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Welcome!

• This course is on the design and implementation of database management systems
(DBMSs).

Why you might want to take this course?
• DBMS developers are in demand.
• There are many challenging unsolved problems in data management and processing.
• If you are good enough to write code for a DBMS, then you can write code on almost

anything else.
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Welcome!

Why you might not want to take this course?
• This is not a course on how to use a database to build applications or how to

administer a database.
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Course Objectives

• Learn about modern practices in database internals and systems programming.
• Students will become proficient in:

▶ Writing correct + performant code
▶ Proper documentation + testing
▶ Working on a large systems programming project



7 / 51

Course Introduction Course Overview

Course Topics

The internals of single node systems for disk-oriented and in-memory databases.

Topics include:
• Relational Databases
• Storage
• Access Methods
• Query Execution
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Background

• You should have taken an introductory course on data systems (e.g., GT 4400).
• All programming assignments will be written in C++17.

▶ Will train you to develop and test a multi-threaded program.
▶ Programming assignment #1 will help get you caught up with C++.
▶ If you have not encountered C++ before, you will need to put in extra effort!
▶ Here a couple of helpful references: Java to C++ Transition Tutorial, C++ Language
▶ I will briefly cover relevant parts of C++ in this course.

https://cs.brown.edu/courses/cs123/docs/java_to_cpp.shtml
https://www.cplusplus.com/doc/tutorial/
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Course Logistics

• Course Policies
▶ The programming assignments and exercise sheets must be your own work.
▶ They are not group assignments.
▶ You may not copy source code from other people or the web.
▶ Plagiarism will not be tolerated.

• Academic Honesty
▶ Refer to Georgia Tech Academic Honor Code.
▶ If you are not sure, ask me.
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Course Logistics

• Course Web Page
▶ Schedule: https://www.cc.gatech.edu/ jarulraj/courses/4420-f21/

• Discussion Tool: Piazza
▶ For all technical questions, please use Piazza
▶ Don’t email me directly
▶ All non-technical questions should be sent to me

• Grading Tool: Gradescope
▶ You will get immediate feedback on your assignment
▶ You can iteratively improve your score over time

• Virtual Office Hours via BlueJeans
▶ Will need to sign up for an one-on-one slot
▶ Sign-up sheet will be posted on Canvas

https://www.cc.gatech.edu/~jarulraj/courses/4420-f21/
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Course Rubric

• Programming Assignments (35%)
▶ Four assignments based on the BuzzDB academic DBMS.
▶ You will need to upload the solutions to Gradescope.

• Exercise Sheets (15%)
▶ Three pencil-and-paper tasks.
▶ You will need to upload the sheets to Gradescope.

• Exams (20%)
▶ One remote exam.
▶ Based on programming assignments and problem sheets.
▶ We are planning to use the online proctoring service provided by the university.

• Project (30%)
▶ Students will organize into groups and choose to implement a project that is relevant to

the topics discussed in class.
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Course Rubric

• Emphasis on learning rather than testing you.
• Students enrolled in the 4420 section may skip attending the advanced lectures

(marked with a star) in the schedule.
• They will not be expected to answer questions related to these advanced lectures in the

exercise sheets or the exam.
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Late Policy

• You are allowed four slip days for either programming assignments or exercise sheets.
• You lose 25% of an assignment’s points for every 24 hrs it is late.
• Mark on your submission (1) how many days you are late and (2) how many late days

you have left.
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Teaching Assistants

• Pramod Chundhuri
▶ Ph.D. (Computer Science)
▶ Research Topic: Video analytics using deep learning.

• Jiashen Cao
▶ Ph.D. (Computer Science)
▶ B.S./M.S. program @ Georgia Tech
▶ Research Topic: Accelerating data systems using GPUs.

• If you are acing through the assignments, you might want to hack on the video
analytics system (codenamed EVA) that we are building.

• Drop me a note if you are interested!

https://github.com/georgia-tech-db/eva
https://github.com/georgia-tech-db/eva
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Motivation (1)

A Database Management System (DBMS) is a software that allows applications to store
and analyze information in a database.

A general-purpose DBMS is designed to allow the definition, creation, querying, update,
and administration of databases.

