
1 / 68

Parallel Hash Join

Parallel Hash Join



2 / 68

Recap

Recap



3 / 68

Recap

Scheduling

• For each query plan, the DBMS must decide where, when, and how to execute it.
▶ How many tasks should it use?
▶ How many CPU cores should it use?
▶ What CPU core should the tasks execute on?
▶ Where should a task store its output?

• The DBMS always knows more than the OS.



4 / 68

Recap

Join Algorithms: Summary

Join Algorithm IO Cost Example

Simple Nested Loop Join M + (m x N) 1.3 hours
Block Nested Loop Join M + (M x N) 50 seconds
Index Nested Loop Join M + (M x C) Variable
Sort-Merge Join M + N + (sort cost) 0.75 seconds
Hash Join 3 x (M + N) 0.45 seconds



5 / 68

Recap

Today’s Agenda

• Background
• Partition Phase
• Build Phase
• Probe Phase
• Evaluation



6 / 68

Background

Background



7 / 68

Background

Parallel Join Algorithms

• Perform a join between two relations on multiple threads simultaneously to speed up
operation.

• Two main approaches:
▶ Hash Join
▶ Sort-Merge Join

• We won’t discuss nested-loop joins.



8 / 68

Background

Observation

• Many OLTP DBMSs do not implement hash join.
• But an index nested-loop join with a small number of target tuples is at a high-level

equivalent to a hash join.



9 / 68

Background

Hashing vs. Sorting

• 1970s – Sorting (External Merge-Sort)
• 1980s – Hashing (Database Machines)
• 1990s – Equivalent
• 2000s – Hashing (For Unsorted Data)
• 2010s – Hashing (Partitioned vs. Non-Partitioned)
• 2020s – ???



10 / 68

Background

Parallel Join Algorithms



11 / 68

Background

Design Goals

• Goal 1: Minimize Synchronization
▶ Avoid taking latches during execution.

• Goal 2: Minimize Memory Access Cost
▶ Ensure that data is always local to worker thread.
▶ Reuse data while it exists in CPU cache.



12 / 68

Background

Improving Cache Behavior

• Factors that affect cache misses in a DBMS:
▶ Cache + TLB capacity.
▶ Locality (temporal and spatial).

• Sequential Access (Scan):
▶ Clustering data to a cache line.
▶ Execute more operations per cache line.

• Random Access (Lookups):
▶ Partition data to fit in cache + TLB.



13 / 68

Background

Parallel Hash Join

• Hash join is the most important operator in a DBMS for OLAP workloads.
• It is important that we speed up our DBMS’s join algorithm by taking advantage of

multiple cores.
• We will focus on in-memory DBMSs.

▶ We want to keep all cores busy, without becoming memory bound.



14 / 68

Background

Hash Join

• Phase 1: Partition (optional)
▶ Divide the tuples of R and S into sets using a hash on the join key.

• Phase 2: Build
▶ Scan relation R and create a hash table on join key.

• Phase 3: Probe
▶ For each tuple in S, look up its join key in hash table for R. If a match is found, output

combined tuple.

• Reference

https://dl.acm.org/doi/10.1145/2882903.2882917


15 / 68

Partition Phase

Partition Phase



16 / 68

Partition Phase

Partition Phase

• Split the input relations into partitioned buffers by hashing the tuples’ join key(s).
▶ Ideally the cost of partitioning is less than the cost of cache misses during build phase.
▶ a.k.a., hybrid hash join / radix hash join.

• Contents of buffers depends on storage model:
▶ NSM: Usually the entire tuple.
▶ DSM: Only the columns needed for the join + offset.



17 / 68

Partition Phase

Partition Phase

• Approach 1: Non-Blocking Partitioning
▶ Only scan the input relation once.
▶ Produce output incrementally.

• Approach 2: Blocking Partitioning (Radix)
▶ Scan the input relation multiple times.
▶ Only materialize results all at once.
▶ a.k.a., radix hash join.



