

Queue éWorking Inactive %Free gParked

55 EE BB B

= 9Dae 46 /56

Example

|Parked

= Dalx 47 /56

N cheduling = SQL. Server

Scheduling — SQL Server

N <cling = SQL Server
SQLOS

* SQLOS is a user-mode NUMA-aware OS layer that runs inside of the DBMS and
manages provisioned hardware resources.

> Determines which tasks are scheduled onto which threads.
> Also manages I/O scheduling and higher-level concepts like logical database locks.

e Non-preemptive thread scheduling through instrumented DBMS code.
e Reference

https://www.oreilly.com/library/view/microsoft-sql-server/9780735670174/

SQLOS

Quantum is the amount of time that the scheduler allows a thread to run before
making a new decision.

SQLOS quantum is 4 ms but the scheduler cannot enforce that.

Linux: Quantum length is not fixed. 100 ms for special-purpose real-time processes.

DBMS developers must add explicit yield calls in various locations in the source code.

N <cling = SQL Server
SQLOS

SELECT *
FROM A
WHERE A.val = ?

last = now()

for t in range(table.num_tuples):
tuple = get_tuple(table, t)
if eval(predicate, tuple, params):

emit(tuple)
if now() - last > 4ms:
yield

last = now()

N o Contrl

Flow Control

N o Contrl

Observation

e If requests arrive at the DBMS faster than it can execute them, then the system becomes
overloaded.
e The OS cannot help us here because it does not know what threads are doing:
> CPU Bound: Do nothing
> Memory Bound: Out-of-memory error

e Easiest DBMS Solution: Crash

N o Contrl

Flow Control

e Approach 1: Admission Control

> Abort new requests when the system believes that it will not have enough resources to
execute that request.

e Approach 2: Throttling

> Delay the responses to clients to increase the amount of time between requests.
> This assumes a synchronous submission scheme.

N ol sion

Conclusion

N ol sion

Conclusion

A DBMS is a beautiful, strong-willed independent piece of software.
But it must use hardware correctly.
> Data location is an important aspect of this.
> Tracking memory location in a single-node DBMS is the same as tracking shards in a
distributed DBMS
Don’t let the OS ruin your life.
Next Class
> Parallel Join Algorithms

	Scheduling
	Recap
	Data Placement
	Worker Allocation
	Scheduling – Hyper
	Scheduling – HANA
	Scheduling – SQL Server
	Flow Control
	Conclusion