DBMSs are super important
• core component of most computer applications
• very large data sets
• valuable data
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Motivation (2)

Key challenges:
• scalability to huge data sets
• reliability
• concurrency

Results in very complex software.
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About This Course

Goals of this course
• learning how to build a modern DBMS
• understanding the internals of existing DBMSs
• understanding the impact of hardware properties

Rough structure of the course
1. Relational Databases
2. Storage
3. Indexing
4. Query Execution
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Next Course

In a follow-up course offered in the Spring semester (GT 8803), we will focus on:
1. Query Compilation
2. Concurrency Control
3. Recovery
4. Query Optimization
5. Potpourri

This course will be a pre-requisite for the next course.
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Textbook

• Silberschatz, Korth, & Sudarshan: Database System Concepts. McGraw Hill, 2020.
• Hector Garcia-Molina, Jeff Ullman, and Jennifer Widom: Database Systems: The

Complete Book. Prentice-Hall, 2008.

Caveat
• These textbooks mostly focus on traditional disk-oriented database systems
• Not modern in-memory database systems
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Motivational Example

Why is a DBMS different from most other programs?
• many difficult requirements (reliability etc.)
• but a key challenge is scalability

Motivational example
Given two lists L1 and L2, find all entries that occur on both lists.

Looks simple...
L1 = {1, 2, 3, 5}
L2 = {1, 5, 3, 4, 7}
L1 ∩ L2 = {1, 3, 5}
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Motivational Example (2)

Given two lists L1 and L2, find all entries that occur on both lists.

Simple if both fit in main memory
Don’t need more than a few lines of code

• sort both lists and intersect L1 = {1, 2, 3, 5}; L2 = {1, 3, 4, 5, 7}
• or load one list in an unordered hash table [2] and probe
• or load one list in an ordered tree structure [1]
• or ...

Note: pairwise comparison is not an option! O(n2)
We will discuss about hash tables and B+trees in Access Paths .
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Motivational Example (3)

Given two lists L1 and L2, find all entries that occur on both lists.

Slightly more complex if only one list fits in main memory

• load the smaller list into memory
• build tree structure/sort/hash table/...
• scan the larger list one chunk (e.g., 10 numbers) at a time
• search for matches in main memory

Code still similar to the pure main-memory case.
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Motivational Example (4)

Given two lists L1 and L2, find all entries that occur on both lists.

Difficult if neither list fits into main memory

• no direct interaction possible
• Option 1: Sorting works, but already a difficult problem

▶ Programming Assignment 1: external merge sort
▶ We will cover this in External Hash Join .

• Option 2: Partitioning scheme (e.g., numbers in [1, 100], [101, 200],. . . )
▶ break the problem into smaller problems
▶ ensure that each partition fits in memory

Code significantly more involved.
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Motivational Example (5)

Given two lists L1 and L2, find all entries that occur on both lists.

Hard if we make no assumptions about L1 and L2.

• tons of corner cases
• a list can contain duplicates
• a single duplicate value might exceed the size of main memory!
• breaks “simple” external memory logic
• multiple ways to solve this, but all of them are somewhat involved
• and a DBMS must not make assumptions about its data!

Code complexity is very high.



25 / 51

Course Introduction Motivation

Motivational Example (5)

Given two lists L1 and L2, find all entries that occur on both lists.

Hard if we make no assumptions about L1 and L2.

• tons of corner cases
• a list can contain duplicates
• a single duplicate value might exceed the size of main memory!
• breaks “simple” external memory logic
• multiple ways to solve this, but all of them are somewhat involved
• and a DBMS must not make assumptions about its data!

Code complexity is very high.



26 / 51

Course Introduction Motivation

Motivational Example (6)

Designing a robust, scalable algorithm is hard
• must cope with very large instances
• hard even when the database fits in main memory
• billions of data items
• rules out the possibility of using O(n2) algorithms
• external algorithms (i.e., database does not fit in memory) are even harder

This is why a DBMS is a complex software system.
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Traditional Assumptions

Historically, a DBMS is designed based on these assumptions:
• database is much larger than main memory
• I/O cost dominates everything with Hard Disk Drives (HDD)
• random I/O operations to “mechanical” HDD are very expensive

This led to a very conservative, but also very scalable design.
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Hardware Trends

Hardware has evolved over the decades (invalidating these assumptions):
• main memory size is increasing
• servers with 1 TB main memory are affordable
• “electromagnetic” Solid State Drives (SSD) have lower random I/O cost
• . . .
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Hardware Trends