18 / 68

Partition Phase

Non-Blocking Partitioning

• Scan the input relation only once and generate the output on-the-fly.
• Approach 1: Shared Partitions

▶ Single global set of partitions that all threads update.
▶ Must use a latch to synchronize threads.

• Approach 2: Private Partitions
▶ Each thread has its own set of partitions.
▶ Must consolidate them after all threads finish.



19 / 68

Partition Phase

Shared Partitions



20 / 68

Partition Phase

Private Partitions



21 / 68

Partition Phase

Private Partitions



22 / 68

Partition Phase

Blocking Partitioning (Radix Partitioning)

• Scan the input relation multiple times to generate the partitions.
• No need to synchronize.
• Multi-step pass over the relation:

▶ Step 1: Scan R and compute a histogram of the number of tuples per hash key for the
radix at some offset.

▶ Step 2: Use this histogram to determine output offsets by computing the prefix sum.
▶ Step 3: Scan R again and partition them according to the hash key.



23 / 68

Partition Phase

Radix

• The radix of a key is the value of an integer at a position (using its base).



24 / 68

Partition Phase

Radix

• The radix of a key is the value of an integer at a position (using its base).



25 / 68

Partition Phase

Prefix Sum

• The prefix sum of a sequence of numbers (x0, x1,. . . , xn) is a second sequence of
numbers (y0, y1,. . . , yn) that is a running total of the input sequence.



26 / 68

Partition Phase

Radix Partitions



27 / 68

Partition Phase

Radix Partitions



28 / 68

Partition Phase

Radix Partitions



29 / 68

Partition Phase

Radix Partitions



30 / 68

Build Phase

Build Phase



31 / 68

Build Phase

Build Phase

• The threads are then to scan either the tuples (or partitions) of R.
• For each tuple, hash the join key attribute for that tuple and add it to the appropriate

bucket in the hash table.
▶ The buckets should only be a few cache lines in size.



32 / 68

Build Phase

Hash Table

• Design Decision 1: Hash Function
▶ How to map a large key space into a smaller domain.
▶ Trade-off between being fast vs. collision rate.

• Design Decision 2: Hashing Scheme
▶ How to handle key collisions after hashing.
▶ Trade-off between allocating a large hash table vs. additional instructions to find/insert

keys.



33 / 68

Build Phase

Hashing Schemes

• Approach 1: Chained Hashing (Dynamic)
• Approach 2: Linear Probe Hashing (Static)
• Approach 3: Robin Hood Hashing (Static)
• Approach 4: Hopscotch Hashing (Static)
• Approach 5: Cuckoo Hashing (Static)



34 / 68

Build Phase

Chained Hashing

• Maintain a linked list of buckets for each slot in the hash table.
• Resolve collisions by placing all elements with the same hash key into the same bucket.

▶ To determine whether an element is present, hash to its bucket and scan for it.
▶ Insertions and deletions are generalizations of lookups.



35 / 68

Build Phase

Chained Hashing



36 / 68

Build Phase

Chained Hashing



37 / 68

Build Phase

Chained Hashing



38 / 68

Build Phase

Linear Probe Hashing

• Single giant table of slots.
• Resolve collisions by linearly searching for the next free slot in the table.

▶ To determine whether an element is present, hash to a location in the table and scan for it.
▶ Must store the key in the table to know when to stop scanning.
▶ Insertions and deletions are generalizations of lookups.



39 / 68

Build Phase

Linear Probe Hashing



40 / 68

Build Phase

Observation

• To reduce the number of wasteful comparisons during the join, it is important to avoid
collisions of hashed keys.

• This requires a chained hash table with 2× the number of slots as the number of
elements in R.



41 / 68

Build Phase

Robin Hood Hashing

• Variant of linear probe hashing that steals slots from rich keys and give them to poor
keys.
▶ Each key tracks the number of positions they are from where its optimal position in the

table.
▶ On insert, a key takes the slot of another key if the first key is farther away from its

optimal position than the second key.



42 / 68

Build Phase

Robin Hood Hashing



43 / 68

Build Phase

Robin Hood Hashing



44 / 68

Build Phase

Hopscotch Hashing

• Variant of linear probe hashing where keys can move between positions in a
neighborhood.
▶ A neighborhood is contiguous range of slots in the table.
▶ The size of a neighborhood is a configurable constant.

• A key is guaranteed to be in its neighborhood or not exist in the table.



45 / 68

Build Phase

Hopscotch Hashing



46 / 68

Build Phase

Hopscotch Hashing



47 / 68

Build Phase

Hopscotch Hashing



48 / 68

Build Phase

Hopscotch Hashing



49 / 68

Build Phase

Hopscotch Hashing



50 / 68

Build Phase

Hopscotch Hashing



51 / 68

Build Phase

Hopscotch Hashing



52 / 68

Build Phase

Hopscotch Hashing



53 / 68

Build Phase

Cuckoo Hashing

• Use multiple tables with different hash functions.
▶ On insert, check every table and pick anyone that has a free slot.
▶ If no table has a free slot, evict the element from one of them and then re-hash it find a

new location.

• Look-ups are always O(1) because only one location per hash table is checked.



54 / 68

Build Phase

Cuckoo Hashing



55 / 68

Probe Phase

Probe Phase



56 / 68

Probe Phase

Probe Phase

• For each tuple in S, hash its join key and check to see whether there is a match for each
tuple in corresponding bucket in the hash table constructed for R.
▶ If inputs were partitioned, then assign each thread a unique partition.
▶ Otherwise, synchronize their access to the cursor on S.



57 / 68

Probe Phase

Probe Phase – Bloom Filter

• Create a Bloom Filter during the build phase when the key is likely to not exist in the
hash table.
▶ Threads check the filter before probing the hash table.
▶ This will be faster since the filter will fit in CPU caches.
▶ a.k.a., called sideways information passing.



58 / 68

Probe Phase

Probe Phase – Bloom Filter



59 / 68

Evaluation

Evaluation



60 / 68

Evaluation

Hash Join Variants

No-P Shared-P Private-P Radix

Partitioning No Yes Yes Yes
Input scans 0 1 1 2
Sync during partitioning – Spinlock per tuple Barrier Barriers
Hash table Shared Private Private Private
Sync during build phase Yes No No No
Sync during probe phase No No No No



61 / 68

Evaluation

Benchmarks

• Primary key – foreign key join
▶ Outer Relation (Build): 16 M tuples, 16 bytes each
▶ Inner Relation (Probe): 256 M tuples, 16 bytes each

• Uniform and highly skewed (Zipf; s=1.25)
• No output materialization
• Reference

https://dl.acm.org/doi/abs/10.1145/1989323.1989328


62 / 68

Evaluation

Hash Join - Uniform Dataset



63 / 68

Evaluation

Hash Join - Skewed Dataset



64 / 68

Evaluation

Observation

• We have ignored a lot of important parameters for all these algorithms so far.
▶ Whether to use partitioning or not?
▶ How many partitions to use?
▶ How many passes to take in partitioning phase?

• In a real DBMS, the optimizer will select what it thinks are good values based on what
it knows about the data (and maybe hardware).



65 / 68

Evaluation

Radix Hash Join - Uniform Dataset



66 / 68

Evaluation

Radix Hash Join - Uniform Dataset



67 / 68

Conclusion

Conclusion



68 / 68

Conclusion

Conclusion

• Partitioned-based joins outperform no-partitioning algorithms in some settings, but it
is non-trivial to tune it correctly.

• AFAIK, every DBMS vendor picks one hash join implementation and does not try to be
adaptive.

• Next Class
▶ Parallel Sort-Merge Join Algorithms


	Parallel Hash Join
	Recap
	Background
	Partition Phase
	Build Phase
	Probe Phase
	Evaluation
	Conclusion