This affects the design of a DBMS
• CPU costs are now more important
• I/O operations are eliminated or greatly reduced
• the classical architecture (disk-oriented database systems) has become suboptimal

But this is more of an evolution as opposed to a revolution. Many of the old techniques are
still relevant for scalability.
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Goals

Ideally, a DBMS
• efficiently handles arbitrarily-large databases
• never loses data
• offers a high-level API to manipulate and retrieve data
• this API is the declarative Structured Query Language (SQL)
• shields the application from the complexity of data management
• offers excellent performance for all kinds of queries and all kinds of data

This is a very ambitious goal!
This has been accomplished, but comes with inherent complexity.
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Course Organization

1. Storage Management
2. Access Paths
3. Query Execution (algebraic operators)

In each topic, we will cover aspects of both disk-oriented and modern in-memory DBMSs.
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Machine Setup

• Operating System (OS): Ubuntu 18.04
• Build System: cmake
• Testing Library: Google Testing Library (gtest)
• Continuous Integration (CI) System: Gradescope
• Memory Error Detector: valgrind memcheck

https://cmake.org/overview/
https://github.com/google/googletest/blob/master/googletest/docs/primer.md
https://www.valgrind.org/docs/manual/mc-manual.html
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C++ Topics

• File I/O
• Threading (later assignments)
• Smart Pointers (later assignments)

https://www.learncpp.com/cpp-tutorial/186-basic-file-io/
https://en.cppreference.com/w/cpp/thread/thread
https://www.learncpp.com/cpp-tutorial/15-5-stdunique_ptr/
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Problem Statement

• Sorting an arbitrary amount of data, stored on disk
• Accessing data on disk is slow – so we do not want to access each value individually
• Sorting in main memory is fast – but main memory size is limited
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Solution

• Load pieces (called runs) of the data into main memory
• and sort them
• Use std::sort as the internal sorting algorithm.
• With m values fitting into main memory and d values that should be sorted:
• number of runs (k) =

⌈
d
m

⌉
runs

https://en.cppreference.com/w/cpp/algorithm/sort
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Sort k runs (1)

Memory – – –

Disk 8 5 1 4 7 3 2 9 6
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Sort k runs (2)

Memory 8 5 1

Disk 8 5 1 4 7 3 2 9 6
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Sort k runs (3)

Memory 1 5 8

Disk 8 5 1 4 7 3 2 9 6
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Sort k runs (4)

Memory – – –

Disk 1 5 8 4 7 3 2 9 6
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Sort k runs (5)

Memory – – –

Disk 1 5 8 3 4 7 2 6 9
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Iterative 2-Way Merge (1)

Memory – –

Disk 1 5 8 3 4 7 2 6 9

– – – – – – – – –
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Iterative 2-Way Merge (2)

Memory 1 3

Disk 1 5 8 3 4 7 2 6 9

– – – – – – – – –
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Iterative 2-Way Merge (3)

Memory – 3

Disk 1 5 8 3 4 7 2 6 9

1 – – – – – – – –
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Iterative 2-Way Merge (4)

Memory 5 3

Disk 1 5 8 3 4 7 2 6 9

1 – – – – – – – –



47 / 51

Course Introduction External Sorting

Iterative 2-Way Merge (5)

Memory 5 –

Disk 1 5 8 3 4 7 2 6 9

1 3 – – – – – – –
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Iterative 2-Way Merge (4)

Memory – –

Disk 1 5 8 3 4 7 2 6 9

1 3 4 5 7 8 – – –
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Iterative 2-Way Merge (5)

• Iteratively merging the first run with the second, the third with the fourth, and so on.
• As the number of runs (k) is halved in each iteration, there are only Θ(log k) iterations.
• In each iteration every element is moved exactly once
• So in each iteration, we read the whole input data once from disk
• The running time per iteration is therefore in Θ(n)
• The total running time is therefore in Θ(n log k)
• Still expensive
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Conclusion

• Complexity of a database system arises from the need for robust, scalable algorithms
• A database systems must satisfy many requirements: reliability, scalability, e.t.c.
• External sorting allows us to sort larger-than-memory datasets
• In the next lecture, we will learn about relational database systems.
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